Tournal of Engineering and Applied Sciences 14 (13): 4435-4441, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Integrity Checking of Several Program Codes

Abdullah Th. Abdalsatir and Ali . Abboud
Department of Computer Engineering, College of Engineering, University of Diyala,
Baqubah, Irag

Abstract: Integrity checking of software programs are becoming the most serious concern for industry and
academic nstitutions. The reason of this concern 1s the high interest of adversaries in altermg or modifying
software programs according to their interest. The best to counterfeit these harmful attitude toward tampering
software programs 1s to develop new mtegrity and authentication algorithms. Based on the earlier, we have
proposed and suggested a method to check several programs simultaneously. This method divides the original
software into several program codes and then compute integrity value of each program using one of selected
integrity algorithms in this research. After that these integrity values of program codes are combined together
to obtain single mtegrity value for all these program codes. Fimally, the program codes and the combmed
mtegrity value are encrypted using RSA public key cryptographic algorithm. The results analysis of tlus
proposed method proves its capability to provide robust integrity checking for several programs
simultaneously.

Key words: Integrity checking, multiple program codes, MAC and cryptographic hash functions, academic

institutions, authentication algoerithms, cryptographic algorithm

INTRODUCTION

Software systems become the main controller of
current mobile and ubiquitous computing devices in the
current era of internet revolution. The software is
embedded inside these apparatuses in the form of
operating systems, applications or other controlling tools
(Chen et al., 2002). Also, anyone of these software
systems are composed of several program codes that
executes different kind of tasks related to specific
application. The integrity checking of these program
codes is of utmost importance to the security and privacy
of the devices that embed these programs (Asokan et al.,
2018). The mtruders work hard to break the software
inside these devices in aim to modify it to their benefit for
example, to bypass security checks, monitor these
devices, steal credit card information, recording videos
and voices. Hence, modifying or tampering software
programs can result in devastating consequences on the
performance of embedded software mside device
(Cappaert and Preneel, 2010). Smart cards, mobile
phones, routers, television receivers, Point of Sale (POS),
Automatic Teller Machines (ATM) are few examples
of these devices that can be breached by attackers
(Cappaert and Preneel, 2010).

Viruses, worms, Trojan horses are examples of
malicious software that try to tamper original device
program codes in some either injecting themselves inside
device software by modifying it static program code

or changing the execution path of the software
(Kirovski et al, 200Z). These malicious programs
penetrate through the weakest point in the software
systems with aim finally, to control on all resources of the
device. To prevent such adversary activities, we need to
develop authentication, integrity and confidentiality
checking measures to deviate these threats away from our
device entirely (Chen et al., 2002). In this study, we will
focus on the integrity of several program codes only and
other 2 measures will be explored in other research
studies. The integrity of several program codes that
constitute the whole software of the computing device is
a challenging task, since, sometimes these codes are
distributed at different locations and integrated on the
device to obtain final software (Spinellis, 2000). Now a
days, the mobile phone software applications are available
in the Apple store and Google play and the user can
download any application easily and mstalled on his/her
device. However, the mtegrity of these applications 1s a
major concern for developers and users, since, attackers
can tamper these application at program code or execution
level (Graunke and Rozas, 2000). Hence, there is urgent
need to check the integrity of applications program codes
before install them on mobile phone devices. The topic
of integrity verification is considered currently one of
important 1ssues of mobile phone security.

Data integrity checking algorithms: The main the
task of data integrity algorithms is checking whether the

Corresponding Author: Abdullah Th. Abdalsatir, Department of Computer Engincering, College of Engineering,

University of Diyala, Baqubah, Traq

4435

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

I-bits

N

S
7

Message m (arbitrary length) 1

v

A4

h (m)

n-bits

Fig. 1: Hash function

(Message)

v

Block 1

oo
hhhhhb:

Fig. 2. Merkle-damgard construction of hash function
(Lindell and Katz, 2014)

Block2 | Block3 | Block4 | Block 5 Block 6

alteration happened on the data in the computing device.
Also, they venify the integrity of data transmitted through
computer networked communication channels and the
mternet. There are 3 types of data integrity algorithms as
explamed briefly below:

Hash functions: Hash functions are the mathematical
algorithms used to produce fixed length output for
arbitrary length software program codes as shown m the
Fig. 1. The characteristics of these algorithms (Stallings,
2006) are producing fixed short hash digest for arbitrarily
length message it is easy to compute integrity value it is
very difficult to find original data if the attacker have hash
value must be resistant to different kinds of attacks. Wide
pipe, sponge function and the Hash Iterated Framework
(HAIFA) are the 3 main categories of hash function
constructions. One example of these hash function
constructions is Merkle-Damgard construction as shown
in the Fig. 2 as Lindell and Katz (2014).

The hash functions should be at least resistant to the
preimage, second preimage and collision attacks. The
resistance to the preimage attack 1s achieved by making
the task of attacker very difficult to find (M) given h (M)
while the resistance to the second preimage attack is

| Message | Message |

I
|

MAC [Message MAC

algorithm A_ Key (K)=>| algorithm
MAC: Message Authentication If the same MAC is found: then
the message is authentic and

integrity checked
Else: something is not right

Key (K)—

Code

Fig. 3: Message Authentication Code (MAC) (Lindell
and Katz, 2014)

accomplished by making very hard to attacker to find h
(M2) = h (M1) if he has M2 and h (M2). Finally, the
resistance to the collision attack 1s achieved by making
hard to attacker to find 2 messages with the same hash
value (1.e., h (M1)=h (M2)).

Message Authentication Code (MAC): Venfying the
origin and integrity of messages (program codes) is the
responsibility of message authentication (MAC)
algorithms attacks (Lindell and Katz, 2014). The origin of
the message means the source that generates the
message, for example, the producer of the software
package while the mtegrity means that data does not
change and remained without any modifications. Hash
functions, block ciphers are the most popular ways to
obtain MAC values but they are need an encryption key
to do their process attacks (Stallings, 2006). Hence,
sometimes the MACs are called keyed-hashes because
there is key used in producing the final MAC as shown in
the Fig. 3 below attacks (Lindell and Katz, 2014).

The MAC 1s called commonly a tag and mostly used
in money transfer from financial nstitutions. Tt is also
attached to the end of message sent by user to the bank
to check the integrity and origin of this message and
comes from intended user without any change on it
through communication channel (Paar and Pelzl, 2009).
We can use also MAC for checking origin and integrity of
software program codes and HMAC is an example of most
used MAC algorithms for verifying software integrity and
ongin as shown below in the Fig. 4 (Paar and Pelzl, 2009).

Digital signatures: Digital signatures are the best
advancement i the cryptography and information
security. Tt can provide several security services,
simultaneously. Such of these services are
authentication integrity and non-repudiation as shown
in the Fig. 5. Tt is also very useful and candidate

4436

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

ipad

X,

b

v A4

h (S]x)

HMAC, (x)

Fig. 4: MAC based on hash function (HMAC) (Paar and Pelzl, 2009)
‘_3 Transmit
L
._ﬁl" *

g

Message M

Bob’s
private
key
=
- (4]
4 i g ;’ Y
Digital s Digital
signature signature
generation - verification

algorithm

Bob’ssignature

Fig. 5: Digital signature process (Stallings, 2006)

4437

algorithm

Alice

Bob’s
public
key

Return signature
valid or not valic

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

mechanism that can be used to check the integrity of
several program codes in the application software
(Stallings, 2006).

Digital signatures use public key cryptography
concepts to provide their security services to the users.
In public cryptography, public and private keys are the
2 mam keys to encrypt and decrypt data. A practical
example of sigmng and venfying electronic file 1s
illustrated in Fig. & (Lindell and Katz, 2014).

Signature verification
Message/Data

)

Hash function

Signature generation
Message/Data

Hash function

Message digest Message digest

| l

Private Signature Public i i
key ger%eration ey Sl'gf['l a;ltl_fe Yahdl'(()ir
. verification invali
—>Signature —p|

Fig. 6 An example of signing and verify processes in the
digital signatures (Lindell and Katz, 2014)

MATERIALS AND METHODS

Proposed integrity checking method: We have proposed
in this research a method to check the integrity of
software that consists of several program codes. In this
method, we have used the data integrity checking
algorithms mentioned in the last section. Also, public key
cryptography algorithms are used m our proposed
method to provide confidentiality to the hash values and
the architecture of this proposed method is shown in the
Fig. 7.

The above framework to check the mtegrity of several
program codes is designed based on the using RSA
public key cryptographic algorithm. We have noticed in
this method the original software 13 divided mto several
program codes numbered sequentially (1-N). In the
integrity values generation phase, the integrity value of
each program code is calculated using integrity function
(either hash function, MAC or digital signature). Then all
these integrity values are XORed together to obtain total
integrity value. RSA cryptographic algorithm is used to
encrypt the total integrity value (i.e., integrity value of all
program codes) by using public key. However, in the

p!j)lgrigm Encryption Encrypted
> \eorith »| program
code (1) agonthm code (1)
Public key
Integrity >
function (1) "
3
=
g
Plai El ted
Progrl:m »| Encryption > Pnrzgfl:; g AN
code (2) algorithm code (2) pé , (In;er%l;g nvlaclggeost; all
l g
o f
Public key Qo‘
Integrity » > .
function (2) - i?;:zﬁﬂ&n
T
1
1
1
! Public key
prI:)lgrl;lm Eneryption > Ep?f)rgyrzt;d
code (N) algorithm code (N)
v Public key
Integrity
function (N) I«

Fig. 7: Integrity checking of several program codes (Integrity values generation phase)

4438

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

Encrypted Decryption Plain
program [gorithm [—>| Program
code (1) code (1)
Private key Integrity
function >
O] g
g
Encrypted Decryption Plain E‘
program [—» . | program &
algorithm 2
code (2) code (2) £
t 3
- B
Private key Integrity ni
function > o
@) s
T
1
1
1 7y
Encrypted D i Plain
program afgc?rli]z}:;n —>{ program Yes
code (N) code (N) everything is
T Ok
Private key Integrity
function
N
v
Encrypted Decryption| | lintegrity value of all I ity value of all
(Integrity value of all > aloorith Are hashes equal? >« Integrity value of a
algorithm program codes d
program codes) T program codes
Private key

v

NO there is
tampering

Fig. 8 Integrity checking of several program codes (Verification Phase)

integrity checking phase as shown in the Fig. 8, RSA
cryptographic algorithm 1s used to decrypt the encrypted
program codes by utilizing private key. Then, the integrity
of each program code 1s calculated agam and all program
codes integrity values XORed together to obtain new
total integrity value. This new value i1s compared with
deciphered old total integrity value. If there is match
between 2 values, then we can assure that there is no
tampering or alteration happened on the program codes.
Otherwise, if mismatch i1s occurred between them, we
conclude that modification or alteration happened on the
program codes.

RESULTS AND DISCUSSION

We have C™ program that multiply 2 matrices as a
testing software. Tt is divided into 3 program codes as

shown below with aim to check their integrity. We
have done several tests on this software by using
several integrity checking algorithms.

Algorithm 1; Program code 1:

#include <iostrearmn>

using namespace std

int main ()

{
int a [10][10], b [10][10], mult [10][10], 11, ¢1,12, ¢2, L, j, k
count << “Enter rows and columns for first matrix
cinrl =>cl
count << “Enter rows and columns for first matrix™
cin=>12>>c2
HTE columns of first matrix in not equal to row of second matrix
/1 Ask the user to enter the size of matrix again
while (c1! =r2)
{

Count<< “BError! Column of first matrix not equal to row of second”

Count<< “Enter rows and colurmns for first matrix:”
cin >>rl=>> ¢l

4439

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

Count<=_ “Enter rows and columns for second matrix:” cin =>>r2=> for (j =0; j<c2; ++)

c2
}

/fStoring elermmts of first matrix
Count<<lendl<< “Enter elements of matrix 1. <<endl
for (1=0; i<rl; ++i)
for (j =0; j<cl; ++))
{
Count<< “BEnter elermnent a” << T+ <+
Cin=>=a [i] [j]

Algorithm 2; Program code 2:
//8toring elements of second matrix.
count <=_endl>> “Enter elements of m,atrix 2:” <<endl
for (i = 0; i<r2; ++I)
for (j =0; j<c2; +j)
{
count<’<. “Enter element b” <<[+l<<jtl<<*”
cin=>b [1] [j]
}

/Mnitializing elements of matrix mult to 0.
for (i=0; i<r2; ++i)

for (=0; j<c2; ++j)

{

Mult [I][j]=0

}
//Multiplying matrix a and b and storing in array mult
for (i = 0; i<rl; ++I)

for (k= 0; k<cl; +tk)

{
\ Mult [I][j]+ = afi][k]*b k][]

Algorithm 3; Program code 3:
/Displaying the multiplication of two matrix.
Count<<endl<< “Output matrix:” <<endl
for (i=0; i<rl; 1)
for G =0; j<c2; +j)
{
count=< “<=mult [I][j]
if (j==c2-1)
count<<endl

}

retum ()

}

Table 1-3 are presented to show the hash values of
several integrity algorithms for program codes 1-3,
respectively and the hash checksums in these tables are
in hexadecimal format. The lengths of these hashes are
1160, 256, 384, 512, 128, 128} bits for SHA-1, SHA-256,
SHA-384, SHA-512, MD2, MD5 algorithms, respectively.
However, Table 4 1s used to presented the total mtegrity
value that resulted from XOR of all program codes
integrity values.

Table 1: Integrity values of the program code 1 using several integrity algorithms

Integrity algorithm

Program code 1

SHA-1
SHA-256
SHA-384

SHA-512

MD2
MD3

ATFEBCCO93ED9C2C5F1563F7AB200B1B76B1F681B

27E279F055D460DYF 14F08906C893264019151828072727FA0S3DDA3 78BSE109
C86A28FAED2BD175982F3B39F10CA73EETBF9BASIBB0O1515EAD
93471E03366D50802771F15808AEA3FETF SFOEA41 2691
F4527FFES0MCD7F17AS3FB43FC23D92D 5664A54BADDB38BF7C63679ESFTOCAG96E
845A4237AAF6130D3DIACIACIAE3ISACBASSTOBCT121B7CT7081 CE303ADA27F
61469E75E980ECAE1266BABDACCACTST

1DCFESB4DBID63 2FED190070FC31433E

Table 2: Integrity values of the program code 2 using several integrity algorithms

Tntegrity algorithm

Program code 2

SHA-1
SHA-256
SHA-384

SHA-512

MD2
MD35

6434839F302A7010087C13EBS9DFD4F4484B51DE
5B3D31CE72CD79D3AS5TF159C25EEA8789DCOACA341 DC34EDC3697B33A94AAAFF
76D3C1E65SBAFSF062BEBB336625ABA4ECF20A4CAAS811739C
96FSEAACS988AFA3BOD7195DF2F0TES93900660TES03E30
47ED1646C3AC9455BOFOFCESDI 0FF 55CCOCOET0A2CICIDA

5654036761 A9F57C63738F4BEO2CEA12EMIEF C54E12BFBB

10712A34ED765F 3D6FEECFF211331F375

BDD466051D4075230134A9C01F03AC3F

51886366DEE7ECD37FCIF01C481 16BCA

Table 3: Integrity values of the program code 2 using several integrity algorithms

Integrity agorithm

Program code 3

SHA-1
SHA-256
SHA-384

SHA-512

MD2
MD3

443A75918B2B50395553E5329ECEF1 E61DESS4BE

ATFO60A997T3E6BFACI07TBFO9ED2 7TEBDDACS9SETOF9AB4131 787DCB31E6833A3
DDEBF2ZEE0DCDF913AC37Fo48FFE3BDBED0872C69C3760B4FBYEL 712DBBCSSEEO85A
84F8442DF18CB0442E6DEIACHADO
SCD266FSEFF379F62D32FE2EACD293D77ESBES9433301494934793AC3BF2CFD61AT6C
S99EAATTAH0CI4FO0DBSA0741153583FDB01CC235A8464C8C1 74F49FESF1
B117DFDB36C36488401A82EDB3ABSIDC

1A6E0A2CO085E6201CB768748E218A011

4440

J. Eng. Applied Sci., 14 (13): 4435-4441, 2019

Table 4: Total integrity values of all program codes using several integrity algorithms

Integrity algorithm

Total integrity value for 3 program codes

SHA-1 S8F4C8DEEATCAT19A3BB270A7582CC9935145E1DB

SHA-256 D229B6FBF26FDB0A496CC3F8TBT72C975B68 70AF5806C75416986E4214DA3F 785

SHA-384 651E259E80F61A2ZACH4A2069D27CF16C3C87887813DF177732BC6812977BC88B57
D4262888DYET41B522E2CFC3D4DD21

SHA-512 E604A135E9F8SFBAE3ADSF3886C471574C66DC225E62E107F923A38E522BEOB
FFDFDC3A271941EF616B5271EA424ED293ABSF33D8CB8D597371F7785DC26434B

MD2 682ACOF3549906E6D57B23D538100CB4

MD3 528F02EF5A72538E69CEDMDD96746885

CONCLUSION

Integrity checking of software programs is important
topic for industry and academic. In this research study,
we proposed a method to check integrity of several
program codes simmultaneously with aun to prevent
modification of these programs. We have used several
integrity algorithms in our tests including SHA-1,
SHA-256, SHA-384, SHA-512, MD2 and MD5. Also, RSA
public key cryptographic algorithm 13 used to provide
confidentiality to the program codes and the total
integrity value. The main conclusion from this study is
that one mtegrity algorithm not sufficient to provide
robust integrity checking for the software programs and
should be several algorithms with different characteristics
are used together to secure program codes.

ACKNOWLEDGEMENT

We would like to thank the College of Engineering in
the Umniversity of Diyala for supporting our research by
various types of help. Also, We thank our colleagues in
the department of computer engineering for providing all
necessary research equipment’s and tools.

REFERENCES

Asokan, N, I. Mantyla and R. Serafat, 2018. Method and
device for venfying the integrity of platform software
of an electronic device. USPTO. Washington, DC.,
USA. https:// patents. google.com /pat ent/TJ SOBE
11508 2/en

Cappaert, J. and B. Preneel, 2010. A general model for
hiding control flow. Proceedings of the ACM 10th
Annual International Workshop on Digital Rights
Management (DRM '10), October 4, 2010, ACM, New
York, USA., ISBN:978-1-4503-0091-9, pp: 35-42.

Chen, Y., R. Venkatesan, M. Cary, R. Pang and S.
Sinha et al., 2002. Oblivious hashing: A stealthy
software integrity verification primitive. Proceedings
of the 5th International Workshop on Information
Hiding (IH02), October 7-9, 2002, Springer,
Noordwijkerhout, The Netherlands, TSBN:978-3-
540-00421-9, pp: 400-414,

Graunke, G.L. and C .V. Rozas, 2000. Method and
apparatus for integrity verification, authentication
and secure linkage of software modules. Patent and
Trademark Office, Washington, DC., TUUSA. https:
/fpatents .goog le.com/ patent /US610 5137A/en

Kirovsky, D., M. Drinic and M. Potkonjak, 2002. Enabling
trusted software integrity. ACM. Sigplan Not., 37:
108-120.

Lindell, Y. and J. Katz, 2014. Introduction to Modern
Cryptography. 2nd Edn., CRC Press, Boca Raton,
Boca Raton, USA ., ISBN:9781466570269, Pages: 583.

Paar, C. and I. Pelzl, 2009. Understanding Cryptography:
A Textbook for Students and Practitioners. Springer,
New York, USA., ISBN:978-3-642-44649-8, Pages: 367,

Spinellis, D., 2000. Reflection as a mechanism for software
integrity verification. ACM. Trans. Inf. Syst. Sec., 3:
51-62.

Stallings, W., 2006. Cryptography and Network Security.
4th Edn., Prentice Hall, New Jersey, USA ., ISBN-13:
9780131873162, Pages: 680.

4441

	4435-4441 - Copy_Page_1
	4435-4441 - Copy_Page_2
	4435-4441 - Copy_Page_3
	4435-4441 - Copy_Page_4
	4435-4441 - Copy_Page_5
	4435-4441 - Copy_Page_6
	4435-4441 - Copy_Page_7

