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Abstract: We used a classical Deep Feed Forward Neural Network (DFFNN) for an automatic sleep stage
scoring based on a single-charmel EEG signal. We used an open-available dataset, randomly selecting one
healthy young adult for both training (=5%) and evaluation (=95%). We also, augmented the validation by
using 5-fold cross validations for the result comparisons. We introduced a new method for inferring the trained
network based on a ROM module (memory concept), so, it would be faster than directly inferring the trained
Deep Neural Network (DNN). The ROM content 1s filled after the DNN network 1s tramed by the traimng set
and inferred using the testing set. An accuracy of 97% was achieved in inferring the test datasets using ROM
when compared to the classic trained DNN inference process.
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INTRODUCTION

Sleep 1s essential to human health and when a person
undergoes a reduced sleep period, abnormal sleep
patterns or suffers a sleep illness such as desynchronized
circadian rhythms, he will face cognitive, somatic and
cognitive symptoms (Medic ef al., 2017). There exists a
relation between abnormal sleep patterns and neuro
diseases (Abbott and Videnovic, 2016). Recent research
shows that the detection of all sleep abnormalities such as
circadian disruption, could be a clear indicator of a risk
potential for the early stages of neurodegenerative
illnesses such as alzheimer and parkinson diseases
(Wulff et al., 2010). Sleep experts judge sleep quality
using electrical sensors attached to the different parts
of a person’s body. Those signals comprise an
Electroencephalogram (EEG), an Electrooculogram (EOG)
an Electromyogram (EMG) and an Electrocardiogram
(ECG). A Polysomnogram (PSG) 1s the name for the entire
set of those related signals recorded through these
Sensors.

The P3G data segments all recordings into 30 sec
epochs and the sleep stage experts assign different stages
according to Rechtschaffen and Kale’s (R&K) (Hor1 ef al,
2001), sleep manual as well as the American Academy of
Sleep Medicine (AASM) (Berry et al., 2012). The process
15 a time-consuming and labor-mtensive full-manual
approach with multiple sensors having a 100 Hz sampling
rate responsible for increasing the amount of data

collected Human experts doing the manual scoring
demand specialized training which malkes them expensive
to hure. Additionally, the rating quality depends on the
rater’s experience and the accuracy 1s <90% in most cases
(Rosenberg and Van Hout, 2013).

According to the R&K rules in each 30 sec epoch,
the sleep EEG signals were annotated as belonging to one
of 5 stages: WA, NREM1 (N1), NREM2 (N2), NREM3 (N3)
and NREM4 (N4, or SWS3) and REM. Not every epoch is
a 100% fit in a specific stage. A neurologist specialized in
sleep analysis 1s assigned to assess these stages. In
detail, the Wake stage (WA) 15 considered the normal
body function stage. The NREM]1 is believed to be the
beginning of sleep where the eyes are closed. While in the
NREM? stage, the light sleep stage both heart rate and
body temperature are slowed down In NREM3, the
person falls into the deep sleep stage, during which the
body repairs and regrows tissues. Finally, the REM sleep
period called the dream period 1s characterized by faster
brain activity, breathing and heart rate. In this study, we
altered the Rechtschafen and Kales sleep staging criteria
(Hori et al., 2001) merging the criteria for N1 and N2 into
N1 and merging N3 and N4 mto a single stage (N2). The
WA and REM stages are unchanged.

Several studies attempting to develop automated
scoring methods for sleep stages based on multiple
biosignals (EOG, EEG and EMG) have emerged
recently. They mcorporate methods that extract the
frequency-domain, time-domain or frequency-time-domain
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features from each recorded epoch. Tn many of the studies
using such multiple signals, the different features
concatenate into a single feature vector composing the
training features of the epochs (Lajnef et af, 2015;
Huang et al., 2014 and Gunes et al., 2010).

In this study, we present a novel, classic DFFNN
framework for automatic sleep stage scoring using a
single channel of EEG and then we evaluate it. The single
EEG channel within the PSG signals and their spectral
components for the estimation of sleep features 1s solely
used. Four normalized power frequency spectrums are
extracted from the 500-temporal data (5 sec long acquired
EEG signal), constituting both training and testing
epochs.

Most researches have used the classical method
of tramming a smgle or a mix of the followmg deep
networks (feedforward, convolutional neural network,
recurrent neural network or long-short-term memories)
or a combination for basic training and inference
operations. However, instead of mferring the same-
trained network, we will alternatively accomplish the
mference of a full-ttained DNN for sleep stage
classification, using a concept of basic storage memory
(or sumply a ROM). The content of every location within
the ROM is labeled with the corresponding sleep stage
class but its mdices are identified from a prior traimng
process acting on the proposed networl.

We compared the performance of the built neural
network model with that of the ROM model. We achieved
a state of-the-art accuracy of (8land 97% resemblance)
but had some difficulty comparing the results to other
studies, since, to our knowledge there was absolutely no
such previous usage of this new inference.

PSG data set: The data used to tram, test and
evaluate the model 15 a publicly available sleep-EDF
database from the physionet repository. All the
subject’s signals are whole-night polysomnographic
sleep recordings embedding EEG Fpz-Cz and EEG Pz-
Oz electrodes, EOG_horizontal and a submental EMG chin
signal besides other signals related to breathing rate,
oxygen concentration and body movements. The PSG
recordings for the PSG SC 4002F subject in particular is
obtained from a healthy Caucasian male volunteer taking
no medication this subject was randomly selected for the
research. Additionally, it 138 worth noting that all signals
were technically digitized using a 100 Hz sampling rate.
Although, the origmal PSG-EEG data was divided
into 30 sec epochs adequate for offline analysis, we have
rearranged 1t to 5 sec epochs mstead. This increased the
nmumber of features generated x6 while preserving the
featire representation of the hypnogram’s 5 stages
as will be shown in the results study. The EEG data

Table 1: Sleep stage EEG confusion matrix for Deep leaming 47 Java Model

Prediction
Sleep stages W NREM 1-2 NREM 3-4 REM
Original
W 9685 499 534 592
NREM 1-2 37 1631 466 458
NREM 3-4 25 164 1591 2
REM 77 320 42 851

Bold values are significant values

Table 2: Sleep stage epoch distribution with accuracies for original data,
DL4J model and ROM model

Sleep No. of DL4 stage ROM stage ROM/
stages epochs Percentage acc. (%6) acc. (%) TLAT @0
W 11.310 66.6 85.6 90.6 105.8
NREM 1-2 2592 15.3 62.9 47.9 76.1
NREM 34 1782 10.5 89.2 83.1 93.2
REM 1.290 7.6 65.9 41.3 62.6
Total 16974 100.0 81 79.6 98.3

collected consists of 16,947 sets each 500 samples long
(8,503,974 samples stored ina 132,908 MB file). Randomly
selected sets from the PSG_SC 4002E subject were used
to form the training batches which are composed of 4.7%
of the total epochs (800 epochs) while the remaming
constitutes the test set. Table 1 and 2 presents a summary
of the data for this subject. The record was acquired for
the whole day for both the WA and other sleep stages.
Figure 3 for the training to testing to validation ratios.

System description: In this study, an overall system
architecture 1s presented in detaill The system was
divided mnto a traiming module and a deployment module.
The system architecture is shown in Fig. 1.

DNN training module: The objective of the
model-training module is to find an accurate prediction of
a DNN that can take the EEG signal as input and
intelligently generate a sequence of the sleep stages
using one stage label assigned to each 5 sec epoch. To
generate such a prediction algorithm we rely on the
model-traiming module to extract features from the EEG
data and then find classification algorithms to identify the
best feature and algorithm configuration. Model traming
is described (Fig.2 and 3).

Independent inference modules (non-DINN or ROM-based
module): After the same pattern goes through a feature
extraction process, it is mapped to a binary discretized
integer or index known as a memory address. Those
addresses are applied to a memory module where
classification labels are stored representing the sleep
stages (numbered between 0-3). When the deployment
process fimishes a direct substitution i the memory
module produces a direct prediction. The inference model
1s described m the study.
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Fig. 3: The allocation of the EEG data used for training
and testing the proposed algorithm

DeepFeed Forward Neural Network (DFFNN): Artificial
neural networks inspired by biological neurons to solve
some prediction m many classification and recogmtion
application such as for instance, vision, voice and natural
language. With their recent successor, the Deep Neural
Networks or (DNN) they have achieved close to 100%
success in different pattern recognition fields in recent
years.

DNN has an architecture of multiple layers, input
layer with a descriptor X, L. hidden layers and an output
layer to enforce a prediction. Multi-layer feed forward
neural networks consist of neurons into layers. Neurons

Deploy
Training
1 Mx4
ROM[™ Classes —p
Test
To address
20-bits
(7-7-4-2)

Y ="f(W.X+b)

Y =f CW.Y+b)

Fig. 4: Multilayer perceptron network (Siddique and
Adels, 2013)

on all layers are fully connected to all neurons to adjacent

layer. In each layer all neurons use the same activation
function. The input to neurons of the other layers is the
output (activation) of the previous layer’s neurons, except
for the input layer.

Figure 4 Siddique and Adeli (2013) shows a
multilayer feedforward neural network. The mput this
network 1s shown below with its weights matrix and bias
vectors. Figure 2 shows the multilayer neural network in
which every layer contains a weight matrix W beside a
bias vector b beside the output vector y as shown in
Eq L:

x1 (w1l wlZz ... wlm | (bl ]
X2 w21 w2,2 .. w2,m b2
X = W= b=
| X1 | wn,l wn,Z ... Wi, m | | bn |
(1)
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Each of the m components of the input vector x = {x1,
x2, .., xm} feeds forward to the n neurons. The first
hidden laver generates an output as 'Y = 'f ('W « X+'b)
and the final output of the network is given by *Y =*f W
¢ 'Y+*b). Tt passes through the activation function that
could be a sigmoidal, a tan sigmoidal (TANH), a
hyperbolic tangent function (ReLU), a Leaky ReLU or a
Softmax all defined as shown:

Sigmoida, f{x)=—

1+e

-

TANH

l-e
r(x)=

ReLU f(x)=max (0,x)
LeakyReLU f(x)=ax.x<0, =0,x20

Soft max oz} -_° forj=1, ., K

]
S
The output of these functions is linearly combined
with weights into a network output f (x). The strategy of
how tlus network processes information 1s deeply
dependent on its building architecture and the number of
neurons as well as the correct choice of the transfer

functions and their diversities among layers has the
biggest impact for traimng.

MATERIALS AND METHODS

In this study, we present a novel approach to
automatically inferring a trained DNN to detect the
WAKE, NREMI -2, NREM3-4 and REM of sleep classes
within a single EEG record. A Feed Forward Deep Neural
Network (FFDNN) model is trained with the 4 sets and
inferred using a ROM module. Figure 2 shows a graphical
representation of the approach.

Pre-processing: No preprocessing 1s applied here except
for the manual selection of trained epochs to ensure they
contained no deformed signals or severe noise, a
precaution to emnsure correct trammng. Although, the
generic data presented in the sleep-EDF database has
walce and REM stages in more length than other classes,
the curent study used the complete number of sets
without trimming.

Training pattern matrix construction: The classification
of sleep stages was based on time segments 5 sec long

and the neurclogist specified the target classes. The
frequency content of PSG-EEG channels advised by the
specific literature was adopted for this current study and
used for classification (Hsu et al., 2013). The
physiological nature of the signals dictates the selection
of those frequencies and they covered a range from (0.5,
20) Hz. Specifically, the A (0.5-4 Hz) 0, (4-8 Hz), & (8-12 Hz)
and o (12-20 Hz) bands were taken. The normalized image
of the 4-frequency power density is utilized as feature
vectors.

To extract those frequency-domain features
successfully, we first segment each 5sec epoch into
500-long readings of the temporal subpatterns. Then, we
estimate the power spectral density of each subepoch,
resulting m 250 frequency bms covering the range
from 0-50 Hz each 5 bins representing 1 Hz. We then
normalize these power estimates over a total power range
of 0-20 Hz. The next formula shows the relative spectral
feature FS of a signal segment which the discrete fourier
transform evaluates, resulting in a relative power in the
specified frequency band (fcl and 2) by relation:

im

ps - Zeel Wy Sywe™ @

> v (k)f

where, 0 is the indices group for the frequency
values tk = /N fs belongs to (fel, fe2). This will form a 2D
training pattern of four columns (vectors) by Q rows
where, Q denotes the number of training epochs. For
every feature vector, the corresponding sleep class
specified by the neurologist is appended.

ROM-based inference process: The main objective of this
part of the data preparation process 1s to convert the
4-spectrum bands to a 20-bit nteger index used to mfer a
memory module for class content. First, every 5 sec
wnterval of the EEG signal (or 500 EEG readings) is
extracted and labeled in accordance with the sleep states
the SPG_SC_4002E subject undergoes. Second, the Fast
Fourier Transform (FFT) is applied to the time series, set
by set and 250 frequency vector bins are generated,
covering a range of 0-50 Hz. The sampling frequency is
100 Hz with every 1 Hz represented by 5 frequency
readings each 0.2 Hz. Third, the four different frequency
bands identified with the notations («, P, 0, and o) are
then computed as shown in Eq. 1. Fourth, the power
densities are then normalized over the total power content
from 0-20 Hz, resulting in a normalized or relative power
density pattern distribution across a 2D matrix.

Figure 5 shows the four snapshots of four sets of
EEG signals covermng the four stages of sleep for a
random subject. Tt shows a frequency content of 250 Hz.
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Fig. 5: Example of EEG frequency spectrum of the 4 sleep stages belonging to PSG_SC 400ZE subject. Upper left, upper
night, lower left and lower right will be for sleep stage “Wake”, “NREM 1, 27, “NREM 3, 4” and “REM",
respectively; a) Wake stage; b) NREM 1.2 stage; ¢) NREM 13.4 stage and d) REM stage

Table 3: Results for inference for subject PSG_CS_4002E using deep

learning 4J Model

Accuracy (%6) Precession (%)

Recall (%0

F1 score (%9)

81 66.5

76

70

Table4: MATLAB classifier learner accuracies for different classification
algorithms for subject PSG SC 4002E with 16,974 sets

Classification learners

Prediction accuracy (%o)

Trees

Fine tree 84.8
Medium tree 78.1
Coarse tree 73.8
SVM (Support Vector Machine)

SVM linear 88.2
SVM final Gaussian 89.8
SVM coarse Gaussian 88.7
Ensembles

Ensemble boosted trees 83.9
Ensemble bagged trees 89
Subspace discriminant 66.1
Subspace KNN 75.7
RUS boosted trees 79.6
KNNs (k-Nearest Neighborhood)

Fine 86
Medium kNN 89.2
Coarse 88.5

The spectrum plots show the density of power near 0 Hz
which drops sharply as the frequency approaches 15 Hz,
eventually reaching zero-close values around 250 Hz.
Based on this observation, 7-bit 1s assigned to represent
the first 2 bands, & and P, since, their content is highly
dense, 4-bit and 2-bit are assigned to the remaining other
2 bands, 0 and o, respectively, since, their contents are
less dense (Table 3 and 4).

Next, each of the four relative frequency power
densities, F4 (0), F3 (0), F2 (P) and F1 («) are converted to
an integer ranging from 0 to 2°-1, 2°-1, 2’-1 and 2'-1
respectively and finally rounded. This process results in
an integer from 0-3, 0-15, 0-127 and 0-127, expressing
values for the frequency spectrum bands, F4, F3, F2 and
F4, respectively. All 4 integers are extracted and
substituted in the weighting formula below to form a
single large-range integer value most suitable for a
memory module index (address):

Index = F4*4*( 2 )+F3*16*( 2 ) +F2*128*( 7 )+F1*128

where, F1-F4 represents the four normalized spectrum
values. This process finally generates a memory space of
1,048,576 (1M) different storages, each holds one 4-class
symbol while simply being addressed by the above index
of Eq. 2. This index supposedly points to the class level.
In this way, we have totally converted the inference
process of a fully traned DNN to a simple memory
address-content problem (Table 5).

Memory content generation process: Here, in this data
preparation stage, we use the reverse engineering concept
to effectively compute the corresponding features of 4
frequency bands synthetically resulting from a given
index value. We start using an index from 1 to (2*-1) or
the so-called full-memory address range. The calculation
of the 4 synthetic frequency bands, each represented by
different binary bits is generated when substituted in next
equation:
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References Title Dataset Purpose of the stud: Features Classifier Results
Jatupaiboon ef al.(2013) Sleeplet: PEGs of 10,000 Sleep stages -Faw EEG -CNN Using RN
autornated sleep patients from the classification features -ENN Average accuracy of
staging system Massachusetts General Spectrograrm -RENN-CININ 85.76%
via. deep learning Hospital (MGEH) sleep features Algorthm-expert
laboratory Expert Inter-Rater & greement
defined features (IRA)Y of K =79.46%
Hsuet ol (2013) Real-time EEG recording using Happy and unhappy Power SVM Aceuracy of subject-
EEG-based 14-channels wireless emotions classification  Spectral dependent model
happiness detection EMOTIV Density P3D) 75.62%
systern 600 samples and subject-independent
per participant model 65.12%
Zhang et al. (2016) A recurrent neural Sleep-EDF database Sleep stages Energy features Recurrent #verage classification
sleep-stage classifier classification extracted on 30 sec neural classifier accuracy 87.2%
using energy epochs from
Features of EEG signals EEG signals

Teinalis ef al. (2016a)

Teinalis ef al. (2016b)

Yulita ef of. (2017)

Supratak et al. (2017)

Langlvist ef af. (2012)

Sors et al. (2018)

Paisarnsrisomsuk ez al
2018)

Sirnonyan and Zisserman
2014

Prochazka et al. (2018)

Stephansen ef al. 2017)

Automatic sleep stage
classification based on
sparse deep belief net and
cermnbination of multiple
classifiers

Automatic sleep stage
seoring with single-channel
EEG using convolutional
neural networks
Automatic sleep stage
scormg usmg
tirne-frequency analysis
and stacked sparse
autoencoders
Bi-drrectional leng
shert-term mermory using
quantized data of deep
belief netwerks for sleep
stage classification

Deep sleep net: &

model for autormatic
sleep stage scoring

based on raw
single-channel EEG

Sleep stage classification
using unsup ervised
feature learning

A convolutional neural
network for sleep stage
seoring from raw
single-channel EEG
Deep sleepconvolutional
neural networks for
predictive modeling of
human sleep time-signals
Multi-class sleep stage
analysis and adaptive
pattern recognition

The use of neural
networks in the analysis
of sleep stages and

the diagnosis of
narcolep

TUCD database

Sleep PEG dataset

Sleep PEG dataset

Vincent's University
Hospital/Univ ersity College
Dublin’s Sleep Apnea
Database

Montreal Archive of
Sleep Btudies (MASE)
and sleep-EDF

Vincent’s university
hospital and unwversity
college dublin

Data from the Sleep
Heart Health Study
(SHHS) (Bingle
Charmel)

Sleep-EDF database
Synthetic data

Database of 184
polysormnography
overnight observations

Sleep stages
classification

Sleep stage scoring
Meural
Wetworks (CNNs)

Sleep stage scoring

Sleep stage scoring
featnres

Sleep stage scoring

Sleep stage
classification

Sleep scoring

Sleep
stages classification

Sleep stages
classification

Deep belief netwerk
features

Convolutional
Meural
Wetworks (CNNs)

Time-frequency-
based analysis using
Marlet wavelets

28handcrafted
Bi-directional

Deep leaming
features

DENs features

CHIN

CHIN

5 energy features
and 12 energy
features

Cembination of

HMM, KNN and
UM

Cenvolutional
Meural
Wetworks (CHNs)

Stacked sparse
autcencoders

Quantization
Recall 72.1%
Long Short-Terrn
Memory
(qBi-LETM)
CII and
BLSTM

CHIN

CHIN

Bayesian neural
network classifier

Cenvolutional
(CII) and
Recurrent (R
Meural Metworks

91.31%

Overall accuracy: 74%

F1l-score: 81%
Overall accuracy: 78%
Iean Fl-score: 4%

Precision: 86%%

F-measure:75.27%

MMASS: Overall
accuracy:86. 2%
MacroFl-score: 81.7
Sleep-EDF:

Overall accuracy: 82.0%%
Macro Fl-score: 76.9
Accuracy (rnean £ std)
72.249.7

Aceuracy: 0.87 kappa
0.81

Overall classification
accuracy of 81%

Mean classification
accuracy on single
channel: 88.7%4
On rrnltirnodal
channels: 58.6%

Synthetic band 4 = shift right
(Index & (0x CO000), 18-bit)/4.0

Synthetic band 3 = shift right
(Index & (05¢3C000), 14-bit)/16.0

Synthetic band 2 = shift right
(Index &(0x03F80), 7-bit}/128.0

Synthetic band_1 = Index & (0x0007F)/128.0

This should generate a 2D matrix of four values
representing a normalized synthetic power spectrum,
repeated over the full range of a 20-bit binary address or
1,048,576 (Fig. 6 and 7).

This 1M-by-4 memory matrix is prepared for inference
(or in other words for testing the networl). This network
15 supposedly the same network which 1s trained using
the subject’s traimng patterns prepared ecarlier as
explained in study. The inferred or predicted classification
classes from the previous operation are used as a
content to fill the memory module using next simple
equation:
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Fig. 7. Comparison between the ROM content with the training set filled (upper image) and when filled after the network
is inferred with total range of 524,287 sets (lower image)

Memory [Index] = prediction_class

This should prepare the inference operation
separately from the DNN used for training and enable a
faster inference operation. Figure 7 shows ROM content
when training patterns are firstly mapped in (800 sets) and
after it is fully mapped with the generated synthetically
from the inference process (524287 sets).

DNN architecture and training parameters: All kemels
or parameters reported in this study are settled after some
trial-and-error attempts. Figure 2 illustrates the graphical
representation of the DNN structure with normalized 4

frequency bands chosen as input samples. This proposed
DNN architecture encompasses one input layer, followed
by two fully connected hidden layers and finishes
with 1 output layer. The activation fimetions used in the
nput and the two hidden layers are the tanh function
while the one used in the output layer is the softmax
function. The weight initialization algorithm used is Xavier
while the regularization used to overcome overfitting
was 12 (1e-4). The loss function used in the output layer
was chosen to be negative log likelihood.

A conventional backpropagation training algorithm
15 employed to train the DNN with a batch size of 800. In
the tramning algorithm, the batch size 1s used to denote the
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number of epochs or the number of signals used for each
training update of the networle’s parameters. Here, the
batch size 1s taken to be equal to the number of sets used
in training. Back propagation calculates the gradient of
the loss function with respect to the weights. Error signals
emerging from each pass are passed backward through
the network during traimng to update the weights. The
batch size of 100 was used in this research. The learning
rate was commonly tested from 10"'-10” for the Adam
optimizer. The implementation 1s based on the
Deeplearning4j Tava frameworlk, especially designed for
creating, testing and adjusting hyperparameters of
different deep neural architectures.

RESULTS AND DISCUSSION

The proposed DNN 15 implemented on a ThinkPad
Laptop Intel® Core™ 17-5600U CPUi 2.6 GHz with 8 GB
RAM usmg the MATLAB programming software to
sinulate the ROM inference model and Deeplearning
Java framework model. Tt took about 15 min to complete all
epochs of training with 30,000 iterations.

The confusion matrix across all stages is represented
i Table 1. We found that 85% of the EEG signals are
normal and correctly classified as walke signals. Small
percentages of 4.4, 4.7 and 5.2% of the normal EEG signals
are wrongly classified as NI1-2, N3-4 and REM,
respectively, 62% of the EEG signals are correctly
classified as NREMI1-2 signals, 1.4% of the EEG signals
were wrongly classified as WA, NREM3-4 (18%) and
REM (17.6%), 89% of the EEG signals are correctly
classified as NREM3-4 with 1.4% wrongly classified as
WA, NREMI1-2(9.2%) and REM (0.1%). The performance
(Accuracy, precision and F1-score) of the proposed model
can be seen in Table 3 for Subject PSG_SC 4002E when
the Deeplearning4] Model 1s used for tested inference.

Moreover, when the same test patterns undergo the
proposed ROM inference model a close resemblance in
results 1s reached: 79.6% from 81-98.3% of the expected
accuracy. Table 2 shows the accuracies for the
Deeplearning 4l platform and ROM Model as well as the
relative resemblance rate. Figure 6 lists the results of
testing the two models, the DNN and ROM-based using
95.3% of the subject sets. Clearly, the resemblance
between the responses of the two models is imminent and
reaches 98%.

Table 4 shows the cross-validation done using the
MATLAB classification leamer tool with 5-folds
validation when the full-set of the 16,974 subject sets is
tested. Different

classifiers used included trees,

ensembles Support Vector Machine (SVM) and k-Nearest
Neighbors (KNN). The best accuracy reached was for
SVM (Final grain Gaussian) at 89.8% besides the kNN
(medium grained) algorithm for 89.2%.

Table 4 represents a summary of the conducted
studies in an automated detection of sleep stages during
the last decade. According to Hillman ef af. (2006), around
50-70 million adults in the United States are affected by
sleep disorders such as parasomnias, disorders and
hypersomnia. The overnight PSG 15 used to diagnose
sleep disorders including brain monitoring using EEG.
Trained technologists conventionally conduct the PSG
analysis. Recently, the PSG analysis has been automated
with the help of machine-learning algorithms trained using
physiclogical datasets. The EEG signal 1s not limited to
the sleep study, it is also applied in many other studies
such as happy and unhappy emotions studies as by
Hsu et al. (2013) where they first registered the EEG signal
using 14-channels wireless EMOTIV. After filtering the
signal they decompose it, using a window of 1 sec to 5
frequency bands resulting in 70 features normalized by
scaling between 0 and 1. Then, the SVM i1s used to
classify the happy and unhappy emotions.

One of the tools deployed for the automatic
annotation of sleep staging is sleepnet proposed by
Biswal et al. (2017). They apply a deep Recurrent Neural
Network (RNN) for automatic sleep staging ammotation
and achieved a performance comparable to the human
level. Three types of EEG features were used: the raw
waveform, the spectrogram and expert-defined features.
To evaluate the system, conventional classifiers such as
logistic regression, tree boosting and multilayer
perceptton were compared to deep learming-based
classifiers an RNN and a Convolutional Neural Network
(CNN) (Stephansen et al., 2017). The RNN achieved the
best accuracy for sleep stages classification Another
research applying an RNN for sleep stages classification
is proposed by Hsu et al. (2013). They train the RNN
using energy features that are calculated by taking the
summation of the magnitudes of the squared components
of the signal.

Instead of using handcrafted features, the deep
learning 15 recently employed as a successful
unsupervised feature learning method. Zhang ef al. (2016)
the EEG, EOG and EMG signals are filtered then divided
into segments of 30 sec with zero overlaps. These signals
are then passed to a three layer sparse deep belief
network for features extraction. The classification of the
extracted features was achieved by combining multiple

classifiers in particular, the Hidden Markov Model
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(HMM), SVM and KNN. The combination of these
classifiers with the application of classification entropy
voting resulted in a 91% accuracy.

Another research employmng Deep Belief Nets
(DBNs) for features extraction was presented by
Paisarnsrisomsuk ef al. The DBNs were trained using a
dataset of EEG, EOG and EMG signals. All signals were
first preprocessed by notch filtering then three different
experiments were run using these filtered signals. Tn the
first experiment (feat-GOHMM experiment) 28 handcrafted
features were used to tram a Gaussian Observation
Hidden Markov Model (GOHMM). The feature set was
reduced using a Principle Component Analysis (PCA). In
the second experiment (feat-DBN experiment), they trained
the DBNs using the 28 handcrafted features then the
HMM was used on top of the DBNs. In the last
experiment (raw-DBN), the DBN used raw data instead of
handerafted features then the HMM was built on top
of it. The comparative analysis between the three
experiments showed that the feat-DBN performs better
than the raw-DBN and feat-GOHMM.

The quantization Bidirectional Long Short-Term
Memory (gB1-LSTM) was applied by Supratak et al. (2017)
for the classification of sleep stages. After filtering the
EEG, EOG and EMG signals, 28 handcrafted features were
extracted and normalized. Tn addition to the qBi-LSTM,
the reasearchers applied BLSTM and a DBN. The
performance of the gB1-LSTM outperformed the other two
models.

A deep learning approach for both the feature
extraction and classification of sleep stages was proposed
by Langkvist ef al. (2012). They employed 2 CNNs for
extracting time-invariant features from raw EEG. Each CNN
consists of 4 convolutional layers and 2 max-pooling
layers. The temporal information of the sleep stages
transitions was encoded using Bi-LSTM. They evaluated
their model using two datasets: the first was Montreal
Archive of Sleep Studies (MASS) and the second was
sleep-EDF.

Recently, the CNNs successful in many computer
vision tasks have been applied to the task of sleep stage
classification. A CNN with two convolutional and pooling
layers two fully comnected layers and a softmax layer was
umnplemented by Tsinalis ef al. (2016 a, b) to achieve sleep
stage scoring using a PSG dataset. They compared CNN
results with their previous study (Tsinalis et al., 2016a, b)
in which they performed a time-frequency-based analysis
by using morlet wavelets for feature extraction. The
classification was achieved using a special type of neural
network, stacked Sparse Auto-Encoders (SAE). Their
results showed that the SAE Model outperforms the
end-to-end CNN traiming using a PSG dataset.

Another application of CNNs on sleep staging is
proposed by Sors et al. (2018). Using single-channel EEG
raw signals, the CNNs were used to leam features and
perform the classification of sleep stages. The proposed
network consists of 12 convelutional layers followed by
two fully connected layers trained on Sleep Heart Health
Study (SHHS) data. The proposed network achieved an
accuracy of 0.87 and Cohen kappa of 0.81.

Instead of using only single-channel EEG, the
researhers by Paisarnsrisomsuk et al. proposed the use of
a CNN with multiple-chammel signals. The CNN model
they built 15 based on a VGG network proposed by
Simonyan and Zisserman (2014). Tt consists of 17
convolutional layers separated by max-pooling layers
followed by two fully comnected layers for the
classification of the features extracted by the previous
convolutional structure. The data used is sleep-EDF
database and synthetic data. Compared to, Rosenberg
and Van Hout (2013) which employs the CNN with single-
channel EEG this multiple-channel approach with a much
deeper network achieved a better performance even after
testing the network with single-channel EGG data.

A Bayesian neural network
implemented by Prochazka et al. to achieve sleep stages
classification. The proposed 2-layer network was tramned
on a database of 184 PSG. The preprocessing of the
signals included noise filtering and artifact removal. Two
types of features were extracted: in the first, 5 energy
features were extracted from the single EEG channel and
in the second 12 energy features were extracted from 3
multimodal (EEG, EOG, breathing (Flow)) channels. The
classification accuracy on the multimodal channels is
higher than that on the single channel.

In this research, the main novelty is the
implementation of a DNN to automate the classification of
combined four sleep stages using a single EEG channel
nto wake, NREM1 and NREM2, NREM3 and NREM4 and
REM stages. A classic DFFNN 15 adopted to tramn 4.7%
of a subject set. By using the techmques of reverse
engineering, 524,287 of testing sets are synthetically
generated for inferring the trained network. When done,
the corresponding class predicted is stored in a ROM
module. This module is separately used to infer the DNN
for the remaining 95.3% of the subject’s data set.

More speed is expected when inferring a DNN using
this model than with the network used for traimng,
therefore, we expect this method to be more suitable for
real-time applications. We estimate that for embedded
systems characterized for small memory capacity and low
power computation this techmque would be efficient in
implementing extraluge DNNs.

classifier was
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CONCLUSION

The proposed model 13 mtroducing a solution for
inferring a fully trained network for sleep stage
classification from a single-source brain EEG signal by
using a ROM model instead of the trained networlk.
Features has been extracted from the 500-sample epoch
set when the FFT operation is applied, resulting in a
4-spectrum power density for the «, p, 8 and o regions.
An average accuracy of 81% for the Deeplearmng4l]
Model and 79.6% for the deployment ROM model was
reached when test sets were performed even though a
reduction of the input features was 500-to-4. The trained
pattern constituted of 4.7% (800 sets) of the
PSG SC 4002E subject undergoimng this experiment wiule
the test set was 95.3% (16,174 sets). The new ROM model
used a trained set to fill 524,287 classes, covering the
entire range of the anticipated 4-frequency spectrum. The
advantage of the proposed model presented in this study,
however is the separate intake for the inference process
away from the trained DNN networlk.

REFERENCES

Abbott, SM. and A. Videnovic, 2016. Chronic sleep

mjury:  Lmks to
neurodegenerative disease. Nat. Sci. Sleep, 8 55-61.

Berry, RB., R. Brooks, C.E. Gamaldo, S.M. Harding and
C.L.Marcus et ai., 2012. The AASM Manual for the
Scoring of Sleep and Associated Events: Rules,
Terminology and  Technical  Specifications.
American Academy of Sleep Medicine, Darien,
Illino1s, USA...

Biswal, S., J. Kulas, H. Sun, B. Goparaju and M.B.
Westover ef al., 2017. SLEEPNET: Automated sleep
staging system via deep leaming. Mach Leam., 1:
1-17.

Gunes, S., K. Polat and 5. Yosunkaya, 2010. Efficient sleep
stage recognition system based on EEG signal using
K-means clustering based feature weighting. Expert
Syst. Appl., 37: 7922-7928.

Hillman, D.R., A.S. Murphy, R. Antic and I.. Pezzullo,
2006. The economic cost of sleep disorders. Sleep,
29: 299-305.

Hori, T., Y. Sugita, E. Koga, 5. Shirakawa and K.
Inoue et al, 2001. Proposed supplements and
amendments to a standardized
terminology, techmques and scoring system for
sleep stages of humean subjects the Rechtschaffen
and Kales (1968) standard. Psycluatry Clin.
Neurosci., 55: 305-310.

disturbance and neural

manual  of

Hsu, Y.L, Y.T. Yang, J.5. Wang and C.Y. Hsu, 2013.
Automatic sleep stage recurrent neural classifier
using energy features of EEG signals. Neurocomput.,
104: 105-114.

Huang, C.S,CL. Lin, LW.Ko, S.Y. Linand TP. Su et al.,
2014. Knowledge-based 1identification of sleep stages
based on two forehead electroencephalogram
channels. Front. Neurosci., 8 1-12.

Tatupaiboon, N., S. Pan-ngum and P. Tsrasena, 2013.
Real-time EEG-based happiness detection system.
Set. World T, 2013: 1-12.

Lajnef, T., S. Chaibi, P. Ruby, P.E. Aguera and I.B.
Eichenlaub et al., 2015, Leamning machines and
sleeping
classification

brains:  Automatic

using
support vector machines. J. Neurosci. Methods,
250: 94-105.

Langkvist, M., L. Karlsson and A. Loutfi, 2012. Sleep
stage classification using unsupervised feature
learning. Adv. Artif. Neural Syst., 2012: 1-10.

Medic, G., M. Wille and M.E. Hemels, 2017. Short-and
long-term health consequences of sleep disruption.
Nat. Sci. Sleep, 9: 151-161.

Prochazka, A., I. Kuchynka, O. Vysata, P. Cejnar and
M. Valis et «l, 2018, Multi-class sleep stage
analysis and adaptive pattern recogmition. Appl.
Sci., 8 1-14.

Rosenberg, R.5. and S. Van Hout, 2013. The American
Academy of Sleep Medicine inter-scorer reliability
program: Sleep stage scoring. J. Clin. Sleep Med., 9:
81-87.

Siddicque, N. and H. Adeli, 2013. Computational
Intelligence: Synergies of Fuzzy Logic, Neural
Networks and Evolutionary Computing. JTohn Wiley
&  Sons, Hoboken, New Jersey, USA.,
ISBN:9781118337844, Pages: 532.

Simonyan, K. and A. Zisserman, 2014. Very deep

sleep  stage

decision-tree  multi-class

convolutional networks for large-scale image
recognition. Proceedings of the Conference on
Learning Representations (ICLR’15), May 7-9, 2015,
Hilton San Diego Resort & Spa, San Diego,
Califormia, pp: 1-14.

Sors, A., 5. Bonnet, S. Mirek, L. Vercueil and J.F. Payen,
2018. A convolutional neural network for sleep stage
scoring from raw single-channel EEG. Biomed. Signal
Process. Control, 42: 107-114.

Stephansen, 1.B., A, Ambati, EB. Leary, HE. Moore
and O. Carrillo et al, 2017. Neural network
anlalysis of sleep stages
diagnosis of narcolepsy. Neural Evol. Comput., 1:

1-15.

enables  efficient

59015



J. Eng. Applied Sci., 14 (16): 5906-5916, 2019

Supratak, A., H. Dong, C. Wu and Y. Guo, 2017.
DeepSleepNet: A model for automatic sleep
stage scoring based on raw single-channel EEG.
IEEE. Trans. Neural Syst. Rehabil Eng., 25:
1998-2008.

Tsinalis, O., P.M. Matthews and Y. Guo, 2016. Automatic
sleep stage scoring using time-frequency analysis
and stacked sparse autoencoders. Ann. Biomed.
Eng., 44: 1587-1597.

Tsinalis, O., P.M. Matthews, Y. Guo and S. Zafeiriou,
2016. Automatic sleep stage scormng with

single-channel EEG using convolutional neural
networks. Mach. Learn., 1: 1-12.

5916

Whulff, K., S. Gatti, J.G. Wettstein and R.G. Foster, 2010.
Sleep and circadian rhythm disruption in psychiatric
and neurodegenerative disease. Nat. Rev. Neurosci,
11: 589-599.

Yulita, I.N., M.I. Fanany and AM. Arymuthy, 2017.
Bi-directional long short-term memory using
quantized data of deep belief networks for sleep
stage classification. Procedia Comput. Sci, 116:
530-538.

Zhang, J., Y. Wu, I. Bai and F. Chen, 2016. Automatic
sleep stage classification based on sparse deep belief
net and combination of multiple classifiers. Trans.

Inst. Meas. Control, 38: 435-451.



	5906-5916 - Copy_Page_01
	5906-5916 - Copy_Page_02
	5906-5916 - Copy_Page_03
	5906-5916 - Copy_Page_04
	5906-5916 - Copy_Page_05
	5906-5916 - Copy_Page_06
	5906-5916 - Copy_Page_07
	5906-5916 - Copy_Page_08
	5906-5916 - Copy_Page_09
	5906-5916 - Copy_Page_10
	5906-5916 - Copy_Page_11

