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Abstract: This study mvestigates heat and mass transfer of Magnetohydrodynamic (MHD) pressure-driven
flow m a Darcy-Forchheimer porous medium with inclined uniform magnetic field and thermal radiation. The
governing equations of the model are reduced to a system of coupled non-linear ordinary differential equations
by applying a scaling group of transformations. The coupled differential equations are then solved using
Weighted Residual Method (WRM) with the results compared with that obtained from shooting technique
coupled with fourth order Runge-Kutta method. The obtained results are presented graphically to represent
the effect various fluid parameters on the dimensionless velocity, temperature, concentration and pressure drop.
Finally, the effects of Skin friction, Nusselt and Sherwood numbers which are of physical and engineering

interest are presented and discussed.
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INTRODUCTION

The study of MHD fluid flow induced by the
concwrrent actions of buoyancy forces follow-on from the
mass diffusion and thermal conductivity 1s gaimng
attention due to its interesting applications. The radiative
thermal physics of MHD problems with heat and mass
transfer through Darcy-Forchheimer permeable medium
are usually come across in the power engineering and
other pollutant, solidification and evaporation cooling,
grain storage are areas in which the combined
thermo-solutal in a permeable medium are experienced.

In few of its applications, Singh et @l. (2012) examimed
heat and mass transfer in MHD flow through a vertical
stretching swrface in the occurrence of heat generation.
Analysis of the MHD stagnation point fluid flow with the
effects of chemical reaction on heat and mass transfer
near a permeable stretching vertical sheet and mjection or
suction by Lie group was investigated by Afify and
Elgazery (2012). The result presents monotonically
decreased when the magnetic field parameter was
mcreased. Alam er al. (2003) reported on viscous
dissipative effect of MHD convective flow over an
inclined permeable stretching sheet and chemical reaction.
It was found that chemical reaction may significantly
mfluenced the concentration boundary layer and wall
mass transfer rate while Ahmed and Bhattacharyya (2014)
studied free convection chemical reaction in MHD couette

flow with heat source. The above researchers did not
consider the effects of pressure gradient, porosity and
radiation on the fluid flow.

The analysis of flow past porous medium has
received the attention of several researchers due to its
extensive applications 1 enhancing recovery of
petroleum, chemical engineering, etc. The thermal
diffusion and heat generation of heat and mass transfer in
MHD flwud flow through a vertical motiomng permeable
sheet and medium was examined by Saxena and Dubey
(2011) while Hunegnaw and Kishan (2014) examined heat
and mass transfer in a MHD flow along a moving surface
with chemical reaction, variable properties in a porous
medium and viscous dissipation. The cited researchers
did not consider the significant of non-Darcy porous
medium and radiation on the flow as well as the influence
of fluid parameters on the pressure.

In studies of heat and mass transfer, Ishak and Nazar
(2006) analyzed boundary layers of a permeable medium
over a vertical surface by applying Brinkman equation for
the porous medium model while Loganathan and Arasu
(2010) mvestigated thermophoresis influences on heat
and mass transfer in a MHD Darcy-Forchheimer
permeable medium in the occwrence injection/suction
over a porous wedge. [t was noticed that the flow velocity
decreased as the mertial termn increased, the behavior
was due to the fact that the inertia parameter
supports the resistance of the flow fluid mechanism. Also,
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Ahammad et al. (2013) examined heat and mass transfer
through a non-Darcy permeable medium in the presence
of magnetic field and (Hemalatha ef al., 2014) investigated
thermal dispersion with melting on Darcy-Forchheimer
porous medium in a hydromagnetic flow over a stretching
swface. Forchheimer extension for the flow equations in
steady state was considered.

Moreover, Lee et al. (2008) examined radiative heat
transfer past a porous sheet using Lie group. Tt was
obtained that the heat and velocity boundary layer
thicknesses increased by a rise in the radiation term,
variational increased mn the Prandtl number slow down
both the temperature and velocity in the boundary layer.
Velocity increased and temperature decreased when there
was an mereased in Grashof number and the porosity
parameter. Chauhan and Rastogi (2010) analyzed natural
convection effects on radiative MHD flow through a
vertical partially filled porous medium without giving
attention to the effect of mass diffusion and heat
generation 1n the studied. Dada and Adefolaju (2012)
reported on hydrodynamic flow fluid over a boundary
layer in a stretching sheet entrenched in a radiation and
non-Darcy permeable medium. It was found that an
mncrease 1n the Forchheimer mumnber reduced the velocity
profile. However, the study did not mcludes the effect of
pressure gradient, heat source and chemical reaction
rate on the flow while Kumar and Sivaraj (2012)
carried out analysis on viscoelastic fluid of MHD flow in
non-Darcy permeable medium along a motioning vertical
conduit.

Follow from the above studies, the researchers
neglected the mfluence of Darcy-Forchheimer permeable
medium inclined magnetic field and thermal radiation on a
thud flow as well as the effects of fluid parameters on the
pressure. The current study examine the combined
mfluences of mclined magnetic field, pressure drop,
thermal radiation and Darcy-Forchheimer porous medium
in a steady convective heat and mass transfer in a MHD
flow. The fluid flow is pressure-driven past a permeable
plate with inclined unmiform magnetic field.

MATERIALS AND METHODS

Formulation of the problem: Examimne heat and mass
transfer of MHD pressure-driven, steady, viscous, laminar
and incompressible fluid over a permeable stretching plate
in Darcy-Forchheimer medium and radiation under the
effect of inclined magnetic field and pressure gradient.
The fluid motion 1s mamtained by both pressure gradient
and gravity and the flow is assumed to be in the direction
of X and Y-axis normal to it. A uniform magnetic field B,
1s introduced at angle ¢ lymmg m the range O<¢ <1/2 in the

«Q
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Boundary layer * Ty

Fig. 1. Geometry of the problem

direction of the flow. The plate 13 mamtammed at the
temperature and species concentration T, C, and free
stream temperature and species concentration T., C.,
respectively. The equations goverming the steady
radiative heat and mass transfer of two-dimensional
magnetohydrodynamics pressure-driven fluid flow in
Darcy Forchheimer porous medium with inclined magnetic
field are as follows (Fig. 1):
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The corresponding initial and boundary conditions
are as follows:

4406



J. Eng. Applied Sci., 14 (13): 4405-4413, 2019

U=0,V=v_P=0T=T T, - T, )AX,
C=C_HC,-C_)BX at Y=0 (6)
U=0,T=T.,C=C_ as Y >

where, U, V., P, C and T are the velocity component in the
X direction, velocity component in the Y direction,
pressure, concentration of species m the fluid and
temperature of the fluid, respectively. A and B are
constants defined as A = B = 1/1, B; 1s the magnetic field
strength, ¢ 1s the angle of inclination of the magnet, v, 1s
the permeability of the porous surface such that v,>0
mndicates wall injection and v,,<0 indicates wall suction,
respectively. The physical quantities v, b, K¥, p, &, D, C,,
k, Qg and y are the fluid kinematics viscosity, Forchheimer
parameter of the medium, permeability of the porous
medium, density, electric conductivity of the fluid, mass
diffusion coefficient, specific heat at constant pressure,
thermal conductivity, internal heat generation or
absorption and chemical reaction coefficient, respectively.
g is the gravitational acceleration, B; and P. are the
thermal and concentration expansion coefficients,
respectively. g, and g, are the radiative heat flux in the X
and Y direction, respectively. Using Rosseland diffusion

approximation for radiation by Kareem et af. (2018):

4o, oT?

_ 4o, 1! (7)
= 38 aX and g+

38 9y

where, 0, and & are the Stefan-Boltzmann and the mean
absorption
temperature difference within the flow are sufficiently
small such that T* may be expressed as a linear function
of temperature, using Taylor series to expand T* about the
free stream T.. and neglecting higher order terms, this
gives the approximation:

coefficient, respectively. Assume the

T = 4T°T - 3T (&)
Using Eq. 8 ther, Eq. 7 can be express as:

09y _ _160,T. 0T, 94y _
ax 38 oxX? oY

160, T 9T (g
35 oy?

Introducing the following non-dimensional quantities:

X Y Ul vl PI*
X=—,y=—"—u=—V=—,p=—7,
1 1 Y Y pv (10)
0 c-c, . T-T,
c,-C. T,-T

Substituting (Eq. 9) and (Eq. 10) into Eq. 1-6, to obtain:

ou  ov

—+—=0 (11)
ox  dy
ug—uﬂfE:insinzaufa—p-s-
) (12)
[a—“ a—‘j} D.u-Fu'+G, 6+G.0
oxt Oy

U N K (13)
ady

90,00 [;hﬂ}m 15)
ox dy 810 v

The corresponding initial and boundary conditions
are follows:

u=0,v=-f_,p=0,0=x,06=x at y=20
u=0,0=0,0=0 as y o

(16)

where, the term P, = uC/k 1s the Prandtl, S¢ = v/D is the
Schmidt, H, =Bfon is the Hartmarm, G, = Pgf(T.-T./v")
is the thermal Grashof, G, = 'gp{C.-C./v*) is the solutal
Grashof, Q = I'Q,/uC, is the heat source, A = Py/v is the
D, = I¥K* is the Darcy
parameter, F, = la/K* 1s the Forchheimer mertia term, R =
4¢,T° /Bk is the Radiation heat transfer parameter and
f, = v, /v is the non-dimensional wall mass transfer

concentration parameter.

coefficient, respectively.

Introducing the stream function, u = /Ay, v = A/dx
continuity equation 1s
Eq. 12-16 becomes:

automatically satisfied and

2
A Oy oy Iy —HZin‘al v a—p+
Oy axdy  ox oy’ y | ox

17
A oy oy "
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Subject to the mitial and boundary conditions:

ﬂ aw =f,.,p=0,0=x,9=x at y=0
ow =0,0=0,0=0 a3 y —oc
ay
Introducing  siunplified form of  Lie-group
transformations  namely, the scaling group of

transformations to Eq. 17-21 which 1s equivalent to
determining the invariant solutions of these equations
under a continuous one-parameter group according
to Pramanik (2013). One of the methods 1s to search
for a transformation group from an elementary set of
one-parameter scaling group of transformations, given as
v
Vix =xe™t, y* = yem2 = yre™,

' =ue™, v =ve™ (22)

E

p* :pesocﬁ , e* — eesqu., q)* — q)e;cxg

where, o,-¢t; are transformation parameters of the group to
be determined later and € is a small parameters. The task
1s to find relationships among the exponents &’s such that
(Eq. 17-21) will remain invariant under the point
transformations. Substituting transformation (Eq. 22) into
Eq. 17-21 and applying mvariant conditions yields the
similarity transformations:

=y, =xf(n), p=p,(n), (23)
6=x8(n}, ¢ =x¢(n)

Substituting, the similarity variables (Eq. 23) into
Eq. 17-21. The following system of non-linear differential
equations are obtained:

£+ —(145, )f* - (Hisin’a D, ) 24
f+G,06+G,0=0

—p, = [+ (25)

(1+§R Je"+13,fe ~Pfe+P.QB=0 (26)

O +8 fy —SFP-SA0=0 (27)

The corresponding 1mmtial and boundary conditions
take the form:

f=f,=0,p,=0,0=1,¢0=1at n=0
f‘=0,9=0,¢=0 as T oo

(28)

Integrating, Eq. 27 with the imitial and boundary

conditions when f, = 1 let pressure drop -p; = G, this

become:
G=f+lg_ 1L (29)
2 2
Applying WRM to Eq. 26-29 by assuming a
polynomial of with unknown coefficients or parameters to

be determined later, this polynomial is called the trial
function:

f= Y, omy=3 b, o= Fen (G0

TImpose the boundary conditions (Eq. 28) on the trial
functions also substituting the trial functions into
Eq. 24, 26 and 27 to obtain the residual equations.
Minimizing the residual error by forcing it to zero at some
set of collocation pomts within the domain in order to
obtain the unknown coefficients using Maple 2016
software:

f{mn} = 1.000000000+1.352521223n° —
2.1367198181" +2.081355570n° —
1.4971724130° +0.825836718™" —
0.3501466456m +0.1122038542n° — 1)
0.026243576250" +0.004215585400m'° —
0.0004145534793n" +
0.00001876803320n"

9(1’]) =1.000000000 —0.5182224615n +
0.003827280553n° +0. 14837526250 —
0.1835687527n" +0.1537432440m° —
0.09560654002n° +0.04481892093n " —

4408



J. Eng. Applied Sci., 14 (13): 4405-4413, 2019

0.0156476587 In® +0.003938812348n° -
0.00067387008941"" +0.00006996577184n' — (32)
0.000003320194742n"

o(m) =1.000000000 - 1.181989422n+
0.52622688811° +0.090519042871° —
0.3607131506m" +0.3626303004n° —
0.2451914515n° +0.12205390071" — (33)
0.044726078331° +0.01171007571n° -
0.0020679782671'"+0.0002202548424n"" —
0.00001066883171n"*

Differentiate Eq. 31 to obtain:

f'(m) = 2.705042446m - 6.410159454n" +
8.325422280m" — 7.485862065m* +
4.955020312n° —2.451026519n" + (34)
0.8976308336m" —0.2361921862n° +
0.04215585400m° — 0.0045600882721'"" +
0.0002252163984n"!

Also, substituting for f and { in Eq. 29 with the
corresponding constant values to obtain the pressure
drop as:

G (h) =- 0.3000000000+2.705042446h -
6.410159454h* +8.325422280h" -
7.485862065h" +4.955020312h° -
2.451026519h" +0.8076308336h" -
0.2361921862h°+0.04215585400h” -

0.004560088272h"" +0.0002252163984h" +
1 . (35)
E(1.ooooooooo+1.357521223h -
2.136719818h*+2.081355570N* -
1.497172413h’ +0.8258367187h° -
0.3501466456h" +0.1122038542h° -
0.02624357625h° +0.004215585400h"" -

0.0004145534793n+0.00001876803320h*? )2

The physical quantity of practical interest are the
local skin friction C;, the Nusselt number N, and the local
Sherwood number Sh define as:

Com—o Nu=— WX gpo ¥ (36
i’ KT, T DC,-C)

where, k is the thermal conductivity of the fluid, t,, g, and
q,, are respectively given by:

du JT aC
) s -k - p & 3
TW “{ayl_uj e k(ay]y—U: o D(ayl'—ﬂ

Therefore, the local skin friction coefficient, local
Nusselt number and local Sherwood number are:

L \ L . L (3%
C;Re? =1 (0), NuRe? =-90(0), ShRe! =—0(0)
where, Re, = v,x/Vi s the Reynolds number. The process
of weighted residual method are repeated for different
values of G, G. H. o, Q. P, D.. R, F, S, and A. The
following computational results in the tables were
obtained and compared with Runge-Kuftta method
generated by maple software.

RESULTS AND DISCUSSION

In order to get clear insight of the physical problem,
numerical computations has been carried out using the
method of Weighted Residual for the representative
velocity field, pressure field, temperature field,
concentration field, coefficient of the skm friction, the
rates of heat and mass transfer m terms of Nusselt number
and Sherwood number, respectively at the plate have
been carried out for different values of the parameters.
The following default parameter values are adopted for
computation: G, =G, =5, Q=A=05R=F =D,=1,P, =
0.72,8,=0.62and M = 3 at H, = 6 and & = 30". All graphs,
therefore, correspond to these values unless specifically
indicated on the appropriate graph.

Figure 2 and 3 bring out clearly the effect of the
Hartmarm number H, on the velocity and pressure

0.8
0.7

0.6

H H,=2
054 ; e H,=6
H H=9

044

Values (')

Variables ()

Fig. 2: Velocity profiles for different values of H,
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Values (G)

Variables ()

Fig. 3: Pressure profiles for different values of H,

0.4

0.3 1

Values (f')
(=}
[§8]
1

Variables (n)

Fig. 4: Velocity profiles for different values o

boundary layer thickness, since, the magnetic field exerts
a retarding force on the free convection fluid flow.
Increasing H, decreases the velocity and pressure
boundary layer.

Figure 4 and 5 show the velocity and pressure
profiles for different angles of mclination of the magnetic
field o, an increase in the angle of inclination increases
the effect of the buoyancy force and consequently, the
driving force to the fluid flow decreases as a result,
velocity and pressure boundary layer  thickness
decreases.

Figure 6-9 show the effect of the porosity parameter
D, and mnertial parameter F; on the velocity and pressure
profiles. It was observed that the velocity and pressure

0.8 1

0.7 4

0.6 1

0.5 4

Values (G)
=]
'S
1

Variables (1)

Fig. 5: Pressure profiles for different values ¢

0.4 5

0.3+
)

g 024
S

0.1

0

0

;
Variables M)

Fig. 6: Velocity profiles for different values D,

decreases as the porosity and inertial parameter
increases. The reason for this behavior 1s that the wall of
the surface provides an additional resistance to the fluid
flow mechanism which causes the fluid to move at a
retarded rate.

Figure 10 and 11 depict the mfluence of different
values of the Prandtl number P, on the pressure and
temperature distribution. Tt is observed that an increase in
the ratio of momentum diffusivity to thermal diffusivity
results in the, respectively decrease in pressure and
temperature profiles. The reason for this behavior is that
an increase in the P, results in a decrease in the boundary
layer thickness and reduce the average temperature
within the boundary layer because smaller values of P, are
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Values (G)

(=]
[
w

Variables ()
Fig. 7: Pressure profiles for different values of D,

0.4 9
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[==}
2
L

0.1

0 T T |
0 1 2 3
Variables (1))

Fig. 8: Velocity profiles for different values of F,

equivalent to increasing in the thermal conductivities,
therefore, heat 15 able to diffuse away from the heated
plate than lugher values of P

The effect of Schmidt number S, on the pressure
and concentration profiles are represented on Fig. 12
and 13. Schmidt number is the ratio of the momentum
to the mass diffusivity. An increase m 3, causes
reductions in the pressure and concentration profiles
which are accompanied by simultanecus decrease in
the pressure and concentration boundary layers.
Schmidt number is therefore, quantifies the relative
effectiveness of momentum and mass transport by
diffusion in the hydrodynamic pressure and
concentration boundary layers. All these agrees with the
expectations.

0.97

0.8

0.71

0.6

0.5

0.4+

Values (G)

034 [

0 T T 1

0 1 2 3
Variables ()

Fig. 9: Pressure profiles for different values of F,
0.9
0.8
0.7
0.6
0.5

0.4

Values (G)

0.3

(=]
—_
(9]
w2

Variables (M)

Fig. 10: Pressure profiles for different values of P,

Table 1 depicts the effect of some physical
parameters on skin fricton, nusselt and Sherwood
number. It clearly shows that, the magnetic term H, and
angle of inclination ¢ have a retarding effect on the skin
friction, nusselt and Sherwood number, respectivly.
Increase m heat source increase skin fricion and
Sherwood number while it decreases the Nusselt number
because heat within the boundary layer reduces. Also,
number Prandtl number P, has decreasing effect on the
skin friction and Sherwood number but has an mereasing
effect on Nusselt number because of the thickness of the
thermal boundary layer. Moreover, skin friction and
nusselt have a decelerating effect on increasing Schmidt
number but an increasing effect on ncreasing Schmidt
number.
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Table 1: Effect of H,, ¢z, Q, P,, 8, on 1, Nu and 8h (PP-Physical Parameters)

Weighted Residual method Ath order R-K

rr Values T Nu Sh T Nu Sh

H, 2 4.05305 0.64028 1.31465 4.05634 0.64017 1.31431
6 2.70504 0.51822 1.18199 2.71947 0.51806 1.18134
9 2.00826 0.45420 1.10920 1.98953 0.45406 1.10844

o 30° 2.70504 0.51822 1.18199 2.71947 0.51807 1.18134
47 2.05511 0.45787 1.11345 2.02117 0.45772 1.11269
55° 1.86538 0.44189 1.09484 1.82722 044175 1.09408

Q 0.5 2.70504 0.51822 1.18199 2.71947 0.51806 1.18134
0.8 2.74628 0.42937 1.18688 2.74405 0.42923 1.18622
1.2 2.78445 0.29558 1.19442 2,79831 0.29547 1.19377

P, 0.3 2.75338 0.40518 1.19053 2.76763 0.40513 1.18987
0.72 2.70504 0.51822 1.18199 2.71947 0.51806 1.18134
1.35 2.63053 0.71094 1.16950 2.64527 0.71056 1.16886

S. 0.4 2.79921 0.52961 0.90598 2.79305 0.52945 0.90565
0.62 2.705042 0.518222 1.181989 2.71947 0.51806 1.18134
1.5 2472478 0.493724 2.173529 2.48940 0.49357 2.17044

1.0 5

Values ©)

Variables ()

Fig. 11: Temperature profiles for different values of P,
0.9
0.8
0.7
0.6
0.5+

0.4 1

Values (G)

0.3

Variables (1)

Fig. 12: Pressure profiles for different values of S,

Values (¢)

Variables (1))

Fig. 13: Concentration profiles for different values of S,
CONCLUSION

The non-dimensional of the formulated governing
equations are reduced to a couple ordinary differential
equations by using scaling group transformation. The
numerical solution are obtained using Weighted
Residual method. From the numerical results, it is
seen that, an imcrease in the values of Hartmamm,
of the magnetic field,
porosity perameter, inertial parameter, Prandtl or

Schmidt numbers is manifested as a decrease in the flow

degree of inclination

velocity, pressure, temperature and concentration
distribution.

The results of the study are interested because flows
past a permeable surface play an essential role in
applications of science and engineering, also in many

transport processes in nature.
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