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Mathematical Modeling of Magnetic Fields of Actuators with Hape Memory
Effect by a Combined Finite Element Method and Fundamental
Solutions with Point Magnetic Moments
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Abstract: The study 1s devoted to mathematical modeling of magnetic fields of positioming systems, the active
elements of which are made of ferromagnets with shape memory effect. The development of effective systems
of mathematical modeling of three-dimensional magnetic fields, necessary at the stage of design of positicning
systems with ferromagnets with shape memory as well as the identification and diagnosis of such systems is
relevant. In this study, one of the ways to increase the efficiency of modeling systems 1s considered. This 1s
the application of a combined method combimng the fimte element grid method for field analysis m nonlinear
calculation subdomains (ferromagnets) and the gridless method of fundamental solutions for calculating the
field in linear subdomains (surrounding ferromagnet space and coils with current). The computational algorithm
15 developed on the basis of the mathematical model and the results of the solution of the test problem.
Examples of its application are given. A distinctive feature of the proposed approach i1s the creation of a
mathematical model of minimum dimension which provides a significant reduction in the calculation time. For
the first time, vector point fictitious magnetic moments are used for the analysis of electromagnetic systems by
the method of fundamental solutions. The new point sources of the field provide higher accuracy of calculation
in comparison with magnetic dipoles. This allows solving the problems of designing positioning systems,
performing their diagnostics in real time.
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INTRODUCTION

Currently, intelligent materials are beginning to be
widely used as active elements in the actuators of
measuring and control systems including in precision
positioning systems. Such materials include Magnetic
Shape Memory Alloys (MSMA) which change the
geometric dimensions under the nfluence of magnetic
fields and mechanical forces and store the state
(Vasil’ev et al., 2003, Wilson et al., 2007). The use of
MSMA allows increasing the accuracy of conversion, to
expand the range of displacements and simplify the
construction of positioning systems (Asua et al., 2009;
Hubert et al., 2012; Riccardi et al., 2012, Wang et al.,
2005). Therefore, the development of effective systems for
mathematical modeling of three-dimensional magnetic
fields needed at the design stage of devices with MSMA
is a relevant problem when multivariate calculations are
carried out. Let us consider one of the ways to increase
the efficiency of modeling systems. This 1s the application
of a combined method combining the Finite Element grid
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Fig. 1. General view of the actuator

Method (FEM) for field analysis in non-linear calculation
subdomains (ferromagnets) and the gridless Method of
Fundamental Solutions (MFS) for calculating the field in
linear subdomains (swroundmng ferromagnet space and
coils with current).

The application of the combined method is shown on
the example of modeling a three-dimensional magnetic
field of a two-stroke actuator (Gorbatenko et al.,
2015). Figure 1 shows the actuator under investigation

Corresponding Author: A.I.. Balaban, Platov South Russia State Polytechnic University (NPI), Novocherkassk, Russia
5670



J. Eng. Applied Sci., 14 (16): 5670-5677, 2019

in which a distributed magnetizing system (1) is used
contaiming n pawrs of coils without ferromagnetic cores
which allows to mcreasing the speed, reducing the mass
and dimensions of the device as well as two active
elements (2) made of MSMA and an actuator (3).

A combined finite element method and fundamental
solutions using point charges were used earlier for the
analysis of potential fields (Bakhvalov et al, 2015
Cao and Qin, 2015). The use of point magnetic dipoles in
place of magnetic charges made it possible to increase the
accuracy of the solutions but in a number of cases there
was a numerical instability (Chen et al., 2008).

The use of point magnetic moments instead of
dipoles in the performance of this research made it
possible to increase the accuracy of the solutions wiule
numerical mstability was not observed.

MATERIALS AND METHODS

Problem formulation: Tt is required to develop a
mathematical model of mimmum dimension a combined
method for calculating the field (FEM and MFS)
using pomt magnetic moments and realizing its
computational algorithm for the analysis and synthesis
of three-dimensional magnetic fields of actuators with
MSMA.

At the first stage of the research, the design and
dimensions of the active elements and coils are assumed
to be known as well as their magnetomotive force 1w,. It
is necessary to calculate the magnetic field and also to
investigate the dependence of the calculation error on the
number of point sources of the field. At the second stage
1t 18 necessary to determine the size and magnetomotive
force 1w of the coils, under which the condition is met:

H! > H, (1)

Where:

H; = Calculated average value of the magnetic field
strength in the middle section of the active element
in the xOy plane

H = Average value of the magnetic field strength known
for this MSMA at which the size of the active
element changes

Mathematical model: The mathematical model of the
magnetic field of one pair of coils 1s constructed between
which a part of the active element from the MSMA is
located (Fig. 2). The results obtained with such a model
can be easily extended to n pairs of coils. The stationary
three-dimensional magnetic field of the problem 1s
described by a system of Eq. 2:

{rotﬁ = S‘, divB = 0.B= HH)mWE - MoﬁinV' (2)

Fig. 2: Section of calculation area; 1) Magnetizing coil and
2) Active element from MSMA

with  boundary conditions on media interfaces:
B, =ByH; =H,. Here, p, magnetic constant; 3 current
density in coils; V© subdomain occupied by an active
element from the MSMA; V" subdomam of the space
surrounding the active element and filled with a linear
medium with p, and coils; B magnetic induction; H
magnetic field strength. The magnetic field strength is
represented in V™ as a sum of two fields:

H =H,+Hn. &)

Where:

i = Magnetic field strength, created by coil currents
throughout the space V = V+V when a
ferromagnet 1s removed from 1t

T, = The mtensity of the magnetic field in V', created by
the magnetization of the ferromagnet in the
absence of current in the coils (Tozom and
Maergoyz, 1974)

The resultent field in V" is defined as the difference of
close values this can lead to large errors when the term
Eq. 3 is used Therefore, in contrast to Tozoni and
Maergoyz (1974), the resultant field 37 is defined in V".
The use of the expansion Eq. 3 makes it possible to use
the scalar magnetic potential instead of the vector
potential as the required variable and thereby reduce the
dimension of the problem three times and also replace the
system of Eq. 2 by the following three systems:

rotHs = S; divBs =Bs = 0; ;.Lnﬁa nv (4)
H = -gradg”; B = B(H); div(ungrad(p;) ~0in v* &)

Hy, = _grad(p;n;—B;n = Muﬁ;n; div(;_l.ugrad(p;n) =0inv- (6)
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Fig. 3: Determination of the magnetic dipole potential

The solution of the system (4) is replaced by
calculating ij; by integrating over the volume of the
coils V= V_+V_, using the formula obtained from the
Biot-Savart-Laplace law:

w0, 0

where, &= (iw,/8, )dl, iw, the magnetomative force created by

the current 1 in the coil with the number of turns w_; S, the
cross-sectional area of the coil; & unit vector directed
from pomt N to pomt M (Yavorskiy and Detlaf, 1974). The
solution of the system (5) in a nonlinear medium V* is
fulfilled by the FEM.

The solution of the system (6) m V' 15 performed
by the MFS, the point sources of the magnetic field
are located in V*. The following point sources can
be used: scalar fictitious magnetic charges, vector
fictitious magnetic dipoles; fictitious magnetic moments
(Bakhvalov et al., 2016). The potential of a point magnetic
charge q,(D) 15 determined at the pomt P by the Eq. &:

D
) ¢

Let us consider the magnetic field of a dipole. If place
two fictitious magnetic charges -q,, and +q,, the distance
between which 1, near the point D (Fig. 3) then from the
Eq. 8 for determimng the field potential at the poimnt P is
pass to the formula (Shimoni, 1964):

Axis of magnetic
dipole

P(x, y,z)

Fig. 4: Determination of the potential of the pont
magnetic moment
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The vector quantity is @ =4q,l called the magnetic
moment. If 1-0,q, —» e, then m 1s tends to a finite limit m
and the potential to the value @.(P):

¢ (D)—>g¢, (P)=- grad, —
( ) ( ) Tel, FrDF
or
1 mcosB
Py = — (10)
(pm( ) 4““‘0 rZDP

That 1s to the potential of the pomnt magnetic
moment (Fig. 4). The calculation error is reduced by the
Eq. 9 with 1-0 but in this case the computational error will
increase that is the error of the difference of close values.
Therefore, the proposed combined method of calculating
the field uses Eq. 10. As follows from (10), the potential of
a pomt magnetic moment has axial symmetry in contrast
to the potential of a point charge with spherical symmetry.
The potentials of the magnetic moment and magnetic
dipole are zero at points lying in a plane perpendicular to
the axis of the moment (dipole) and passing through the
point D.

Thus, point magnetic moments and magnetic dipoles
are convenient to use in those cases when the system
under investigation has a plane of symmetry, the potential
of which can be assumed to be zero. The problem under
consideration satisfies this requirement.
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Fig. 5: Location of point charges in an asymmetric
electromagnetic system

Fig. 6: Determination of the magnetic field strengths of a
point magnetic moment

Pomnt fictitious magnetic sources (scalar and
vector) can be used mn the study of both symmetric and
non-symmetric systems (Fig. 5). In the case of an
asymmetric system, the number of unknown quantities
doubles. The strength of a point magnetic moment in a
spherical coordmate system 1s determined by the
following equation (Fig. 6):

_dp 1 mcosB
= o 2mM, T,

lop 1 msin®
e Amy,

o, =0 because of the axial symmetry of the fieldm .
Further, it is necessary to use z component of the
magnetic field strength which we will determme by
Eqg 11:

Fig. 7: Placement of the coordinate system and point
sources in the active element

2
30053 0 lm' (11)
Top

H,, =H,, cos6-H, .sinf =

where, m’ = m/(4mp,). If there are N point magnetic
moments then the values ¢, (P) and H, (P) in V are
determined by the Eq. 12 and 13:

¥lm' cosO
¢ (P)= 2 —— (12)

1=10 rDJF

Nlm' cos0. -1
H (P)=) ———— (13)

=10 rDJP

On the basis of (6) a system of equations is
constructed with the use of point magnetic moments. The
beginming of a Cartesian coordinate system 1s located in
the center of the active element (Fig. 7). Taking into
account the symmetry of the electromagnetic system
under consideration with respect to the x0Ov plane, the
solution of the problem 1s sought m the region z>0.
Point magnetic moments (the number N) are located on
the middle section S, of the region V*, lying in the xOy
plane. On the upper boundary S, of the active element, N
collocation pomts M, are located i which the following
relations which follow from the initial boundary
conditions (n=c.):

@ (M) = @ (M, )+, (M,)
WL, (M) = sy Ha, (M, )+ Ho, (M, ),i = 0,1, N-1
(14)
where, @, (M) 13 determined by the Eq. 12; H..(M;) 13
determined by the Eq 13; H(M;)=-00"(M,)/0z;
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H, (M, )= -0 (M, )8z 1s determined by the Eq. 7 the field
potential of the coils with current is determined by
the Eq. 15:

(M) = [H,(7)dz (15)

The system of Eq. 14 contains 2N equations and 3N
unknewns  (ma(M), HiM)i=al. 5. In addition, the N
equations connecting ¢'(M,) and H;(M) is obtained in
the solution in the region V™ of the system (5) by the
FEM.

Computational algorithm: The geometric dimensions of
the active element are assumed to be known: width A,
and length B, (dinensions along the axes Ox and Oy);
thickness H, (size along the 0z axis), the geometric
dimensions of the coil (width A, length B, thickness H,
wire winding thickness C,) and magnetomotive force iw,
produced by currents in the coils.

Note that the potential ¢"(M;) 18 0.2-03% of
9;(M,) and ¢ (M,) . The algorithm for solving system (12)
consists of the following stages: the choice of the
position of point magnetic moments (D,) and collocation
points M, where, 1=0,1, ..., N-1;7=0,1, .., N-1 and the
formation of arrays of their coordinates. Calculation at the
collocation points M, Hg, (M; ) and ¢; (M; ) using Eq. 7 and 15.
It 1s assumed that ¢"(M)=0. Solving the first N equations
of system Eq. 12, it 1s found m,j=01...N1. Solving the
second N equations of system (5) it is found
H(M),i=01..N-1. Solution of the boundary value
problem by the FEM, system (6) in V¥ using the following
boundary conditions: on the section S, lying in the xOy
plane & = 0 on the side faces of the active element
dp/on =0 on the upper face §,-d/th =ap@z =-H; (M;) . The
FEM is found ¢" (M) using the B(H) dependence of a
ferromagnetic material or a specified value p*. Refinement

of the value ¢'(M,) and m; .
RESULTS AND DISCUSSION

The system for research is selected with the
following parameters: A, = B, = A, = B, = 210" m; H,
=110°m; H,=210°m;C, = 0.510°m; a = b = 0.2.107
m; =10 py; iw, = 10° A,

The initial problem is solved by the FEM for
estimating the error of the combined method. The coils
and the active element in the center of the parallelepiped
with sides 0.5x0.25x0.25 m for this purpose 79221
tetrahedron is filled The value of the magnetic potential
at the artificial boundary is A=0. The values of
95 (M, ), 0" (M, ), Hy, (M, ), H; (M,) are determined at the points
of collocation by the FEM. In this case, a fimte-element
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i M ]
v~
y
. iy
» ]
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Fig. 8 For example 1: a) The upper bound of the active
element S, with the pomts of collocations M and
b) The arrangement of point magnetic moments m

grid contaming 39610 tetrahedra and 53 574 nodes was
used to calculate the field in the region z>0. Solution of
the problem by a combined method (FEM and MFS) 1s
shown below.

Example 1: N = 5 collocation points are selected (Fig. ).
The same number of point magnetic sources are placed on
the plane S, of the active element at points with
coordinates 7z = 0, x and y coincide with the
corresponding coordinates of the collocation points.
Because of the symmetry of the positions of the points
there are m; = m, = m, =m, . Thus, in this example there are
two unknown magnetic momentsm, andm, as well
o (M), e (M), HI(M,)H/(M). The results of the
calculation are summarized in Table 1. The Standard
Deviation (RMSD) of the field calculation results
developed by the combined method of MFS and FEM
(H;) from the results obtained by FEM (Hj] are

o

calculated by the formula:
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Table 1: The results of calculations for N =35

Calculation by the combined method (MFS and FEM)

Relative error

Calculation by the FEM

Point No. (i) H; (A/m) by (A H', (A/m) bt (A) H': (A/m) S(HY) (%)
0 179866.22 82.90 447,44 1.75%10° 266.25 68.06
1 125031.71 55.95 308.78 1.21x107 215.99 42.96
Table 2: The results of calculations for N=29
Calculation by the combined method (MFS and FEM)
Calculation by the FEM  Relative error
Point No. (i) H; (A/m) 5 (A) H', (A/m) & (A) H; (A/m) S(H) (%)
0 179866.22 82.90 355.47 1.21x107 266.25 33.51
1 125031.71 55.95 257.16 9.08x10° 215.99 19.06
2 150115.04 68.04 302.77 1.05x107 240.92 25.68
M, M, M, M, M, M,
® ¢ o o L °
M, M,
L )
M, M,
° . o
M, M, M,
® o b
M,
o™ *"
M, M,, M,
o ° I
M, M, M,
® ® ®
Fig. 10: Arrangement of collocation points for N =13

Fig. 9: Arrangement of collocation points for N =9

RMSD = E(HQE-H;(KM))Z/N
1=10

For N =5RMSD is 124.5 A/m.

Example 2: N = 9 collocation points (Fig. 9) are placed on
the plane S,. Due to the symmetry of their position there
are three unknown moments as well as
unknowns Hj{M)and ¢ (M), 1= 0, 1, 2. The system of
equations is compiled in the same way as in example 1.
The results are summarized i Table 2. For N = 9 RMSD 1s
57.78 A/m.

my; my; m,

Example 3: N = 13 collocation points (Fig. 10) are placed
on the plane 3,. Due to the symmetry of their position,
there are four unknown moments my; m; my;m; as well as
unknowns H; (M) and ¢'(M;), 1=0,1, 2 For N =13
RMSD is 25.90 A/m.

Example 4: N = 25 collocation points (Fig. 11) are placed
on the plane S, Due to the symmetry of their position,
there are six unknown moments my; m; my; m;;m,; m; as well
as unknowns H; (M) and ¢'(M;),1=0,1, 2. For N =25
RMSD is 2.02 A/m.

In relative values, the dependence of RMSD on the
number of field sources, namely magnetic moments (the
number of collocation points N) for the considered
examples 18 shown m Fig. 12. The magnetic field 1s
calculated at any pomt of V' using Eq. 2, 12 and 13 after
determining the moduli of magnetic moments.

The field in V™ 1s determined by the FEM. In this case,
a finite-element grid with the number of tetrahedra 1817
and 3145 knots is used in region z=0 (Table 3 and 4). The
magnetomaotive force iw, and the dimensions of the coils
are determined in the second stage of the investigation,
solving the inverse problem (Bahvalov et al., 2014). Tnitial
values of the sizes of coils and iw® are selected. The
objective function of the task is compiled on the

basis of (1):
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Calculation by the combined method (MFS and FEM)

Calculation by the FEM

Relative error

Point No. (i) H; (A/m) b (A) H', (A/m) P (A) H': (A/m) S(H') (%0)
0 179866.22 82.90 291.56 6.74x10° 266.25 9.51
1 125031.71 55.95 241.36 7.83x10°¢ 215.99 11.75
2 168992.59 76.11 278.15 6.21x10° 256.46 8.46
3 150115.04 68.04 270.99 7.89x10°¢ 240.92 12.48
Table 4: The results of calculations for N =25
Calculation by the combined method (MFS and FEM)
Calculation by the FEM  Relative error
Point No. (i) Hy, (Am) by, (A H", (Am) D", (A) H' (Afm) S(H") (%0
0 179866.22 82.90 272,70 3.89x10° 266.25 242
1 125031.71 55.95 223.53 5.42x10° 215.99 3.49
13 142793.57 65.11 234.35 3.83x10° 237.33 -1.26
5 150115.04 68.04 247.72 4.70x10° 240.92 2.82
21 172134.57 79.52 261.18 3.23x10° 258.67 10.05
9 168992.59 76.11 252.88 3.83x10° 256.46 -1.40
60
M, M, M, M, M,
[ o L] e [ ]
M, M, M, M, M, -
] ] . ] ® £
d
M,
e M, ° M, .Mn oM &Wx
M, M, M, M, M,
® ® ® ® ®
M, M, M, M, M, . . .
e e ® L] * Fig. 12: Relative dependence of RMSD calculation of
magnetic field on the number of field sources

Fig. 11: Arrangement of collocation points for N = 25
eyl
I=(H,-H;)

where, H. , z-component of the magnetic field strength at
which the elongation of the active element along the Oy
axis is maximized (A,). Applying the gradient method of
descent, iw™ it is determined in which:

J g(sH")2

where, © allowable relative error £=0.01 Tt 15 advisable te
take the dimensions of the section of the coil to
reduce the dimensions of the systems b, = b, = +/s where
S = 1w/kg ] 18 the current density, k; 1s the coefficient of
the copper coils section filling k;= 0.7,

{magnetic moments)

For the research active elements of alloy Ni, MnGa in
the form of parallelepipeds with a sizes 1x2x20 MM
manufactured by Adaptamat Inc. were used. For the
selected there is H, =370 kA/m. Based on the preliminary
calculations, iw® = 4000 A is used. Applying the algorithm
for solving the inverse problem to determine the recuired
ampere turns of the coils at the iterationn = 7 1s obtained
iw™ = 10000 A

CONCLUSION

The mathematical model of mimmal dimension and an
effective algorithm for calculating three-dimensional
magnetic fields based on a combimed fmite element
method and fundamental proposed.
Moreover, vector point fictitious magnetic moments are

solutions are

used for the first time for the analysis of electromagnetic
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systems by the MFS. The new point sources of the field
provide lgher accuracy of calculation in comparison with
magnetic dipoles. Numerical instability of solutions is not
observed. The number of unknowns decreases by
approximately 17 times in comparison with the FEM. In the
absence of symmetry mn the systems under investigation
the scalar pomnt sources, namely fictitious magnetic
charges, magnetic dipoles and magnetic moments, provide
the minimal dimension of the problem. The efficiency of
the proposed algorithm also ensures the decomposition
of the field in a linear subdomain mto two fields: the field
of coils with current and the magnetization field of the
ferromagnet which allows moving to scalar variables
mstead of vector quantities. The obtained results allow
effectively solving design problems, performing real-time
diagnostics of positioning systems with active elements
from the MSMA.
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