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Abstract: Image segmentation using active contour models to improve image processing enhances object
detection. Various segmentation methods have been proposed over in the past to improve the accuracy of
segmentation results such as clustering, edge-based, region-based, template matching and hybrid methods.
However, the image segmentation results of these methods are not ideal. Therefore, a small improvement in the
results will have a huge impact on image processing, particularly for autonomous unmanned aircraft application.
Recently, the Chan-Vese Model, a region-based method that uses active contour models, gamed considerable
research attention because of its improved image segmentation capability. This study presents a model that
enhances the Chan-Vese algorithm model. The main idea of the proposed method is to reduce the computational
time in image segmentation without affecting the segmentation result. Fitting term 1s defined as constant in the
proposed model and the level set equation of the main domam continues to evolve the curve toward the
boundary of the object. A total of 467 images from the Berkeley segmentation database are used to test the
proposed method and analyze its performance. Results indicate that the proposed model achieves better
segmentation result with low computational time compared with existing image segmentation methods.
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INTRODUCTION

Image segmentation has been an active field of
research for a long time because it is one of the main
problems in image detection analysis for computer vision.
The main objective of image segmentation is to segment
an image into a few regions where image pixels do not
overlap and have common characteristics with the ground
truth. The majority of image processing work 1s applied to
the computer vision field for visual tracking, object
detection, pattern recognition (Yin et al., 2014), image
colorization and contour detection (Arbelaez et al., 2011).
Many previous research have studied image
segmentation methods which can be classified into five
classical techniques, namely, thresholding (Guo et al.,
2014), clustering (Zhao et al., 2013, 2014; Krinidis and
Chatzis, 2010, Zhao et al., 2015, He et al, 2012; Tiet al.,
2012; Feng et al., 2013; Zhang et al, 2013), edge detection
(Caselles et al., 1997), region growing (Chan and Vese,
2001 ) and template matching (Yoon et al., 2008).

Recent advanced technology has further improved
and categorized these methods into supervised and
unsupervised (Yang et al, 2013, 2014a, b), edge-based
(Zhou et al., 2015) and region-based (Chan and Vese,
2001), soft-threshold (Pham and Prince, 1999) and
hard-threshold (Pham, 2001) and parametric {Chan and

Vese, 2001) and non-parametric (Joshi and Brady, 2010).
Image thresholding methods are very effective and simple.
However, traditional histogram-based thresholding
algorithms cannot process the images of a target region
that is much smaller than the background area
(Gonzalez and Woods, 2009). The template matching
method has a very simple working principle but it requires
considerable work to derive the mathematical model.

A clustering method groups a set of multidimensional
data into different similar data items together. This method
is further divided inte hierarchical and partitioning
methods. Hierarchical method constructs clusters by
partitioning the data in a way that splits large clusters or
merges small clusters into large ones, respectively known
as top-down and bottom-up partitioning.

Partitional clustering groups all the clusters into
different groups at the initial partitioning and relocates
one cluster into other clusters. The most common
examples of partition clustering are k-Means (KM)
(Duwairi and Abu-Rahmeh, 2015) and Fuzzy C-Means
(FCM) clustering (Pham and Prince, 1999; Ii et al.,
2012; Zhang et al., 2013; He et al., 2012, Wang et al.,
2012; Krinidis and Chatzis, 2010, Feng et al., 2013; Tiet al.,
2014). Wang et al. (2012) used FCM to extract the
pixel-level feature of images and train the Support Vector
Machine (SVM) (Haixiang et al., 2008) which acts as a
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classifier to segment color images. This method used local
information images for the input of the SVM Model such
as the local spatial similarity measure model.

However, the local spatial information of an image will
not produce good segmentation performance in images
with noise (JTames, 1981). Hence, Zhao (2013) used
spatial information for fuzzy clustering
algorithms with a filtering degree parameter which was
applied differently for every pixel. Zhao et al. (2014)
further improved the Suppressed Fuzzy C-Means
clustering algorithms (S-FCM) by using self-tumung
non-local filtering algorithms to overcome the weakness
of S-FCM. Zhao's methods performed well with real
images contaminated by noise (Zhao er al, 2014).
Feng et al. (2013) also employved non-local FCM
algorithms together with edge preservation to segment
synthetic aperture radar images, a method that improved

non-local

performance in terms of boundary localization and region
uriformity.

11 proposed a new methoed for generalized rough fuzzy
C means (I et al., 2012) which is one of the hybrid
clustering methods that combines fuzzy and rough sets
and robust spatially constrained fuzzy C means (1 et al,,
2014). This method used a spatial factor to smooth and
restore an image cormrupted by noise, followed by a
negative log posterior as a dissimilar function to classify
the pixels for brain Magnetic Resonance Imaging (MRI)
segmentation. Thus, J1”s method was robust to noise and
initialization.

Hybrid method is also a very common approach for
most researchers. Icer (2013) developed a hybrid method
that fused Gaussian mixture modeling and FCM method
for use in the medical field such as in segmenting real
bramn MRIs. This method 1s very useful in the medical field
because it efficiently segments MRIs which are images
constantly contaminated with noise.

Zhao et al. (2015) proposed another study on the
Multi-objective Spatial Fuzzy Clustering Algorithm
(MSFCA) which also, uses non-local spatial information
as fitness functions. The group of final clusters was
verified by a cluster validity index. This method performed
well in grouping the number of clusters because it used a
stting  length technique that transformed
mformation in the cluster centers to algorithms. The
advantage of MSFCA is that it can perform well on images
with noises.

Meanwhile, Qm et al. (2014) proposed a new
unsupervised method n 1mage segmentation that
combines the region saliency based on entropy rate

variable

superpixel with the affinity propagation clustering
algonthm. Qin used the entropy rate superpixel method to
divide the images into homogenous regions and convert

them into saliency regions through the saliency
estimation method (Frey and Dueck, 2007). Finally, Qin
applied the affimty propagation clustering method
(Frey and Dueck, 2007) to obtamn the seed at a particular
region in the image.

Unsupervised methods, alse known as automatic
approaches, do not require the user to participate in the
segmentation process and have prior mformation related
to the images. Hence, these interactive methods have
received much attention in recent years because of their
accuracy 1n segmentation result Jung et al (2014)
adopted an unsupervised method that fused global
k-means clustering and self-tuning spectral clustering.
This fusion method was used initially to obtain the
optimal imtial seeds. The final segmented 1mages were
then obtamed when the seed-kemel matrix was further
propagated into the full-kernel matrix of the full image.

For the statistically based model,
Dharmagunawardhana et al. (2014) proposed a method
to improve texture description by usmg Gaussian
Markov random fields. His method used local linear
regression to determine the localized parameters and
their distribution from the texture feature of the image.
KM clustering algorithms were used together with
texture descriptors to segment images for better
segmentation results. Dharmagunawardhana’s method
showed better performance than the state-of-the-art
texture descriptors. However, the boundary localization
can be further improved using other methods such as
hybrid method.

Wang ef al. (2015) developed a new approach to
color image segmentation by using the Pyramidal
Dual-Tree Directional Filter Bank (PDTDFB) domain
Hidden Markov Tree (HMT) statistical model. Gaussian
mixture with HMT Model was used to model the PDTDFB
coefficient. The Expectation-Maximization (EM) parameter
estimation was used to define the parameters of the
PDTDFB domain HMT Model. Wang e al. (2015) used
Bayesian interscale fusion technique (Choi and Baraniulk,
2001) to ensure the finest scale was reached. Thus, the
PDTDFB domain HMT statistical model can perform
multidirectional transform and has high angular
resolution.

Karadag and Vural (2014) proposed an unsupervised
method that fused top-down and bottom-up segmentation
maps under the Markov random field (Geman and Geman,
1984) framework. Karadag and Vural (2014) proposed a
Mean Shift (MS) unsupervised method (Christoudias
et al., 2002) to determine bottom-up segmentation maps
and domain specific information and thus, construct
top-down segmentation maps that contan general
properties of the image dataset. Hence, the domain
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specific maps were generated using the dataset and used
together with the bottom-up segmentation maps to
determine the energy function

Region-based segmentation divides an image mto
regions and considers the gray level of the pixel within
one region to have a similar value. Region-based
techmques rely on the intensity values of one pixel and
compare these with its neighbors. The pixel can be set to
the region if the similarity criterion is satisfied. Generally,
region-based image segmentation methods include region
growing, Region Splitting (RS}, Region Merging (RM) or
their combinations in which all the connected pixels are
grouped spatially into homogenous regions (Benz and
Schreier, 2001).

Panagiotakis et af. (2011) proposed a general
framework for image segmentation that uses feature
extraction (Liapis et al., 2004), classification in feature
space (Matas and Kittler, 1995) and flooding and merging
methods in spatial domam. The flooding algorithm,
namely, priority multi-class flooding  algorithm
(Grinias, 2009), assigns pixels into labels of the image
using Bayesian dissimilarity criteria (Sifakis et al., 2002).
The final step of this framework 1s the use of the RM
method to obtain the final segmentation map on the basis
of region features and edge localization (Canny, 1986).

MATERIALS AND METHODS

Active contour model: Generally, Active Contour Models
(ACMs) (Kass et al., 1988) find the contour to represent
the boundary of objects n an image by mmimizing an
energy function (Mumford and Shah, 1989). ACMs use a
level set framework (Osher and Fedkiw, 2003,
Sethian, 1999) such as RM or RS, to make the contour
change its topology (Sethian, 1999). ACMs are divided
mto edge-based and region-based models. One of the
most popular region-based ACMs is the Chan-Vese (CV)
Model (Chan and Vese, 2001) which uses curve evolution
techniques (Caselles ef al., 1993), Mumford-Shah (MS)
functional (Mumford and Shah, 1989) for segmentation
and level set functions (Osher and Fedkiw, 2003) to
determine the boundaries of objects without using the
image gradient.

The C-V Model can segment images with object
boundaries that are not well defined by the image
gradient. Wang et al. (2014) conducted a research on a
Region-Based Active Contour Model (RBACM) which
combined local and global region fitting energies whose
ratios could be adjusted by iterating the weighting
coefficient for each iteration. The appropriate fitting
energies were determined from the local and global
Gaussian distributions with different variances and

means. The weighting coefficient and time step were
updated with the evolution of the contour to accelerate
the convergence rate.

Meanwhile, Tran et al (2014) improved the
region-based method from the C-V Model (Chan and
Vese, 2001) with the fuzzy energy-based active contour
model by using a shape prior method to increase the
speed and minimize the energy functional as well as
employing a shape normalization procedure to properly
align the image shapes. Ti et al. (2013) also proposed an
RBACM that uses variational level set formulation and
local Gaussian distributions. The energy minimization
procedure used the means and variances of the local
intensities to enable the local likelihood image fitting
to propagate the mmtial curve toward the object
boundaries. Nevertheless, the region-based method has
a disadvantage in its performance when the images have
severe intensity inhomogeneity.

The basic principle for edge-based methods 13 to
evolve a curve to approach the boundaries of objects in
an image whereas region-based methods partition an
image into several homogeneous regions. The edge-based
method detects the pomnts because of the changes at the
gray levels. Edge-based models use unage gradients also
known as edge information, to stop the evolving contours
or surfaces on the object boundary. However, this method
does not perform good segmentation on mmages with
noise and 1s sensitive to contour mitialization.

Caselles et al (1997) proposed an edge-based
method that uses curve evolution theory and image
gradient as the edge detector function for boundary
detection. Yang et af. (2014a, b) used the split Bregman
(1967) method to solve the energy functional, improve the
speed of computational time and globally convex the
segmentation method into the piecewise constant
multiphase as developed by the CV Model (Vese and
Chan, 2002). Yang et al. (201 4a, b) used an edge detector
function to detect the boundaries of the images. Hence,
Yang’s method was more efficient than the CV Model
(Vese and Chan, 2002). However, tlis edge-based
technique does not work well when the images have many
edges because the local image gradients attract contours
toward the object boundaries.

Region-based method has more advantages than
classical edge-based method mainly because the latter is
easily confined into local minima. Meanwhile the former
method 1s robust to noise, sensitive toward the mitial
curve and easily detects boundaries. Moreover, 1t utilizes
the global image information (i.e., textures and colors) to
detect weak boundaries. Although, all these methods are
very successful in segmenting images m numerous
applications, none of them can generally be applied to all
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Input image and form the initial contour

Data Calculate level set function, ¢
stored constant ¢, and ¢, and Fitting term, F

Update the level set function ¢with the
fitting term and show the curve evolution

2

Find the difference between updated
and initial level set function, ¢

Convergence criteria met?
No

Yes
Stop iterating and show the segmented image

Fig. 1: Proposed algorithm flowchart

—>

types of images such as synthetic, natural and real
images. Thus, continuous improvements are required to
ensure the accuracy of segmented images.

Proposed region-based ACM: The CV Model uses the
curve evolution technique and level set method to
determine the boundary of an object. The main
concept in this model is the minimization of energy-based
segmentation which uses local and global region
mformation of the image to define the image fitting energy
funetional. This method uses fitting term and regularizing
terms such as length of the curve and area of the region
inside the curve, to form the energy functional equation,
as shown in Eq. 1. where p>0, v>0, 4,>0 and A,>0 are the
constant parameters used. A summary of the proposed
algorithm flowchart is shown in Fig. 1:

F(C, ¢, ¢ ):;_L.length(C)+v.area(inside(C))+

EES ]

(1
)\"1_[1nslde(c)| u, (X, ¥)-¢, |2+7\'2J‘ Dutmds(c)| u,(x, Y)'Cz‘dedy

In general, each term in the energy function equation
1s specifically defined. The first term is the length of the
curve, the second term 1s the area inside the region, the
third term 1s the fitting energy based on the mside region
of the contour and the last term is the fitting energy term
based on the outside region of the contour. These last
two terms are the crucial parts that will affect the
segmentation process of contour evolution if the value
set 18 not in the comrect range. Hence, the CV Model
divides the image into two regions, namely, mside m (C)
and outside out (C) regions. The level set formulation
(Osher and Sethian, 1988) solves the energy minimization
equation. The zero level set of the Lipschitz function ¢ is

the boundary of the object. The energy equation is
generally written n terms of the level set fimetion as
shown in Eq. 2:

F(c, o5, 0) = o3(0(x. y)) | Vo(x. y)dxdy+
vf H(9(x. y))axdy 9, [ o u, (x )

o[ H{o(x, y))dxdy+h, [ o u, (x y)-

o, [* (1H(0(x, y)))dxdy

(2

The first term in Eq. 2 1s the length of the curve with
the Dirac function. The second term is the area of the
region inside the curve in terms of the Heaviside function.
The last two terms which are the fitting terms also have
the Heaviside function as shown m Eq. 3. The fitting
terms with respect to the level set function are ¢,(¢) and
c,{¢d) functions as shown in Eq. 4 and 5, respectively.
These constants are linked to the global properties of the
region located inside and outside of the contour. The CV
Model that adapts this method i1s weak m segmenting
images with intensity inhomogeneity:

H(z(x)) = %{1+%arctan(én 3)
[, (x y}H(9(x, y))dxdy

(4)
IH(¢(X))dxdy !

c,(9)=

Ju. (e 9)(H(00 oty
J(H(o(x)dxdy

o, (%)=

Constant links to the global properties in relation to
segmenting an image with intensity inhomogeneity will
affect the accuracy of the segmentation result. Hence, the
proposed model will fix the value of the constant m an
acceptable range to improve the segmentation accuracy.
This approach will eliminate the area of the region inside
the curve and use the same value for the parameters of the
fitting term inside and outside of the region, 4, and A,. To
obtain the level set formulation, the energy functional is
reduced to the level set function where, ¢,(¢) and c,(Pp)
are fixed. The Euler Lagrange equation 1s shown in Eq. 6:

] Y : :
£—8(¢){5—Ldlv{w$}v—ll (u,-¢,)" +2, (1, -c,) } (6)

The algorithm simulation will be imtialized by reading
the data of the images (i.e., pixels and bits information).

5713



J. Eng. Applied Sci., 14 (16): 5710-5718, 2019

Then, a mask is required to create the initial contour which
is also the initial level set function. The intensity of the
image, mside and outside regions of the curve, image
mtensity and fitting term energy will be calculated. Later,
the initial level set function is initialized and the
program will start to optimize the level set function. The
energy equation 1s then mimmized until the convergence
criterion 1s met. At this instance, the curve will start to
evolve and the boundary of the object will be detected
when the energy equation can no longer be minimized.
The force optimization i the proposed algorithm 1s
elimmated. Hence, the computational time 1s much lesser
than that in the classical CV Model which needs to iterate
the force energy equation.

Performance evaluation: Probabilistic Rand Index (PRI)
Pantofaru and Hebert (2005) is the performance measure
used to quantitatively evaluate and compare the
efficiency of the proposed model. PRI counts the ratio of
the labeled pixels that are consistent between the
computed Segmentation, S,, and the ground truth
Segmentation, S,. In other words, it measures the
percentage of compatibly classified pixel pairs n
Segmentations of S, and S, as shown mn Eq. 7:

1
PR(StEStB{Sk}) = N Z[Cl]plj+(l-clj)(l_pl])} (7)
1<

The value of PRI ranges from 0-1. The larger the value
of PRI, the closer the segmentation result is to the ground
truths and thus, the better the segmentation performance.
This performance metric reliably measures the agreement
between region-based segmented images and ground
truth images, although, the two segments may have
different numbers of regions (Foo et al., 2015).

RESULTS AND DISCUSSION

This study will present the segmentation results of
the proposed model on real natural scene images for
comparison, all these images were obtamned from the
Berkeley Segmentation Database (BSD500). The proposed
algorithm was evaluated with the image size of 321 =481
pixels. In our analysis, the proposed model mvolved five
parameters established manually. In the level set function,
the constants used were |1 = 0.2 for the signed distance
function and v = 0 for the length of the contour.
Moreover, A, =1 and A, = 1 were equal for the inside and
outside regions of the object.

The last parameter which is a very crucial factor to
determine the accuracy of segmentation results was the

time step value. The larger the time step, the faster the
evolution of the curve an outcome that mathematically
causes faster speed in the level set function equation.
However, the boundary location of the image will be
affected if the time step 13 too large. Hence, selecting a
large time step can improve the computational speed but
the trade-off will be the accuracy of the segmentation
result i the boundary location To obtamn better
segmentation results, time step ¥Vt = 0.5 was used for all
the simulations.

PRI performance: The proposed model was compared
with the state-of-the-art segmentation approaches such as
Finite Mixture Model (FMM) (Nguyen et al., 2013),
Student’s t Mixture Model (SMM) (Peel and McIachlan,
2000; Liu and Rubin, 1995), Spatially Variant Finite Mixture
Model (SVFMM) (Blekas et al., 2005), robust Fuzzy Local
Information C-Means (FLICM) (Krinidis and Chatzis,
2010) and Student’s t Mixture Model with Spatial
Constraints (SMM-SC) (Minh and Wu, 2012). For a fair
comparison, the same images selected based on
Nguyen et al (2013) were evaluated to assess the
performance of each model.

Table 1 shows the comparison of image segmentation
PRI results on Berkeley’s color image dataset for the five
methods mentioned earlier together with the proposed
model. Among 15 real world images, the proposed model
performed well with the highest PRI value for most of the
lumages.

Table 2 shows the average performance of the
segmentation result given for all six methods listed in
Table 1. Thus, the proposed model achieved the highest
PRI average value of 0.752, outperforming other methods
listed in the previous paragraph by at least 4.88%
compared with FMM. The model also had the highest
improvement of 9.14% compared with FLICM, followed by
SMM at 6.81%.

Table 1: Comparison of PRI results on 15 images from the Berkeley

database
Trnages Proposed
D FMM SMM  SVFMM  FLICM SMM-SC  meodel
206062 0.744 0.731 0.742 0.714 0.743 0.7424
97010 0.918 0.877 0.913 0.845 0.915 0.7719
106005 0.754 0.735 0.748 0.719 0.748 0.7223
206097 0.692 0.687 0.690 0.689 0.690 0.7013
118015 0.830 0.785 0.826 0.799 0.828 0.7442
117025 0.841 0.834 0.837 0.816 0.841 0.6422
108069 0.505 0.501 0.502 0.502 0.505 0.7932
108036 0.678 0.668 0.673 0.662 0.674 0.7608
108004 0.627 0.617 0.616 0.604 0.626 0.8782
107072 0.705 0.701 0.705 0.668 0.704 0.8134
107045 0.630 0.619 0.624 0.605 0.626 0.8397
104055 0,727 0.723 0.725 0.713 0.727 0.6648
103029 0.624 0.621 0.621 0.620 0.625 0.6492
101027 0,721 0.719 0.720 0.676 0.721 0.7081
100032 0.756 0.746 0.750 0.708 0.754 0.8474

* Bold values are significant values
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Table 2: Average PRI on 15 images from the Berkeley database

Methods PRI Percentage
FMM 0.717 4.88
SMM 0.704 6.82
SVFMM 0.712 5.61
FLICM 0.689 885
SMM-FC 0.715 517
Proposed method 0.752 -

Table 3: Average PRI of 90 images from the Berkeley database compared
with KP and VOIBFM

Methods PRI Percentage
KP 0.7980 6.03
VOIBFM 0.8100 5.05
Proposed method 0.8509 -

Table 4: Comparison of iterations and CPU time (sec) between CV and
proposed model

Tteration number CPU time ()
Tmages CV  Proposed [93% Proposed
No. Model method  Percentage  Model method Percentage

124084 1083 883 18.47 55.69 23.83 57.21
296059 2769 995 64.07 134.78 18.64 86.17
135069 1549 1337 13.69 55.50 13.82 73.14

35070 919 866 3.77 38.39 13.77 64.60
12003 973 955 1.83 51.08 26.17 48.77
100075 904 882 2.43 50.14 26.00 48.15
56028 1282 1200 6.40 68.61 32.60 52.49

118020 948 840 11.39 50.78 22.15 56.38
8068 1129 258 77.15 40.66 23.88 41.27
3063 792 2572 22474 29.78 32.63 -9.57

*Bold values are significant values

Table 3 shows the average performance of the
proposed method with Kernel Propagation (KP) method
(Tung et al., 2014) and Variation of Information-Based
Fusion Method (VOIBFM) to compare the segmentation
results. The proposed method had the highest value of
PRI at 0.8509 for 90 images. This result indicated that the
proposed method performed better by at least 5.05% than
the other two methods. The proposed method achieved
better improvement than the KP method by 6.6%. In
particular, the proposed method could be considered very
efficient because the pair pixels of the segmentation were
closer to the ground truths.

Computational time and iteration performance: The
computational time of the proposed method with the
region-based CV Model (Chan and Vese, 2001) on several
natural images from Berkeley database images was
analyzed The computational time was based on the size
of the imitial contour that was set prior to rumming the
sinulation. Hence, the iitial contour and parameters used
for both methods were the same to ensure fair
comparison. Both methods were implemented on an image
size of 240x160 pixels using MATLAB and performed on
a PC with Intel (R) Core (TM) CPU 1.80 GHz, 4 GB RAM.
Table 4 displays the results of the 10 selected images
based on the number of iterations and computational time
(CPU).

The proposed method can reduce the computational
cost for all the images. Hence, the proposed method 1s
better than the CV Model in terms of computational cost.
The proposed model achieved the highest improvement
of 64.07% in iterations and 86.17% in computational time.
However, among the 10 images compared, only one image
had a slightly longer computational time by 3 sec.

The highest difference in computational time was
approximately 120 sec for image ID of 296059. The
proposed model mmproved by 86.17% of CPU tume, in
which the region-based active CV Model used 134.78 sec
compared with the proposed method with only 18.64 sec.
On average, the computational time for the proposed
method was much faster than the CV Model by 59.5% and
had 12.63% less iteration. Hence, the proposed model
demonstrated a huge improvement m terms of
computational cost in the long run.

CONCLUSION

The concept of region-based ACM was mvestigated
in this study. The proposed method improved the CV
Model (Chan and Vese, 2001) used in the force
optimization technique to enhance the accuracy of the
segmentation. The performance of the proposed model
was compared with those of other segmentation methods
in terms of quantitative evaluation and computational
efficiency. The parameters set in the proposed method
were applied to all types of images. Images were compared
to visualize the segmentation accuracy of the proposed
method and performance differences of the methods. The
proposed model reduced half of the computational time,
required fewer iterations and obtained better value of PRI
compared with the CV Model. Hence, the proposed
method achieved better performance in the quantitative
evaluation and computational time. Thus, this algorithm

may significantly improve real-time visual-based
aircraft navigation.
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NOMENCLATURE
C : Curve
Length (C) : Length of the Curve
Area (inside (C)) : Area inside the Curve
ingide (C) : Region inside the Curve
outside (C) : Region outside the Curve
[ : Tmage intensity in the region inside the curve
o : Image intensity in the region outside the curve
I, : Gradient of the image
(X, ¥) : Level set function
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H : Heaviside function

By 1 One-dimensional dirac measure

() . Dirac measure

div (Vb/[Vd|) . Divergence operator

i : Constant parameter

v : Constant parameter

A : Constant parameter

Ay : Constant parameter

N : Number of pixels in the image

[ : Number of pair of pixels and with the same label in image
Biest

Pi : Ground truth probability of two pixels with the same label

estimated over all ground truth segmentations of the image
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