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The Disc Structures of Commuting Involution Graphs for Certain Simple Groups
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Abstract: Suppose G 1s a finite group and X 13 a subset of G. The commuting graph on the set X, C (G, X) whose
vertex set X with any two vertices commected by an edge, if and only if they commute. In tlus study, we
consider as the Mathieu groups, symplectic groups, together with their automorphism groups and are
conjugacy classes of mvolutions. Let te X, here, we investigate the orbits under the action of C(t) from a fixed
vertex t and describe the group theoretic structure of (t, x) where x 13 a Cy(t) orbit representative.
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INTRODUCTION

The algebraic graph theory involves the use of group
theory and the study of graph. Recently, mathematicians
try to assign a graph to an algebraic structure, for
examples, Bertram (1983), Camina and Camina (2011).
They used the advantages of graph properties for the
algebraic structures and vice versa.

Let G be any fimite group and X is any G-conjugacy
class. We form an undirected graph with vertex set
X such that any distinct vertices x, yeG being joined
whenever x # y and xy = yx. Such a graph 1s known as a
commuting graph of G on X denoted as C (G, X). Clearly,
G embeds graph automorphism of C (G, X) and is
transitive on the vertices of C (G, X). Without loss of
generality, we choose t€G = t° to be a fixed point to start
off constructing C (G, X).

There 15 a large hiterature which 1s assigned to express
groups as graphs for the purpose of investigating the
properties of groups by using the structure of the graphs.
Many literature has studied C (G, X) for various kind of G
and X. To our best knowledge, the case when G has even
order X = G/7Z (G) and was first studied by Brauer and
Fowler (1955). When X 1s specifically a G-conjugacy class
of involution C (G, X) is called a commuting involution
graph. This was happened by the research by Fischer
(1971) which led to the construction of 3-transposition
groups. Other resaerch of literatures on commuting
invelution graphs are stated by Bates et al. (2003, 2007),
Everett (2011), Everett and Rowley (2010), Perkins (2006),
Rowley and Taylor (2011).

Let xeX the group action of on induces an action by
conjugation on the centralizer of x n G such that C.(x) =

{geGxg = gx}. Let d (%, y) be the usual distance function
on the commuting involution graphs. When C (G, X) is
connected, the ith disc of C (G, X)) around t 1s defined as
A () = {xeX|d (t, x) = i}. We then define the diameter of
the graph, Diam C (G, X) to be the maximal distance
between two of its vertices.

By Bates et al. (2007), the commuting involution
graphs is studied when G is one of the 26 sporadic finite
groups and X 18 an invoelution conjugacy class of G as our
main reference and the result is shown in theorem 1.1. Our
approach, here is to compute diameter of C (G, X) and
provide the elements at a given distance from a fixed
involution in detail.

Theorem 1.1 (Bates ef al., 2007): Let G be any Mathieu
groups and X be the conjugacy classes of involutions in
G. Then, C (G, X) 1s comnected with Diam C (G, X) =3
excluding G =M, and X = 2A with Diam C (G, X) = 2. For
convenience, the following lemma will be included here
where this result plays an important role in the recent
studies of this particular graph

Lemma 1.1 (Bates et al 2007): Let xeX where X
consists of mvolutions and put z = tx and let m be the
order of z

»  xeA (t)ifand only if m=2

s Ifmiseven m>4 and z™eX then xeA, (t)

o If Cu®nX=9, then d(t, x)=3, if Ccw has odd
order

s Suppose that m is odd and assume that there do not
exist any elements geG of order 2 m such that g’ ==
and g"eX. Then d (t, x)>3

Corresponding Author: Athirah Nawawi, Department of Mathematics, Faculty of Science, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia

4583



J. Eng. Applied Sci., 14 (13): 4583-4589, 2019

Apart from that the group theoretic structure (t, x)
was taken into consideration for the same group in the
study by Bates et al. (2007). The outcomes of (t, x)
motivate us to study the commuting mvolution graphs on
one of the classical group -3, (2), S, (3) and 5, (2) so called
Symplectic group. We select some group among the
Symplectic groups -3, (2)', 3, (3) and 3, (2) to perform
calculations as informations needed are already complete
in ATLASY.

Besides that, we extend the study by Bates et al.
(2007) to determine the number of C, (t)-orbits together
with their sizes at a given distance from a fixed mvolution
t on the Mathieu groups -M,,, M,,, M,, and M,, and
Symplectic group -3, (27, 8, (3) and S, (2). For the
notations of all groups and comjugacy classes, we use
standard conventions of the online ATLAS". The
Mathieu groups may be viewed as permutation groups on
11,12, 22, 23 and 24 points, respectively. Meanwhile the
Symplectic groups can be observed, respectively, on 10,
27 and 28 points of permutation groups.

The basic concept such as groups and finite simple
groups can be found by Wilson (2009). We investigate
the orbits under the action of C, (t) and hence, determine
the subgroups generated by elements of t and xeX where
x is known as a Cg (t)-orbit, representative. The results of
this study are provided.

MATERIALS AND METHODS

Commuting involution graphs: In this study, we
mtroduce our main results of this study which are
catalogued mto 3 subsections. Subsection 2.1 deals with
the study of commuting invelution graph in Mathieu
group. Subsection 2.2 explains the results of commuting
involution graph in symplectic group. Subsection 2.3
contains some observation on subgroup structures for
both commuting involution graphs in two previous
subsections and followed by some examples.

Commuting involution graphs in mathieu groups: In this
subsection, we investigate the commuting involution
graphs in five Mathieu groups. Table 1 is the disc sizes of
C (G, X) furst found by Bates ef al. (2007). The majority of
cases 1n Table 1 have the Diam C (G, X) = 3. The graphs
C (M,,, 2A)yand C (M ,,2B) have diameter 2. However,
Diam C (M, 2C) = 4.

Although, C (G, X) brings the class of elements of the
same order (mvolution) but every class has different
cycle types. For instance, the graphs C (M,,, X) contains
of 2 different conjugacy classes 2A and 2B with elements
of cycle types 2° 1° and 2", respectively (Anonymous,
2016).

Theorem 2.1 gives the main result of our investigation
which is the disc structures of involution C(G, X) in
Mathieu groups. The data are grouped according to the
conjugacy class of tx for xeA(t). We found the number
and size of aorbits in each A(t). Moreover, the subgroup
H = (t, x) i3 identified whenever x is a Cyt)-orbit
representative.

Theorem 2.1: The disc structures of C (G, X) in Mathieu
groups which determine the distance of t and xeA, (t) are
given in Table 2.

Commuting involution graph in symplectic groups: This
subsection focuses on the investigation of commuting
involution graphs in three symplectic groups. The result
in Table 3 demonstrates the disc sizes of C (G, X) for S,
(2)" and 5, (3) that has been found by Everett and Rowley
(2010) and we continue this research by obtaining the disc
sizes of C (G, x) for 3, (2). We can pin down Diam C (G, X)
by using result concerning A,(t) and Table 3 shows that
2< Diam C (G, X)<5. As what has been covered in theorem
2.1, the next result is obtained and stated in theorem 2.2
for the dise structures of involution C (3, X) in symplectic
groups.

Theorem 2.2: The disc structures of C (G, X) in
symplectic groups which determine the distance of t and
XeA, are given in Table 4.

RESULTS AND DISCUSSION

Observations on subgroup structures: This subsection
starts with the result concerning the subgroup (t, x)
where x 18 an element of C.(t)-orbits representative

(Table 1-4).

Theorem 2.1: Let xcX and assume that m be the order of
tx. Then, we have:

» If then xeA, (t) then t=K, Klem four-group of
order 4
» Ifd(t x)22thent =D, dihedral group of order 2 m

Proof: Suppose that G is any Mathieu or symplectic

groups and X are the G-conjugacy classes of mvolutions.
If teX then t is an invoelution or:

tt=1 )]

Since, x be the Cy(t)-orbits representative then x 1is
also an element of X where x is an involution. Say that:

4584



J. Eng. Applied Sci., 14 (13): 4583-4589, 2019

Table 1: Disc size and diametres of iovolution C (G, X) in Mathieu groups

Git X A @) A2 (8] A (8] Ay )
My
2A 165 12 104 418 -
My
2A 396 35 360 - -
2B 465 30 352 112 -
2C 792 31 360 360 40
MZZ
2A 1155 50 720 384 -
2B 330 49 280 - -
2C 1386 25 400 960 -
M.
2A 3795 98 2800 896 -
M.y
2A 11385 280 9184 1920 -
2B 31878 277 21680 9920 -
Table 2: Disc sizes and diameters of involution C(G, X) in Mathieu groups
G t/Disc Class of tx No. of orbits Orbit size {t,
My 2A
Ay () 2A 1 12 K,y
Ay 3A 1 8 Ds
3A 1 24 D;
4A 1 24 D;
6A 2 24 Dy
A 5A 1 48 Dy
My, 2A
A 2A 2 10 K,
2B 1 15 K,y
Ay 3B 1 60 Ds
1A 1 30 D;
5A 1 120 Dyg
6A 2 60 Dy
2B
Ay () 2B 1 6 K,y
2B 1 24 K,
Ay 1) 3A 2 32 D;
4A 1 48 D;
4B 1 48 D;
6B 2 96 Dyg
Az (1) 3B 1 16 D;
5A 1 96 Dy
2C
Ay () 2A 1 1 K,y
2A 1 15 K,
2B 1 15 K,
Ay 1) 3B 1 60 D;
5A 2 60 Dyg
6A 1 60 Dy
10C 2 60 Dy
Az (1) 6B 1 120 Dy
11A 1 40 D,
A 3A 1 40 Ds
My, 2A
A () 2A 1 6 K,
2A 1 8 K,
2A 1 12 K,y
24 1 24 K,
Ay 3A 1 192 Ds
1A 3 48 D;
4B 2 96 D;
6A 1 192 D,
Az (1) 5A 1 384 Dyp
2B
A 2B 1 7 K,
2B 1 42 K,
A, ) 3A 1 112 D;
4B 1 168 D,
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G tDisc Class of tx No. of orbits Orbit size 1%
2C
AL 2B 1 5 K,
2B 1 20 K,
Ay ) 4D 2 40 Dy
S5A 1 320 Dyg
Aq ) 3A 1 80 D,
4B 1 80 Das
6A 1 160 Dy
11A 1 640 D,
Mo 2A
A 24 1 14 K,
24 1 84 K,
A, () 3A 1 448 D,
44 3 336 Ds
6A 1 1344 D,
Aq ) 54 1 896 Dy,
Moy 2A
AL 24 2 14 K,
24 1 168 K,
2B 1 84 Ky
Ay ) 3A 1 896 Ds
a4 2 112 D,
4B 2 672 Dy
4B 1 1344 Dy
6A 1 5376 Dy,
As () 3B 1 128 Ds
2B
A, 24 1 15 K,
24 1 60 K,
2B 1 2 Ky
2B 1 80 K,
2B 1 120 K,y
Ay ) 3B 1 950 Ds
a4 2 120 D,
4B 2 240 Dy
4B 1 480 Dy
4C 2 160 D,
4C 2 960 Dg
S5A 1 1920 Dyg
6B 2 1920 Dy,
10A 2 1920 D
128 2 3840 Das
Aq ) 3A 1 320 D,
6A 1 1920 Dy
11A 1 7680 Dy
Table 3: Disc sizes and diameters of involution C (G, X) in symplectic groups
Git [X] 4, (t)] A, (B)] A4 (t)] 1A, (B (]
8,2y
2A 45 4 8 16 16 -
2BC 30 9 20 - - -
2D 36 5 20 10 - -
34 (3)
2A 45 12 32 - - -
2B 270 21 136 112 - -
2C 36 15 20 - - -
2D 540 15 104 228 184 8
8 (2)
2A a3 30 32 - - -
2B 315 42 272 - - -
2C o5 64 496 kit - -
2D 3780 51 560 2528 640 -
=1 (2) statement. We note that x is a Cy(t)-orbits representative

in Aj(t). The product of t and x which is tx has order 2

Then, we construct a subgroup by t and x so-called such that:

(t, x). By considering (Eq. 1 and 2) yields the following tx' = tx) =1 (3)
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Table 4: Disc sizes and diameters of involution C(G, X) in symplectic groups

G t/Disc Class of tx No. of orbits Orbit size t,x)
S402 2A
a1 2A 2 2 K,y
Fe1(0] 4A 2 4 D;
a3() 3A 1 8 D;
3B 1 8 Ds
a4(0) 5A 1 8 Dyp
5B 1 8 Dyg
2BC
) 2A 1 3 K,
2A 1 6 K,
Fe1(0] 3AB 1 8 Ds
1A 1 12 D;
2D
a1 2A 1 5 K,y
300 5AB 1 20 Dy
a3(0) 1A 1 10 D;
S403) 2A
a1 2B 1 12 K,y
Fe1(0] 3D 1 32 Ds
2B
) 2A 1 3 K,
2B 1 6 K,
2B 1 12 K,
a0 3C 1 16 D;
4A 2 12 D;
4B 2 24 D;
6F 1 48 D,
a3() 3D 1 16 D;
5A 1 96 Dy
2C
) 2B 1 15 K,
a0 3C 1 20 D;
2D
a1 2A 1 3 K,y
2B 1 6 K,
2B 1 12 K,y
Fe1(0] 3C 1 16 Ds
1A 2 12 D;
4B 2 24 D;
6F 1 48 Dy
a3(0) 3D 1 16 Ds
5A 4 96 Dip
a4(0) 3C 1 16 D;
4A 2 12 D;
4B 2 24 D;
6F 1 48 Dy
3C 1 8 Ds
84(2) 2A
) 2A 1 30 K,
a0 3A 1 32 D;
2B
a1 2B 1 18 K,y
2C 1 24 K,
a0 3C 1 128 D;
4D 1 144 D;
2C
) 2B 1 6 K,
2C 1 2 K,
2¢ 1 8 K,
2¢ 1 24 K,y
2D 2 12 K,y
a1 3A 1 32 D;
1A 1 48 D;
4B 2 16 D;
4E 2 96 D,
6D 1 192 D,
a3(0) 3C 1 128 Ds
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Table 4:Continue

G t/Disc Class of tx No. of orbits Orbit size t. %)
SA 1 256 Dy
2D
ald) 2A 1 3 K.

2B 1 3 K,
2B 1 12 K,y
20 1 3 K,
2C 1 6 K,y
D 2 6 K,
a(0) 3C 1 32 Ds
3C 1 o6 Ds
44 1 12 Dy
4B 2 24 Dy
4C 2 24 Dy
4D 3 12 Dy
4E 4 A Dy
6F 2 96 Dy
(D) 3A 1 8 Ds
3A 1 24 Ds
44 1 48 Dy
4D 1 48 Dy
5A 1 192 Dy
6A 2 24 Dy
6C 1 192 Dy
6D 1 48 Dy
TA 1 384 Dy
8A 2 o6 Dis
8B 2 96 Dis
94 1 384 D
124 2 96 Doy
12B 2 o6 Dy
154 1 384 Dy
acld) 3B 1 64 Ds
6B 2 48 Dy
6D 2 48 Dy
12C 2 192 Doy

Hence: Before, we illustrate some example on how the

(t,x| ' =x?=(tx)’ = 1> (4 constituent Cy(t)-orbit representative in each A, (t) can be

Which is clearly obtained that a presentation of the
Klein four-group is an elementary abelian group of
order 4. When is a Cg (t)-orbits representative in A, (t) for
122, observe that the product of t and x wlich 1s tx has
order m where m or:

%" = ()" =1 ®)
Hence:
(t,x)tm =x"=(tx)" =1 (6)

Thus, Eq. 6 is a presentation of dihedral group D, ,, of
order 2 m. Given the subgroups K, and D, are
distinguished based on their abeliamzation of subgroup
structure. K, is an abelian subgroup while D, is a
subgroup of non-abelian whenever m=3.

The group theoretical computer algebra system
(Groups, Algorithm and Programming) GAP' provides an
access on the descriptions of small order groups, so
called small groups library. All group are sorted by their
orders and listed up to 1somorphism.

broken down into the subgroup {t, x) the computational
method are provided by using mathematical package
MAGMA (Camon and Playoust, 1997) mathematically to
determine which known group it 1s 1somorphic to.

Let t be a fixed comjugacy class of mnvolution
in one of the Mathieu or symplectic groups.
Suppose that x be the Cg (t)-orbit representative in  Aj(t)
for 1€eN. The subgroup H of G 1s constructed by the
elements of t and x. We find the composition factor
series of H that provide an alternative to break up H into
small pieces. By determining the order of H = (t, x} the
factonizations of the order are resolved. This yields a
sequence of two-element tuples with [{P,, K,, ..., {P K }}]
with P,, P,, ..., P, distinct prime numbers and K, positive
which is emploved to represent integers in factored
form. For the particular order of H we search the
candidates of known groups. By usmg the abstract
properties, candidate
immediately once we know whether H is abelian or

some can be eliminated
not. Thus, the following are the examples of some

subgroup H.
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Order of tx is 2: Let H = {t, x) be a group of order 4 and
has the composition factor series 1 = 7,47, = G.
There are two distinet isomorphism types of groups
of order 4 K, and Z, and both groups are abelian To
choose the known group, we find out the abstract
properties of using MAGMA (Cannon and Playoust,
1997). Hence, H = K,, since, we know that H 15 an
elementary abelian and non-cyclic subgroup.

Order of tx is 3: Let H = {t, x) be a group of order 6 and
has the composition factor series 1 = Z,<Z, = G. There are
two distinct isomorphism types of groups of order 6 D,
and Z,. Based on their abelianization H is non-abelian.
Since, we know Z, is abelian, thus, H = D,.

Order of tx is 4: Let H = {t, x) be a group of order & and
has the composition factor series 1 = Z,<Z, 47, = G. There
are five distinct isomorphism types of groups of order 8,
DF, Z'x72, 2, Q, and Z,. The properties of subgroup H are
nilpotent and extraspecial groups. Groups Q; and D,
satisfy these properties, thus by looking at the
presentation of the product t and x which can admit (tx)'
=1 we can conclude that H =D;. The rest of the order of
conjugacy class tx are having the same procedure to
obtain the structure of H = {t, x} but the abstract
properties make them different to find out the known
group up to isomorphism.

CONCLUSION

Through, out this research, the structure of
commuting graphs C (G, X) has been completely studied
when considering G as the Mathieu or symplectic groups
and involution conjugacy classes X. Having found the
representatives x for the C; (t)-orbits on each case of
C (G, X)we wish to determine which disc of the graph
lies in and hence, discover the diameter and disc sizes of
C(G, X). We also, examine the order of the product tx in
each C; (t)-orbitto categorize the number and size of
the orbits. Hence, the subgroup generated by elements t
and x are obtained.
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