Tournal of Engineering and Applied Sciences 14 (15): 5072-5077, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Hot/Cold Based Replacement Algorithm for Flash Memory Buffer Management

Jeong-Joon Kim
Department of Computer Science and Engineering, Korea Polytechnic University,
15073 Gyeonggi-do, Siheung-si, Korea
jeong-joon kim +82-31-8041-0532

Abstract: To inprove buffer performance, an existing buffer replacement algorithm based on hard disk drive
15 proposed and many studies about buffer replacement algorithm based on flash memory which consider
characteristic of flash memory have been conducted recently. When existing buffer replacement algorithm based
on flash memory select victim page, it considers reference status and don’t considers reference frequency or
when it takes into account reference recency, there are disadvantages that operate speed is slow because it
consider elapsed tume. So, to solve the problem that has existing buffer replacement algorithm this thesis divide
page into 6 groups and when proposed algorithm select victim page, it consider reference page frequency and

page recerncy.

Kev words: Buffer replacement algorithm, flash memory, hot/cold page, AD-LRU, elapsed time, speed

INTRODUCTION

The buffer replacement algorithm for hard disks
wanted to maintain the high buffer hit ratio because the
speed of the read operation and write operation was equal
(Tiang et al., 2005, Jiang and Zhang, 2002; Shasha and
Tohnson, 1994; O’neil et al., 1993). However, the buffer
replacement algorithm for flash memory should
additionally account for not only the hit ratio but also the
writing operation, owimng to the difference m reading
computation and write computation (O’neil et al., 1993;
Tung et al., 2008; Ti et al, 2009; Park et al., 2006).
Applying buffer replacement algorithms for hard disks to
flash memory is not a desirable method. In addition, the
buffer replacement algorithm for the existing flash memory
15 selected by selecting or choosing a reference time
information, referring to the referenced time information
for page cleaning and the latest page of the page when
selecting the replacement page (Lin ef al., 2014; Liet al.,
2008). However, thus information alone 1s likely to result in
mcorrect replacement of the replacement page and there
1s also a possibility that the hit ratio will decrease.

Thus, in this thesis when selecting a replacement
target page, the algorithm presented to the specialized
algorithms relied on the hardware properties of the flash
memory rather than the existing algorithm, taking
advantage of the number of pages referenced in the pages
of the page as well as the existing algorithm which was
used to refer to the pages of the referenced page as well
as the existing algorithm.

Literature review
Buffer replacement algorithms based on flash memory:
The buffer cache stores a portion of the entire disk block

to reduce the physical /O request. Since, the size of
the buffer cache is relatively small relative to the entire
disk, frequent replacement of data occurs and the
buffer replacement algorithm 1s needed to efficiently
utilize it.

A buffer replacement algorithm based on the hard
dislk that has traditionally been used as a storage device
has the same buffer performance as the hard disk speed
and the high-write logic of the hard disk, many hard disk
based buffers replacement algorithms have been
proposed to replace pages based on the latest (recency)
or frequency (frequency) of page references in the buffer.
On the other hand, flash memory can replace pages at
lower cost because the write operation speed 1s slower
than the read operation because the data in the buffer is
replaced by replacing the data in the buffer rather than
replacing the data in the buffer that causes the write
operation to change. As such flash memory has been
proposed for buffering algorithms that consider the cost
of writing.

AD-LRU; Adaptive-Double LRU: The AD-LRU divides the
buffer cache into two lists of hot LRUs and cold LRUs to
dynamically adjust the size of the buffer list to manage the
replacement pages (Jin et al, 2012). Figure 1 shows an
example of selecting a replacement page for AD.

The LRU used represents the oldest page area and
MRU represents the most recently used page area. In
AD-LRU, the cold LRU and the hot LRU are dynamically
managed. If a page within the cold LRU is referenced by
a processor, the reference bit changes to true, the cold
LRU size decreases and the hot LRU size mcreases. The
corresponding page 1s then inserted into the hot LR of
the hot LRU. Additionally, if a page within a hot LRU 15

5072

J. Eng. Applied Sci., 14 (13): 5072-5077, 2019

Page# |1 |23 | a|s| 6 |7 |s [minde3
CleanDirty| D [Cc [D [c [D| ¢ | c D
Reference | 1 [o | o [0o [0| o [1 |1
bit
LRU MRU LRU MRU
& N
Cold LRU Hot LRU

Fig. 1: Example of AD-LRU

referenced by a processor, the referenced page changes
to true and is inserted into the hot LRU of the hot LRU. If
the cold LRU list is larger than the lc value, if the cold
LRU list 15 larger than the lc value, the cold LRU list 1s
selected for the cold LRU list and the cold LRU list size
smaller than the min value of the cold LRU list selects the
replacement page for the hot LRU list. If the current lc
value 1s 3 and the cold LRU list size 1s 5, select the
replacement target page for the cold LRU list.

If a clean page exists on the selected list, select the
oldest clean page in the buffer list as the replacement
page. If the clean page does not exist, select the oldest
dirty page as the replacement candidate page. If the
reference bit on this page is changed to false, then change
to false, then move the old dirty pages to the MRUJ page
and then select the replacement page for the replacement
page. If the reference bit on the candidate page 1s false,
finally, select the replacement target page as the
replacement target page. Dirty pages
replacement pages produce write operations when

selected as

replacing pages and msert new pages mto empty pages.
If the replacement page was present in the cold LRU list,
msert the new page into the hot LRU list and if present,
decrease the hot LRU to the hot LRU list and increase the
size of the cold LRU list to insert the new page i the cold
LRU list of the cold LRU list.

Because the AD-LRU takes account of both reference
times as well as reference tumes, it has the advantage of
choosing a replacement page based on more nformation
than other buffer replacement algorithms considering
conventional reference times. However, if the page
referenced to the referenced page 1s referenced only 2
times, the disadvantage is that 1t 1s not possible to
calculate the correct frequencies because the hot LRU
manages the page.

MATERIALS AND METHODS
HCSA (Hot-Cold Separation Algorithm): The efficient

buffer replacement algorithm proposed in this study
classified the pages m the buffer mto six groups

according to three criteria in order to select replacement
pages. The three criteria for classifying pages are as
follows. The first criterion 1s the clean page dirty page of
the page. If the data m the page i the buffer 1s not
changed by the processor, it is regarded as a clean page
and if it is changed, it is regarded as a dirty page. Next, the
second criterion 1s subdivided mto two types of dirty
pages, namely, a full dirty page and a partial dirty page.

Finally, it is the page’s hot page. Pages in the buffer
that are frequently referenced by the processor are called
hot pages and pages that are not frequently referenced
are called cold pages. Hot pages and cold pages are
distinguished using a hot cold-sorting algorithm. In this
study, according to the above three criteria, the pages are
classified into 6 categories as hot full dirty, hot partial
dirty, hot clean, cold full dirty, cold partial dirty and cold
clean (Fig. 2-4).

According to the replacement priority, the first
priority 1s to determine whether the page 13 cold hot,
since, the first to third replacement priority is a cold page
and the fourth to sixth are hot pages. Next, we distinguish
between clean and dirty pages. Finally, if the page is a
dirty page, we divide the duty page mto two types of
pulsatile pages and partial dirty pages.

Therefore, it is most important to determine whether
or not to select a hot key for selecting a replacement
target page. In this study, m order to determine whether
cached het, the reference time and the reference count are
considered together with the time remaining after the page
is loaded into memory and the reload frequency.

The normalized value for a reference time of an
arbitrary page 1s obtained by dividing the difference
obtained by subtracting the minimum value of the pages
1n the buffer by the difference between the maximum value
and the minimum value of the pages in the buffer. For
example, Fig. 5, the normalized value of p2 1s calculated by
subtracting 12:10 from 12:40 min the minimum value of
12:10 minthe 12:50 min 4 = 0.75.

The memory duration refers to the time that the page
was held n memory for the duration of the program
execution. For example, suppose a p2 page is loaded three
times in memory. If it is loaded for 2:10 min on the first
load, 1:40 mm on the second load and 1:20 min on the
third load, the total sum 15 5:10 min It counts as lasting in
memory.

The consideration of memory duration is also
calculated by normalizing the duration which 1s the same
as the reference time. For example, the normalized value of
p2 has a duration of 5:10 which is the shortest duration of
the pages in the buffer at 6:00. The value 0.75 divided by
the value obtained by subtracting 2:40 1s the normalized
value of the page p2.

5073

J. Eng. Applied Sci., 14 (13): 5072-5077, 2019

N

pl p2

Page #

............................. >12:40-12:10
12:50-12:10

Last reference
time

(12:50) :

Normalization 1

Fig. 2: Example of reference time normalization

Page # pl | p2 p3
Duration time (| 6:00 1) 5:10 | 14:20| 3:30(| 2:40
Normalization :1 0.751 0.5 | 0.25 Y

Fig. 3: Example of duration time normalization

4 _ps—//:——‘/_-—>>
e 5:10-2:40 _ 3
N T 6.002:40

6:00-2:40 -3

Page # pl M.Pz p3 p4 ps
.. > 7.2
Refi c t H H (\ e - -3
eference coun U 7“‘:__ \:(5 6) 3
Normalization 0 0.83 1\ 0.5 %
Fig. 4: Example of reference count normalization
Page # e p5 30-15 _ 3
35.15 3
Reload count 35 30 25 15 20
Normalization \1< 075 0.5 \0 0.25

Fig. 5: Example of reload count normalization

The consideration of the reference frequency 1s also
calculated by normalizing the reference frequency which
is the same method as the reference time. For example, the
normalized value of p2 1s a value obtamned by subtracting
2 which 1s the reference number of the pages in the buffer
from reference No. 7 of p2 and subtracting 2 which is the
smallest number of reference times from &, 0.83 is the
normalized value of the page p2 (Fig. 5).

The number of memory reloads refers to the munber
of times a page has been reloaded into memory during the
program execution period. The consideration of the
number of memory reloads 13 alse calculated by
normalizing the number of reloads which 1s the same as

the reference time. For example, the normalization value of
p2 is 15 which is the smallest number of reloads in the
buffer at the number of reloads of 30 at p2. The value 0.75
divided by the subtracted value becomes the normalized
value of the page p2.

In this study, we propose a method that uses a
reference count, a reference time, a duration time and a
reload count to calculate a normalized value using a
reference time of a specific page, a normalized value using
a reference count of a specific page. And the number of
times the page was re-entered into the memory can be
expressed as a formula and the terminology for describing
the page 1s shown in Table 1. The equation for obtaming

5074

J. Eng. Applied Sci., 14 (15): 5072-5077, 2019

Page # pl [p2 | p3 | p4 | pS
T, 1 |o7s] 05 [o2s] o
C, 0 [0] 1 [050] 066 avg 0,75+().77+0..63+().25+0.23 056
D, 1 |o75] 05 [o2s| o E
R, 1 Lers] 05 N 025
0.25 (T, +C,#D,#R,) | 0.75 {0.77)] 0.6310.25)[0.23
HOT/COLD Hot Hot [Cot\ Cold

T,+C,,+D,+R, is larger than
avg. value, so, it considerd hot

N

T,+C,+D,+R, is less than
avg. value, so, it considerd cold

Fig. 6: Example the reference time, the reference count, the duration and the reload counts togather

Table 1: Terminology for describing the hot cold classification algorithm

Terms Descriptions

P, Specific page

P={p:1, paDn} Full set of pages within the buffer list

to TLast reference time for specific page P1

t {tets by ooy b}]]

Ty The value of the reference time for a particular page on
page P1
{Tph TpZy ey Tpn}

Cyt Reference count for specific page P1

c {1, Gy -oos Cpu}

Cut Values that have a normalized reference count on a
specific page P1

Cp {Cyts Caar oo o

dy Duration time for specific page P1

d, {da, gy . e}

Dy The vahie of the duration time for a particular page on
page P1

D, {Du. Doy s D}

Tyt Reload count for specific page P1

R, {rats Ty oo T}

Ry Values that have a normalized reload count on a specific
page P1

R, {Rrg. Rop. ... R}

the normalization value of the reference time of a specific
page based on the term used in Table 1 can be expressed
as Hqg. 1:

t,-min{t))

* " max(t,)}-min(t,)

Next, the Eq. 2 for obtaining the normalized value of
the reference count of a specific page can be expressed as
Eq 2

C,-min{c,) @)

"o max (¢,)-min(c,)

Next, the Eq. 3 for obtaining the normalized value of
the duration time of a specific page can be expressed as
Eq 3:

d;-min(d,)

* " max(d,}min(d,)

(3)

Next, the Eq. 4 for obtamning the normalized value of
the reload count of a specific page can be expressed as
Eq. 4

I, -min(r,)

= ———P 4)
max (1, -min(x,)

Next, we mitroduce the reference time, the reference
countt, the duration and the number of reloads together in
Fig. 6.

The normalized values of a specific page p, n the
buffer may be given weight w and the weight at that time
may be selected according to the importance of the user.
The sum of all weights 1s set to one. The equation for the
hot cold classification algorithm that takes mto account
the weight values can be expressed as Eq. 5:

(3)

W Tog + W Cp TW3 XD +wy xRy

If the normalized values of pl are 1, 0, 1 and 1,
respectively as shown in Fig. 5, if we assume that all w
values are arbitrarily assigned to 0.25, we apply 0.25x1+
0.25x0+ 0.25x14+0.25%1 = 0.75.

When the hot-cold sorting algorithm of pages is
equal to Eq. 5. when the average value of each page
in the buffer calculated using (Eq. 5) is average the
value of w, xT +w,xCtw,xD+w,*xR; compare. If the
average value is larger than w,>*T +w,*C +wxD+w, <R
the value of a certain page, it is considered as a hot
page. If the average value is smaller than w xT +
w*CytwyxD+w, xR, the value of an arbitrary page, it is
regarded as a cold page. On the basis of this, it is possible
to express (Eq. 5) that a random page is regarded as
a cold page and (Eq. 6) which regards a random page as
a hot page:

WIX Tpl J"V\fzx(jpi +W3XDpi +W4 XRpl <

Y
i=1

(6)

WIXTpi Jr\J"r2><(313i+\J"r3 ><Dpi Jr‘N4XRpi

n

This Eq. 2 implies a cold page and average can be
expressed as:

5075

J. Eng. Applied Sci., 14 (13): 5072-5077, 2019

n
21 =1 WlXTpl +W2 chl +W3XDP1 +W4 XRPI

n

Wl XTp1 +W2XCpi +W3XDp1 +W4XRpi =

n 7
21:1\.‘f\f1><Tpi +w, < C +w o xDy tw, <R,)

n

This Hqg. 7 implies a hot page: As shown in
Fig. 5, the buffers of all pages can be normalized by
using Eq. 5-7, so that, hot pages and cold pages can be
distinguished from each other and the pages to be
replaced first can be selected.

RESULTS AND DISCUSSION

Performance evaluation: In this study, we show the
performance evaluation results of the AD-LRU and the
construction environment to verify the performance
of the hot cold separate algorithm proposed m this
study.

Performance evaluation environments: Table 2 shows the
flash memory specifications for performance evaluation of
this study. As shown m the table, the page size 13 4, 096
bytes, the block size is 64 pages, the page read
speed 18 25 psec per page, the page write speed 1s
220 psec per page and the block erase speed is 1.5 msec
per block.

Comparative performance evaluation: In this study, the
performance is verified by comparison with the AD-LRU
discussed in the related study. The test environment is
shown in Table 3. Performance evaluation items include
buffer hit rate, number of write operations and
replacement time. Figure 6 shows the buffer hit ratio.

As shown n Fig. 6, the buffer hit rate 1s unproved
about 20% over the AD-LRU in all environments and the
superiority of the hot cold separate algorithin has been
verified. Figure 7 shows the buffer hit ratio.

As shown i Fig 7, the HCSA shows better
performance in test 3, although, it does not show a large
performance difference in the write operation. Tt can be
mterpreted as a result of reducing the total number of
operations in consideration of pages to be replaced.
Figure 8 shows the replacement time. As shown m Fig. 9,
it can be seen that the replacement takes longer than the
AD-LRU. This can be interpreted as the computational
process for determining the page to be replaced 1s more
complex than the AD-LRU.

Table 2: Flash memory specifications

Specifications Values

Page size 4,096 byte
Block size &1 page

Page read speed 25 psec/page
Page write speed 220 psec/page

Block delete speed 1.5 msec/block

Table 3: Test enviromment

Test No. Operation Read/write ratio (90)
1 1,000,000 50450
2 1,000,000 90/10
3 1,000,000 10/90
100 7 @AD-LRU
| BHCSA
o 80
2
2 607
£ 40 1
= 20 -
0 T T T
1 2 3

Test

Fig. 7: Buffer hit rate

, 800007 @ AD-LRU
g @ HCSA
2 60000
g
£ 40000
2 20000 l_‘ |—|
£2
0 T T T
1 2 3

Fig. 8: Write operations

8000 7@ AD-LRU

2 o HCSA
% 6000 -
2 4000 A
g
8
,_.2 2000 1
2 0
1 2 3
Tests
Fig. 9: Replacement time
CONCLUSION

A buffer is intended to store a large number of pages
to reduce the gap between CPU and storage between CPU
and storage. Buffer replacement algorithms have been
proposed to improve the performance of buffers and the
existing buffer replacement algorithm has been proposed
on the same hard disk as the same hard disk. Thus, many
studies have been conducted on buffer replacement

5076

J. Eng. Applied Sci., 14 (13): 5072-5077, 2019

algorithms that take into account these flash memory
characteristics, since, the existing algorithms are not
suitable for other flash memory. Thus, this thesis divided
the pages into six groups of studies, grouped into more
detailed ones and presented the reference number and
reference times together with reference times. Given the
limited lifetime of flash memory, the candidate was chosen
to replace the replacement page based on the mumber of
erased.

ACKNOWLEDGEMENT

This research was supported by the National
Resaerch Foundation of Korea (NRF) grant funded by the
Korea Government (MSIP) (No. 201 7TRIA2B4011243).

REFERENCES

Tiang, S. and X. Zhang, 2002. LIRS: An efficient low
inter-reference recency set replacement policy to
improve buffer cache performance. Proceedings of
the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS '02) Vol. 30, June 15-19, 2002, ACM,
Marina Del Rey, California, USA., pp: 31-42.

Hang, S., F. Chen and X. Zhang, 2005. CLOCK-Pro: An
effective mnprovement of the clock replacement.
Proceedings of the USENIX Anmual Conference on
Technical (ATEC '05), April 10-15, 2005, USENIX
Association Berkeley, California, USA., pp:
323-336.

Jin, P., Y. Ou, T. Harder and 7. L1, 2012. AD-LRU: An
efficient buffer replacement algorithm for flash-based
databases. Data Knowl. Eng., 72: 83-102.

Jung, H., H. Shim, S. Park, S. Kang and J. Cha, 2008.
LRU-WSR: Integration of LRU and writes sequence
reordering for flash memory. TEEE. Trans. Consum.
Electron., 54: 1215-1223.

L1, HL., CL. Yang and H'W. Tseng, 2008. Energy-aware
flash memory management in virtual memory system.
TEEE. Trans. Very Large Scale Integr. Syst., 16
952-964.

Ly, 7., P Jin, X. Su, K. Cutand L. Yue, 2009. CCF-LRU: A
new buffer replacement algorithm for flash memory.
TEEE. Trans. Consum. Electron., 55: 1351-1359.

Lin, M., S. Chen, G. Wang and T. Wu, 2014. HDC: An
adaptive buffer replacement algorithm for NAND
flash memory-based databases. Opt., 125: 1167-1173.

O'neil, EJ., PE. O’neil and G. Weikum, 1993. The LRU-K
page replacement algorithm for database disk
buffering. ACM. Sigmod Rec., 22: 297-306.

Park, Y., D. Tung, I.U. Kang, I.S. Kim and T. Lee, 2006.
CFLRU: A replacement algorithm for flash memory.
Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems, October 22-25, 2006, ACM, New Yorl,
USA., pp: 234-241.

Shasha, D. and T. Johnson, 1994. 2Q: A low overhead
high performance buffer management replacement
algoritm. Proceedings of the 20th International
Conference on Very Large Databases, September
12-15, 1994, ACM, Santiago, Chile, pp: 439-450.

5077

	5072-5077 - Copy_Page_1
	5072-5077 - Copy_Page_2
	5072-5077 - Copy_Page_3
	5072-5077 - Copy_Page_4
	5072-5077 - Copy_Page_5
	5072-5077 - Copy_Page_6

