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Abstract: This study describes the blood Oxygen Saturation (SpO2) for neonatal infant’s by modeling and
control methods. Out of analyzing and study the biological and modeling system, the mechanisms of ventilation
helped the blood to be oxygenated. The oxygenation of the blood affected by Fraction of mspired Oxygen
(F10,), rate of respiratory and rate of heart had an effect on the oxygenation. The SpO2 was modeled by two
different methods. The models discussed are a neural network model and mathematic model. The best acting
model was mathematic model because it was capable to detect to changes the biological in the infant’s and
precisely predict the SpO2 for an extended time and is related to apply mput F10,. Two different controllers were
designed. The controllers are PI and PID controller and they were designed by using the model of dynamic in
mathematical way and with neural network. The controllers were structured to control the SpO2 with altering
the values of Fi0,. The control of two models were tested to get the response of output for SpO2 at zero steady
state error, mimmum peak overshoot and mimmum rise time. The control of two models were tested on data to
be simulated. The controllers for two models was got to be PID to get SpO2 at 80-90% with changing values
of the FiOQ, is at 20-30%. The values of SpO2 and FiO, submitted are contrast between value of the nominal

actual and value of comparing which is the best for controllers.
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INTRODUCTION

Arterial oxygen saturation: A most problem 1n neonatal
mnfants 1s Respiratory Distress Syndrome (RDS), caused
by absence of a protective substance surfactant which
helps the lungs increase and stay off the air sacs from
collapsing (Merenstein and Gardner, 2006). The mfant 1s
to be located on the device with support of respiratory to
permit the lungs of infant to additional progress. The
controlled fraction of mspired oxygen (F10,) of infant 1s
supplied when on the device of respwatory to be
supported. The nurse Controlled the mput F10, for the
infant. The management is done by screening the SpO2
and adjusting the FiQ, as required. The management of
Fi0, 1s focused on agreed nurses’ judgment and medical
practices. By management a Fraction of mspired Oxygen
(Fi0,), the output SpO2 can be managed The range of
SpO2 is from 85-92% (Keim et al., 2009). If the range of
SpO2 15 <80% the tissue will be damaged, brain mjury and
even death by affecting a state of hypoxia. On the other
hand, the risk of infant is at of prematurity retinopathy
that is concomitant with blindness and even damage of
vision if the range of SpO2 is =95% (Keim et al., 2009).
The neonatal infants has seen was spent only 50% of the
time within the acceptable levels under manual control
of the FiO, (Laptook et al., 2006, Hagadorn et al., 2006).
The limits of safety are control to notify the nurses
when the mfant i1s outside of the acceptable level.

Gray (1945) he proposed a model only able to take
into account the output of the steady-state of the system
to CO2 mbhalation, arterial anoxemia and metabolic
disturbances. Grodms et al. (1967) added dynamics and
transport delay into the respiratory system model in 1967.
This was done through a system of nonlinear equations
that can be used to predict changes m the blood gases
during conditions of hypocapnie and hypercapnia.
Grevisse developed a predictive global model of the
pulmonary functions using only physically accessible
variables. His system consisted of sub-systems that
modeled different parts of the pulmonary system
(Grevisse et al., 1975). Yu developed a model that mapped
the relationship between the arterial oxygen partial
pressure (PaO2) and F10, (YU et al., 1986). This system
allowed the model to adapt to different infants and thus
better model the infants response to increases in Fi0,. In
this work Grevisse’s idea of sub-systems was combined
with Yu’s idea of an adaptive model to create a robust
model of the infant’s biological system.

Tehrani and Bazar (1991) designed a proportional,
integral, derivative controller For the control of the
ventilation of premature neonatal infants m 1991. The
controller examines the oxygen concentration of the
inspired gas to permit for adequate oxygenation of the
blood. The oxygenation was detected to stave off
damaging effects of oxygen toxicity. Yu used a Multiple
Model Adaptive Controller (MMAC) to regulate the

4532



J. Eng. Applied Sci., 14 (13): 4532-4541, 2019

arterial oxygen saturation (Sa02) by adjusting the FiQ,
(YT et al., 1986). The MMAC assumes that the system
can be represented by a fnite number of models. A
controller was then designed for each model to give an
acceptable closed-loop response to get zero steady-state
error. Keim developed a single robust controller based on
a linear model (Keim et al., 2009). The robust controller
was designed based on an emor model and
performance specifications. Keim also developed an
adaptive controller based on estimated parameters and
disturbances (Keim et al., 2009). The controller attempted
to regulate the Fi0, while mitigating the affect of the
disturbances.

Morozoff and Smyth (2009) performed an experiment
m which they used a PID (Proportional-intergran
differential) controller to control the Fi0, level of oxygen
to supply to neonates. The controller made use of the
SpO2 measured from an oximeter as input and the output
was the Fi0, level delivered to neonates which is
calculated based on the error between the current and
target SpO2. The target SpO2 range was between 90 and
96%.

Granelli et al. (2005) he proposed a study of cohort
with children about 39,800 had saturation in oxygen that
tested by pulse oximeter (Sp0O2) in the top and bottom
edges and a proved reasonable measure precise for the
perception of CCHD. Granelli et al. (2009) they studied
the case of 10,000 newborns babies and declared the
same.

Committee of the Advisory US in Newborns and
Children Advisory on Heritable Disorders Committee on
Hereditary Diseases discovered that there was
comfortable verification of using a pulse oximetry to
recommend screening. The defects of heart that can be
perceived are mainly the following injuries: tetralogy of
Fallot, syndrome of hypoplastic left heart, tricuspid
atresia, pulmonary atresia, anomalous pulmonary venous
return, truncus arteriosus and large vessels transposition.
Screeming can also perceive: arch of interrupted aortic,
critical aortic stenosis, aortic valve stenosis, pulmonary
valve stenosis. In addition, screening of pulse oximetry is
commonly used for the perception of other conditions
with hypoxemia of neonatal 15 like disorder of
respiratory, sepsis of neonatal and hypertension of
pulmonary (Hu et al., 2017; Thangaratinam et al., 201 2).

MATERIALS AND METHODS

Mathematic model: Oxygen saturation, Sa0, is a
relative measure of the amount of oxygen molecules
bound to Hemoglobm (HB). Hemoglobin consists of four
wron-porphyrin molecules attached to a protein. Each heme

molecule can combine with one oxygen molecule in a
reversible reaction. In other words, the maximum number
of oxygen molecules that can combine with a hemoglobin
molecule 1s:

Hb+0, = HbO, (1

Oxygen saturation 1s the ratio of the amount of
oxygen carried by hemoglobin present in 100 mL of blood
to the total amount of oxygen that could be carried by the
hemoglobin in the same volume of blood:

HbO,
O,=—— 2

Hb+HbO,

Oxygen saturation is normally in the range of 95-98%
in the arterial blood and between 60-80% in venous blood.
Blood oxygen content refers to the total amount of
oxygen present in 100 ml of blood and is normally
expressed i vol%, or mL of oxygen per decilitre of blood
(ml/dl). Oxygen content in blood is normally calculated by
adding the amount of the gas liquefied in the blood
plasma and the amount conveyed by hemoglobin. The
coefficient of solubility for oxygen n plasma is 0.0031 and
the amount of oxygen dissolved in the liquid is got by
multiplying the PO, by 0.0031. On the other hand, the
amount of oxygen carried in the blood as oxyhaemoglobin
15 determined by multiplying the mass of hemoglobin
present in 100 mL, of blood by the oxygen saturation and
1.38 where 1.38 represents the ml of oxygen that can
combine with 1 gram of hemoglobin:

CO, =0,dissloved+O,bounded toHb =
PO, *0.0031+Hb*S0, *1.38

The normal amount of hemoglobin present in 100 ml.
of blood 1s about 15 g for an adult whose artenal
saturation level can be assumed to be about 97%.
Therefore:

Ca0, = 0.97%15*1.38 = 15.5vol%

The oxygen saturation in the venous blood returned
to the lung is about 75% and based on this value:

CvQ, =0.75%15*%1.38 = 15.5vol%

Based on the CaQ, and CvO, values calculated
above, the tissues only uses 25% of the oxygen delivered
to them. Oxygen transport i1s the amount of oxygen
delivered to the tissues per unit time. Oxygen transport is
dependent of the ability of the lungs to oxygenate blood
that goes through the pulmonary capillary networl.
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The Arterial transport will be:
O, =Cardiac output*10*CaQ,
The Venous transport will be:
0, = Cardiac transport*10*CvO, 4

The concentration of hydrogen ion m a medium
determines the acidity and hence, pH of the medium:

H,0+CQ, = H,CO,
H,CO, = H'+C0,

(3)

the rate of change of the volume of carbon dioxide in
the lungs is calculated. The amount of CO, expired is
given by the Eq. &

Expired carbondioxide = (Fic02 _FACDZ)*VA (6)
Where:
v, = Alveolar Ventilation
F, = Alveolar molar Friction part

Fioo: = Friction of inspired Carbon Dioxide

In order to find out how much carbon dioxide is
transferred into the lungs, it is a simple matter of finding
the difference in carbon dioxide concentration in these
two blood vessels. This is shown:

Carbondioxidein tothelungs = (C *Q (7

VCOo, _CACO2 )
Where:

Q.
Cyeo, = Vanous blood Concenreation
c

Output of the cardiac
o, = Pulmonary blood Concentration
The rate of change of CO, in the lungs 1s:

dv
% - VA*(ECOZ_AACDZ )Jr(c\/fco2 'CAcoz) *Q (®)

By Dalton’s law, we get:

PAC02 o VA002 (9)
cho2 -
PAT'PW M1002
F _ Pico2 _ V1002 (10)
iCoy — -
pP.-P LV

Where:
Eeo, = Fraction of inspired Carbon
P, = Partial pressure of mspired Carbon

The relationship between P,_, and F,__ is:
Py = Fiw *(Pur Py ) = B, (760-47) (11)
By arranging Eq. 9 and get:
Pras, = (Pur By} * 255 (12)
0o,

By combmation Eq. 8 and 12, we get:

dv
% o {( PAT 'Pw )(CVCO2 _CAC02 ) * Q +

dt (13)
8

The rate of change of the partial pressure of oxygen
1n the lung 1s:

(Rco2 _PAC02 )* Vil *(M

dpP

(B ) V830 €, ]

1
MLCOZ

The Lung compartment is:

(14)

dPﬁDz *
dt = (Pico2 _PACO2 ) V, 18630 Kco2

(15)
(B, (t29) B, (0]} (Ml }

The brain compartment 1s:

dPBCOz (t) _ QB (PaC02 (t_TB) _PBCOZ(t)) + I\ARBcog (1 6)
dt Mecce MgcoKpece
The tissue compartment is:
deCOz (t) _ Qp (PaCOZ (t'TT) Pocor (t)) 4 MR,
dt Mg, MraoeKeoe
(17)

As mentioned the central and peripheral controllers.
A model was found based on questions above provided:
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Fig. 1: The output of SpO2 according to supply input F10,

V, = GP*(-0.05*P,._ (t-ta)}*(P.o, (t-Ta)-Ip)+

MR (18)
GC*Pyy, (t)———22IC
: QB * KCOZ
Where:
GP and GC= The peripheral and central gain factors,
respectively
IcandIp = The apnea thresholds

A baseline PCOZ2 is necessary for breathing to occur
and 1s known as the apneic threshold. If PCO2 1s below
this threshold, it results in apnea.

The model is implemented in MATLAB and has been
used extensively for this paper. The mathematical model
15 very close to what we see in real life and 1s further
enhanced to suit this paper. The Fi0, range can be easily
changed in the model and all the necessary information
can be easily plotted, the information of particular interest
was the FiO, range, the oxygen saturation SpO2 and the
pressure of oxygen in the blood. Figure 1 shows the
amplitude of SpO2 according to supply input FiO,. For
more accuracy for the output SpO2, Fig. 2 displays with
levels with time m 400 sec.

Neural network modeling: In order to study the output
and input and output of plant to get a model with
nonlinear method, the model of neural network was
selected 1n this problem. This permits for perception
of connection between the independent with
dependent variables (Dayhoff and Del.eo, 2001). The
model design includes the feed-forward network m two
layers with layer of neuron of a linear output and layer of
sigmoid hidden. The function of sigmoid was selected for
layer of the first hidden of the capability of nonlinearity
relationship between the output and mput of neuron. The
sigmoid fimction prevents the system from interpolate
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SpO2 (%)
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85 T T T T T T T 1
0 50 100 150 200 250 300 350 400
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Fig. 2: Output SpO2 from the linear system models when
supplying FiOQ, step input
A

Saturated

1

A

Fig. 3: Sigmoid function saturation

after any data that be trained. The inability to
extrapolation is resulted by affecting the saturation of the
sigmoid fumction that can be seen in Fig. 3 were any value
above 4 produce a value of 1 and any value below 4
produces a value of 0. The layer of second ludden was
selected to get a function in scaling in linear way that the
values to ranges of SpO2. Scaling the values the same
amount because any values is necessary to be new scaled
for one neuron that used in the layer of second hidden
with the same value. The mcorporation the layers of two
hidden to permits to estimate functions by neural network
that is given an educate figure out of neurons that be
seen in the layer of first hidden (Dayhoff and Del.eo,
2001). For the neural network, the inputs are HR, F10,, RR
and for each one can we take first demvative. The
dynamics properties is so comfortable for neural network
by calculation first time derivative for each one. The
structure of model will be shown n Fig. 4.

By Levenberg-Marquardt backpropagation, the model
was trained by using Anonymous (2005). This method
was selected for its capability to access the speeds of
traiming of second order training and don’t want to
calculate matrix by the Hessian method. Second-order
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Fig. 4: Neural network model

training speeds is important since it can be time
consuming and difficult to calculate the second-order
derivative. Because the format of square’s sum for
network, the matrix in the method will be estimated with:

H=1"J (19)

where, ] can be described as matrix of Jacobian and that
makes the errors of neurons 13 comfortable by the
first derivatives with respect to biases and weights.
The matrix of Jacobian can be calculated by
technicues of ackpropagation method. The gradient of the
network was computed as:

g= ]Te (20)

where, e 18 the network errors’ vector. By combination
Eq. 19 and 20 given as:

1Te
X, =X, —— 21
K+1 K JTJ‘HJI

where, u is value of the step size and I is the identity
matrix. To adjust between gradient descent and
Newtons’s methoed the step size 1s adjusted. For example,
when the value of p 1s large enough, Eq. 20 a gradient
descent method will be turns. But then, method of Newton
will be tums when the value of p is small. The main aim is
to attach value of small p due to the method of Newton
works faster. A small value of p 1s attained by decreasing
of values of u the error is declined every time. The
prediction of the simulated SpO2 with the actual SpO2
was discovered by using method emror of mean
squared. Mathematic model was estinated as late as
improving generalization stopped and this was completed
to inhibit the neurons to be overtraining. Generalization
recognized with perceiving when the value error of
mean squared method 1s increasng samples of the
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Fig. 5: Epoch = 1, learming rate = 0.005
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Fig. 6: Epoch = 10, learning rate = 0.0055
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Fig. 7: Epoch = 1, learming rate = 0.015

validation samples. By using Neural network modeling
algoritm with changing the values of learning rate and
mumber of Epoch we can get the best model at
Fig. 5-11.
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Fig. 9: Epoch = 100 with learning rate = 0.015
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Fig. 10: Block diagram of PI controller

Control with pi and pid controller: At present, the PI
controller 15 to the highest degree widely adopted in
industrial application because its simple structure and
easy to design. For all these benefits, the PT controller be
unsuccessful when the controlled object is highly
nonlinear and uncertain. PI controller will remove the
steady state error and oscillations resulting for on-off

Es(s)

> C(s)
R(s) +(§ i)E(S)I K, o’ 3-0 L
—}_ 1+sTo+ S g o2 (o) - M

A

A

Fig. 11: Block diagram of PID controller

controller and P controller, respectively. However, for
integral mode has an opposing effect on the stability and
speed of the response of the system. Thus, PI controller
will not change the speed of response. Tt can be expected
because PI controller does not have means to estimate
what will happen with the error in near future. This
problem can be solved by applying derivative mode which
has ability to estimate what will happen with the error in
near future and thus to drop a reaction time of the
controller. PI controllers are rarely used in mdustry,
especially when speed of the response 1s not the problem
of the system. A control without applying D mode is used
when 1. Speed response of the system is not required 2.
Large noise and disturbances are attend during operation
of the process 3. There is energy storage in process 4.
There are large transport response period will delay in the
system. Consequently, we would like to retain the benefits
of using a controller 15 like PI controller as shown in
Fig. 5. The output of controller 1s

u(t)= K, e(s)+K, je(t)dt

The block diagram of PI centroller 1s a compensation
scheme of integral error, the output response relies on
some way upon the actuating signal integral. The PI
controller is put using a controller that malkes the signal of
output including of two terms, the first one is proportional
to the integral signal and the other second one is
proportional to the signal of actuating. Such that the
controller 15 named proportional plus integral controller
(PD).

The controller of Proportional Integral Derivative
(PID) Controller as in Fig. 6. Most of controllers use to
optimize a particular control system. A mathematic scheme
of PID controller 1s most usual widely industry systems.
The algorithm of PID controller used for algorithm in
designing of speed. The dynamics of PID controller has
the essentially functions: error of suitable action inside
control to remove oscillations (P mode), raise control
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signal to make error towards zero (I mode) and
speed of reaction on alteration of the controller
input (D mode):

u(t) = er(t)+Klje(t)dt+Kdded—(tt)

The error signal put to the controller of combmation
of P.T and D. A proportional controller (K ) will have the
effect of decreasing the rise time, but never remove. The
control signal is proportional to the integral of error and
the integral gain If an integrator is added. Integral control
signal will have the effect of reduced the error in assential,
to zero value. Derivative control is used to estimate the
future behavior of the error signal by using corrective
actions based on the rate of change in the error signal.
The control signal 15 proportional to the derivative of
the error and K, is the derivative gain. Derivative
have the impact of raising the
stability of the system, decreasing the overshoot and
improving the transient response. The PID controller

control  will

produces a control loop respond faster with less
overshoot and most popular method of control by a great
margin.

RESULTS AND DISCUSSION

In the first time, we did a mathematical model for
arterial oxygen saturation in necnatal system to get the
output of SpO2 according to the input FiO, applying FiQ,
with a value of 20-30%, we got the response of SpO2
between 84-95% and this value is the actual value for
Oxygen saturation for neonatal infants as in Fig. 12-16. In
the case of Neural network modeling with changing the
values of epoch and learning. Neural network identifies
the real system with the best values of number of epoch
and learmng rate and the results we got the best value for
SpO2 as in Fig. 9. We used the controllers such as PT and
PID and comparing which one 1s the best for the system
to get the best response of mimimum steady state error,
unproving transient response and decreasing peak
overshoot. By using PT and PTD controller to get a good
response of SpO2 by tuning the values of K, K, and
K, Mathematic and Neural network model have the
same response of the system for any control as in
Fig. 17-22 and the best values of K, K and K, are 10, 0.15
and 1, respectively. We note when change the values of
K,, K, and K, the response of SpO2 are
approximately the same for mathematic model and neural
network model.
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CONCLUSION

Currently when infants are put on a respiratory
support device the nurses manually adjust the blend
valve to control the amount of F10, applied to the infants
based on the mfants SpO2. The infant may not receive
instant attention when the desaturation event occurs.
This can cause perilously low SpO2 levels which can
command to brain damage and even death. On the other
hand if the SpO2 level 13 high to mnfant 15 at danger
for Respiratory Distress Syndrome. The aim of this
paper is to design a controller that can control the
mfants SpO2 and reduce the time the mfant 1s outside of
the agreeable safe range of SpO2. The main topics in

this paper are the investigation of the biological
system, modeling and do controlling of the infant’s
SpO2.

The biology of infant’s system was examined to see
how the blood is did oxygenate and what measurable
parameters will permit insight into the SpO2 levels. It was
discovered to oxygenate the blood during the ventilation
mechanism, diffusion and aspirate. Two different
modeling methods were used to model the infants SpO2.
The first type was the updating models. This modeling
type was chosen for its ability to have a generalized model
of the SpO2 while allowing the model to be updated when
needed. The medels examined are a neural network and
mathematic model. The models were tested on two types
of simulated data sets. All of the models were able to
adequately estimate future values if the system had fixed
parameters. This 15 to be expected since the model 1s
linear. The neural network model were cable of adjusting
to the change in parameter and predict the future values
precisely. The mathematic model was selected to permit
the mathematic model to be better model a system with
variable parameters. The model was tested on the same
simulated data sets and was able to adequately model
both data sets. The two different controllers were selected
relied on the mathematic model and the predicted range of
gains and time constants. The controllers selected are a
linear quadratic regulator PI and PID controller. The
simulated data. All
controllers attempted to keep the SpO2 at a given set
point. The PI controller was the least affective at
controlling the SpO2 with changing the values of Kp and
Ki but the best response of SpO2 was time 250 sec at
minimum peak overshoot with zero steady state error. The
PID controller was the best controller than PI because it
made the response of the system fast and the SpO2 was

controllers were tested using

time 100 sec at miimum peak overshoot with zero steady
state error.

RECOMMENDATIONS

In future research, the performance of the mathematic
model could be increased. The performance could be
increased by introducing transport delay time into the
model. By introducing the transport delay time into the
system, the model would be less likely to produce
negative gains for the HR and RR. Another
improvement to the mathematic model would be to
decrease the caleulation time. The calculation time could
be decreased by trying different global optimization
methods.
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