Tournal of Engineering and Applied Sciences 14 (13): 4295-4302, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Petri Net Based Event Driven Programming

Bahaa Mohsen Zbeel
College of Fine Art, University of Babylon, Babil, Iraq

Abstract: The idea of this research is how to program event driven systems such as graphical user interfaces,
games which can be modeled with Petri nets, a graphical and mathematical modeling tool, using their incidence
matrices and a suggested program structure. Incidence matrix defines and analyzes completely the dynamic
behavior of Petri nets by some equations. In this way, a numerical method could achieve to adapt the program
behavior easily with benefits of using the analysis power of Petri nets. The suggested program structure
decomposes the overall program into 3 parts: the event handler’s library part, the dniver routine part and a
resource file part containing the mcidence matrix. In this manner the program reusability will increase and
sunplify the program adaptability process and shorten the program construction life time.

Key words: Models of computation, programming paradigms, reactive computation, reusable software,

decomposes, adaptability process

INTRODUCTION

A wide variety of application, from high performance
servers to enterprise applications to GUIs to embedded
systems, rely on an event based programming style. Event
driven programming implements a stylized programming
idiom where programs use non-blocking operations and
the programmer breaks the computation into fine grained
callbacks (or event handlers) that are each associated with
the completion of an T/O call {or event). This approach
permits the interleaving of many simultaneous logical
tasks with minimal overhead, under the control of an
application level cooperative scheduler. Each callback
executes some useful work and then either schedules
further callbacks, contingents upon later events or
mvokes a continuation which resumes the control flow
of its logical caller, the event-driven style has been
demonstrated to achieve high throughput in server
applications (Pai et al, 1999, Welsh et al, 2001),
resources-constrained embedded devices (Gay et al,
2003) and business applications (Fischer, 2008).

Unfortunately, programming with events comes at
cost event-driven programs are extremely difficult to
understand and maintain. Each logical umt of work
must be manually broken mto multiple callbacks
scattered throughout the program text. This manual
code decomposition is in conflict with higher level
program structuring. For example, calls do not return
directly to their callers, so, it 1s difficult to make use of
procedural abstraction as well as a structured exception
mechanism.

Threads represent an altemative programming model
commonly used to mterleave multiple flows of control.

Since, each thread mamtains 1ts own call stack,
standard program structuring may be naturally used,
unlike in the event-driven style. However, threads have
disadvantages as well mcluding the potential for race
conditions and dead-locks as well as high memory
consumption (Behren et al., 2003a, b). Within the system
research community, there is currently no agreement that
one approach 1s better than the other (Pai et af., 1999,
Behren et al., 2003a, b, Adya ef al., 2002). In addition in
some contexts, threads either cannot be used at all (such
as within some operating system kernels) or can only be
used in conjunction with events (such as thread-pooled
servers for Java servlets (Fischer, 2008). For more
information about event driven programming paradigm
(Salvaneschi et al., 2015).

In this study, a program structure 1s proposed
depend solely upon Petri nets to model the event driven
program by reinterpret the Petri nets components (places
and transitions) to accommodate the event driven
program paradigm.

The behavior of resultant program will be easier to be
maintained that is due to the use of incidence matrix of
Petri net which represents the Petri net-based program in
numerical fashion this 1 n contrast with the classical
imperative approach that uses an event handler after
examining a triggering event that is acquired from events
queue periodically using explicit instructions is much
simple. All what the programmer needs to change the
program behavior 1s to alter the incidence matrix entries
and modify the callback functions related to it to
accommodate any behavioral changes subjected to.

The proposed program structure 1solates the callback
functions from the main program (the driver routine) that

4295

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

call them when an event trigger and leave them in a
separate file that will called “the subroutine library”. Due
to this 1solation and due to nature of the state equation
(that uses the incidence matrix, control vector and marking
vector to automate the Petri net model based program)
which combines the expected events that may be occurred
with the callback subroutine related to it the resultant
program will be much easier to understand and more
readable and more flexible for adaptation.

Petri nets preliminaries: Petri nets are a well established
model of concurrent systems with a rich and strong, yet
still growing theory. Petri nets are intensively used in the
design, verification, analysis and prototyping of software
systems, control systems and hardware systems. Different
dialects or extensions of Petri nets serve m the different
design, timed and stochastic Petri nets for performance
evaluation (Badouel et al., 2015).

PN 1s defined as a bipartite weighted directed graph.
1t 1s composed of places, transitions, directed arcs and
tolens. Places represent the conditions and transitions
represent the events. Places and transitions are connected
by directed arcs. These arcs represent the flow of events
within the system. Tokens sinulate the system dynamics.
Places are used to specify the conditions whereas
transitions are utilized to represent the triggering of
events. Directed arcs comnect the places and transitions
together. It must be noted that same types of nodes
cannot be connected. Namely, 2 places or 2 transitions
cannot be connected together. Only different types of
nodes can be comnected (Baskocagll and Kurtulan,
2011).

Atany time of the evolution of a PN, places hold zero
or a positive number of tokens. The state of the system 1s
represented by this allocation of tokens over the places
and 1s called a marking. The definition of a PN mcludes
the specification of an initial marking which allocates a
number of tolens to each place. A transition is enabled if
its mput places contam at least the required numbers of
tokens (defined by the weight assigned to the arcs). The
firing of an enabled transition will then result in the
consumption of the tokens of its input places and the
production of a number of tokens in its output places (this
number 18 determined by the weights of the arcs going out
of the transition) (Fig. 1). This “token game” represents
the dynamical evolution of the system (Chaouiya,
2007).

A Petri Net (PN) 1s a construct N = (P, T, F, ,) where P
and T are disjoint finite sets of places and transitions,
respectively, F . (P=T)T %P) is the set of directed arcs, .:
(PxTH(T=P){0, 1, 2, ..,;} 18 a weight function where,
(x,y)="0forall x, y){(PxT JMTxP))»- F. A Petr1 net can

Fig. 1: A Petri net

(a)
2 H.O

H@\’ t 5 :
(b)
HO\ t H,0
‘ ———@e®
o
Fig. 2a): The marking before firing the enabled transition

t and b) The marking after firng t where t 1s
disabled

be represented by a bipartite directed graph with
the node set P.T where places are drawn as circles,
transitions as boxes and arcs as arrows with
non-negative integer labels. A Petri net N is called an
Ordmary Net (ON) if . (x, y) = 1 for all (x, y).F. We omit.
from the definition of an ordinary net. A mapping p: P.{0,
1, 2, ...,} is called a marking. For each place pP, p (p)
gives the mumber of tokens in p. x = {y|(y, x).F} and x' =
{v|(x, ¥)F} are called the sets of mput and output
elements of xP.T, respectvely (Dassow and Turaev,
2009).

Example: The well known chemical reaction: ZHA+O,-2HO.
Two tokens i each mput place in Fig. 2a show that 2
units of H and O, are available and the transition t is
enabled after firing t, the marking will change to the one
shown m Fig. 2b where the transition t 15 no longer
enabled (Murata, 1989).

4296

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

Tncidence matrix and state equation: The incidence matrix
of a directed graph G is a pxq matrix (a) where p and q are
the number of vertices and edges, respectively, such that
a. = -1 if the edge) leaves vertex v., (a) = 1 if the edge e
enters the vertex v, and 0 otherwise (Awasthi, 2014). Fora
Petri net N with n transitions and m places, the incidence
matrix A = (a) 18 an nxm matrix of mtegers and its typical
entry is given by:

a. —a’ -a; (1)

where, 2, = w (1, J) 13 the weight of the arc from transition
1 to 1ts output place j and & = w (j, 1) 13 the weight of the
arc to transition 1 from its input place j (Murata, 1989). In
Wwriting matrix equations, we write a marking M. as an mx1
column vector. The jth entry of M denotes the number of
tokens m place j immediately after the kth firing.

The kth firing or control vector u. is an nx1 column
vector of n-1 0’s and one nonzero entry, a 1 in the ith
position indicating that transition 1 fires at the kth firing.
Since, the ith row of the mecidence matrix A denoctes the
change of the marking as the result of firing transition i,
we can write the following state equation for a Petri net
(Murata, 1977):

M, =M, +ATu,, k=12, .. 2

For the Petr1 net shown i Fig. 2, the state Eq. 2 1s
illustrated below where the transition t, fires to result in
the marking M. = (3002) from M = (2010):

3 2 201 1
0 0 1 -1 0
= +
0 1 1 0 -1
2 0 0 2
MATERTALS AND METHODS

The suggested method steps are

Step 1: Reformulate the system description
statementsinto a Petri net such that each place mn it
represents a system state (wait, process, print, msert, skip,
etc.) and each transition represents an event that cause
system state changes (paper jam, certain character read,
deposit, stack overflow, temperature increase, end of file,
etc.).

Step 2: Initially, mark the place that corresponds to the
system start state that will call a start place with one
token and assign initially 1 as a weight to each arc in the
net.

Step 3: Change the start place initial marking and arc’s
weight until required net behavior is obtained.

Step 4: Extract the Petri net ncidence matrix and put the
matrix in separate file as program’s resource file.

Step 5: Initialize control column vector u. entries by 0 and
initialize the mmitial marking vector, M, such that the start
place initial marking is put in the start place position in the
marking vector and zero in the other positions.

Step 6: Assign to each place a subroutine that play the
role related to it (e.g., a subroutine “wait” m a
communication protocol software is assigned to a “wait”
place mn a Petri net-modeled communication protocol, a
subroutine “print” that manages the printing of document
pages on a printer assigned to a “printing” place in a Petri
net model that describes a text processing software and
so on and put them in a separate file as library.

Step 7: Save the addresses of subroutines constructed in
step 5 in a vector that will called Subroutine Address
Vector (SAV) in the same order of occurrence of their
corresponding places in the marking vector, M.

Step 8: Run the Petri net by reading an input (an event)
and assign 1 n the control vector position that represent
this event then applying 2. Here M. for the first time 1s the
initial marking, M..

Step 9: Run the subroutine assigned to the place that
increased m its tokens.

Step 10: Repeat step 8 and 9, respectively until normal
termination occur. The following diagram in Fig. 3 depicts
the overall program structure according to the above
steps.

Employing suggested method in games: Consider the
following Petri net in Fig. 4, representing the “tom and
jerry” game in which the cat “tom”™ is run after the mouse

Resource file contains incident matrix

@ =
2 P P a, .. 2,1 u, g
‘g > . . . - . . %
8 _g C A 5
2= v P P a, - a,, u, 5
2 e
=) =

M.=M, A u,

The driver routine (the state equation)

Fig. 3: The proposed program structure

4297

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

ps: mouse is escaping

t,: cat is near

t,: found food
P,: mouse is backing home

t,: mouse arrived at home

t,: cat is distant

p,: mouse is looking for food

Fig. 4: “The tom and jerry” Petri net model

“jerry” which carrying food home, here, computer play
the role of the mouse and the user is play the role of
the cat. The incidence matrix of Fig. 4 is the model can run
mathematically. The C' like pseudo code lists figures n
the following pages 1s the overall program skeleton which
consist of 4 parts present, respectively the initialization
routine part, the driver routine part, the subroutines
related to the Petri net places part and the user defined
event part algorithm 1 and 2.

Algorithm 1; The initialization subroutine pseudo code:

Int intialization_part()

{

/*

the mouse_character header file included the subroutines

which play the role of the places in the Petri net

These subroutines implemented as methods in a class

called “mouse_class”. Essential Petri net configuration
information such as the incidence matrix, the start

place number and number of tokens are found in

net_configration header file. */

#include<mouse character=

#include<net configration>

F#the following are the global data type and variables
declarations.*/

mouse class mo//mo short of “mouse object”

typedef void (*subroutine_address) (void)

typedef enum game_event {found food

mouse arrived at home

cat_is near, cat_is_distant}

vector<subroutine_address>SAV

f*store subroutine’s which play the role of

the Petri net places found in included libraries

addresses into subroutine address vector:*/

SAV .pushback(&mo.mouse is looking for food())

SAV .pushback(&mo.mouse_is_backinghome())

SAV .pushback(&mo.mouse_is_escaping())

/# extract control vector length and define it

Control vector length =no_of rows (Incidence matrix)

Vector <int> control_vector (Control vector length)

/fextract marking vector length, define and initialize it

Marking vector length =no_of colmuns (Incidence matrix)

Vector <int> marking (Marking vector length, 0)

/* intialize the start place using “number of tokens”
found in net_configration header file.*/

Marking [1] = number_of tokens

{/determine the start place numerically as 1

Marked place=1

/mow call the start place subroutine: mouse is looking for food
SAV [marked place] ()

Return 0

}

Algorithm 2; The driver routine pseudo code called when

an event raise:

Int the driver_routine (game_event event)

{

/* “Another_event_occures” is a boolean type
property defined in the “mouse class™ used

to stop/start current subroutine:*/

{/stop current subroutine

Mo. Another event occures = true

/* initialize control vector with respect to the
Event triggered and current maraked place
The expression will type casting to the integer
data type.®/

control vector (1) = (Marking [1] == 1y*{(event = = found food)
control_vector (2) = (marking [2] ==1)*

(event = =mouse arrived at home)
control_vector (3) = (Marking [1] == 1)*(event == cat_is_near)
control vector (4) = (Marking [3] == L)*(event == cat_is distant)
/*calculate the new marked place using the stEq function that

perform the state equation™/
marked_place = stEq (marking, control_vector, incidence matrix)
{fto start running the new subroutine
Mo. Another_event occures = false
{fcall the new marked place subroutine
SAV [marked place] ()
Return 0
}

The following Fig. 3 contain the subroutines pseudo
codes, found as methods in mouse class which play the
role of Petri net model of Fig. 4.

Algorithm 3; “Mouse is looking for food” subroutine

pseudo code:
Voidmouse is looking for food(void)

While! { Another_event_occures)

{

/‘*

Place here the detailed code needed to implement
this subroutine. In addition, check the expected
events which maybe raise during running this
subroutine. The following two lines contain the two
events which may be trigeered in this subroutine
*/
on_found food{event)
on_ cat_is_near(event)

}

}

Algorithm 4; “Mouse is backinghome” subroutine

pseudo code:
Void mouse_is_backinghome(void)

While !{ Another_event_occures)

{

/‘*

Place here the detailed code needed to implement this
Subroutine. and check the expected events which maybe

4298

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

Raise during running this subroutine

The following line contains the event which may be
triggered in this subroutine

*f

on mouse arrived at home (event)

)

}

Algorithm 5; “Mouse is escaping” subroutine pseudo

code:
Void mouse_is_escaping(void)

While !(Another event occures)

{

/*

Place here the detailed code needed to implement
this subroutine and check the expected events
which maybe raise during running this subroutine
The following line contain the event which may be
triggered in this subroutine

f

on_ cat_is_distant (event)

)

}

The events in pseudo codes found in algorithm 3-5
are user defined events defined in the “mouse-class”
class. These events may be built on predefined events
(such as change, paint or mouse movement events) of the
container object of the game (main window layout of the
game or its frame) and/or its child objects such as picture
box or any other object. The general structure of these
user defined events 1s m algorithm 6.

Algorithm 6; The user defined event general pseudo

code:
Void event_name ¢) {(game_event and event)
{/*Place here the detailed code needed to check if the
necessary conditions are hold. If so assign to the
“event” variable a proper event value (food _is_near,
cat_is near, mouse_arrived_at_home or cat_is_distant
). For example, in the event on_cat_is near, the event
receive a boolean value “cat _is approch” from the
picture box (that contains the mouse picture) event
“mouse movement”. Note, “mouse cursor here repre-
sents the cat”. ™/}

Where “event-name” could be on-found-food, on
mouse arrived at home, on cat 1s near or on cat 1s distant.
The use of user defined events guarantees a level,
respectively. The function “stEqQ” retun the marked
place mdex that contains number of tokens more than
what was containing after applying (2). This index
obtained by save the marking vector before calculating
the state equation and during calculating the state
equation applies the following expression for each of
marking vector element: marked placed = marked
place+((old marking [index]-marking [T])>0)*index). The

p3: mouse is escaping

t,: cat is distant t,: car is near t,: cat is distant

2 p,: mouse is backing
- H . home
p: mouse is looking t,: mouse arrived at home

for food

Fig. 5: “The updated tom and jerry” Petri net model

sub expression (old-marking [index]-marking [i])>0) is a
boolean expression returns 1 if evaluated as true, O
otherwise. Tn this way, the “marked-place” variable which
mitialized to zero before calculating the state equation,
always saves the index place with this property. The
determination of marked place m this manner s useful
when more than one place is marked after calculating a
state equation as in the situation that will discuss in
Fig. 5.

RESULTS AND DISCUSSION

The suggested method advantages are: The suggested
method closes the gap between Petr1 nets based software
modeling and code based on it by using the interpretation
for places and transitions demonstrated m suggested
method steps and by using the state equation as
automation mechanism.

Ease of adaptability: The suggested method simplify
the adaptation of the behavior of the resulted program
without extra data structure and with few code
changes. To understand how the suggested method will
ease the program adaptability, consider the following
situation: since, there are transitions connecting the
place (mouse 1s looking for food) and the place
(mouse is escaping), the mouse during its looking for
food will always escape from the cat when it approaches.
That will not occur if the marked place is (mouse is
backing home), review the algorithm 1. In such situation
the mouse retumn to its nest carelessly, no moving to the
{mouse 1s escaping) place from (mouse 13 backing home)
place. Suppose that the mouse also needs to escape from
the cat when it 1s backing home. The Petr1 net model in
Fig. 4 can be updated to the following model depicted in
Fig. 5.

4299

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

Algorithm 7; Updated tom and jerry Petri net control

vector assignment:

Control vector [1]= (Marking [1] == 2)* (event== found _food)
Control wvector [2] = (Marking [2] = = 2)* (event = =
mouse_arrived at home)

Control vector [3] = (Marking [1]== 2)* (event == cat_is near)
Control vector [4]= (Marking [3]==1)* (Marking [1]== 1) && (event
==cat is distant)

Control vector [5] = (Marking [2] == 2)* (event== cay_is near
Control vector [6] = (Marking [3] ==1)* (Marking [2] == 1) && (event
==cat is distant)

The transition (cat 1s near) m Fig. 5 which connect the
place (mouse is backing home) with the place (mouse is
escaping) is the solution for the above situation. But the
problem is how can the mouse return to the last state was
in before runming away which may be “mouse 1s looking
for food” or “mouse is backing home” place?. To solve
this problem the Petri net model of Fig. 5 keeps one token
either in “mouse is looking for food” or in “mouse 1s
backing home” places after firing the “cat 1s near” t or t
transition. So, the right “cat is distant” transition t or t.
will be enabled to firing depending on which of the 2
places “mouse 13 looking for food” or “mouse 1s backing
home” 15 marked, therefore, the mouse will return to the
last state was in it before escaping from the cat. The
incidence matrix of Petri net in Fig. 5 is:

2 2
2 -2
-1
-1
0 -1 1
L 1 _1_
According to model of Fig. 5, the main

change to the program will be 1 changing the start place
mitial marking by assigning 2 to the “number of tokens”
constant found 1n net configration header file, 2 changing
the control vector initialization in the driver routine with
respect to the newly added events initial marking
distribution and current marked place as in Fig. 6.

Context sensitive languages

Petri net languages
(Petri nets based event driven programming)

Regular languages
(Automata based programming)

Fig. 6. Petri net based event driven programming vs.
automata based programming

The incidence matrix that govern the behavior of the
program can be constructed automatically using learning
based computational structure such as neural nets with
supervised learmng (here mnput to the neural net is the
events and the desired output are the subroutines to be
run related to these events) or evolutionary algorithms
such as Genetic algorithm (the wmtial population is number
of mcidence matrices ther entries contain random
values).

The suggested suitable for
programming using visual programming technique that
offers predefined events for a set of reusable objects
{components) and offers the ability of constructing a user
defined events for a user defined objects.

According to Chomsky Hierarchy, the suggested
method that use Petri nets as a main theory for
programming can be used to code tasks that cannot be
coded in automata based programming which is use a
finite states automata as a theory for programming. This
15 due to the fact that fimte state machine can recognize
just regular languages (the set of all events strings that
describe the behavior of the task to be coded) which is a
subset of Petri net languages which in turn subset of
context sensitive languages. It has been shown that all
Petri net languages are context sensitive languages
(Peterson, 1981). Figure 13 is depicts this advantage.

In comparison with other approaches based on other
computational models such as fimte state automata, the
adaptation of Petri net based event driven program needs
lower change requirements as seen above. In contrast, the
adaptation for the automata based program version of the
“tom and jerry” game that equivalent to the model
depicted in Fig. 4 to behave like the model in Fig. 5 require
use of “the stack™ data structure (this 18 mean using
push-down automata) to realize the change needed with
all the programming overhead of using this data structure
from its programming requirements viewpoint (the
subroutines needed to manipulate it such as push
item m it, pop item from 1t, overflow checking, underflow
checking and memory management related to it). By
Peterson (1981) shows that the size of the state space of
a push-down automaton, speaking a context free (type 2)
language, grows exponentially with the length of the input
string. However, the state space of a Petr1 net grows only
combinatorially with the length of the input string. Clearly,
the larger state space of the push-down automata allows
them to represent languages that cannot be represented
by Petri net. However, at any given time, a push-down
automaton has access only to the current input and the
top element of the stack. A Petri net, on the other hand
with its comparatively complex mterconnections between
places and transitions has access to a large number of

method 1s

4300

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

counters at any given time this allows the Petri net to
represent languages that cannot be represented by a
push-down automaton, despite the smaller state space
size.

The resulted Petri net based program model has a
wide spectrum of properties that can be studied using
Petri net theory such as reachability, boundedness,
liveness, reversibility and home state, coverability,
persistence, synchronic distance, fairness and completely
controllable besides number of analysis methods such as
coverability tree method, matrix equation approach and
reduction or decomposition techniques. All of them, from
software engineering viewpoint can be used as a formal
method for program design and analysis algorithm 8.

Theoretically, Petri net languages are a context
sensitive languages. If Petri nets used to model programs
it could be described as context sensitive grammars for
generating context sensitive languages which represent
the behavior of the modeled programs where termimals
symbols represent (events and subroutines names) and
non terminals symbols represent (program states). For
example, the following grammar describes the program
behavior derived from updated “tom and jerry” Petri net
model:

S—eab ‘e c E‘ e

ecE—ecgd?S
B—>fbS[fcE[f
fecE—-fcgdB
E—g

Algorithm 8; Behaviour derived from updated “tom and
jerry” Petri net model:

Where:
S =*Mouse is looking for food state” is the start
symbol
% ={ a="found found event”
b ="mouse arrived at home
event”
c="cat is near event”
d="cat is distant event”
e ="mouse is looking_for Food ()
subroutine”
f="mouse is backing_home () sub
routine”
g ="“mouse is escaping ()
subroutine”
1} is a finite set of terminals
V = { B ="mouse is backing home state”
E =*“mouse is escaping state”
lis a finite set of non terminals

The gain here is the software engineer can analyze
the Petr1 net based program model using formal language
theory and can answer some important questions such as
(is certain string of events that lead to critical state belong

to the language that describes program behavior?) this
question is called the membership problem and this is
very useful in the situations such as when programs
control a system in environment where people life or any
valuable entity must be protected or checked. Another
application of formal theory for Petri net based programs
occurs when the software engineer want to optimize the
current Petr1 net based program model by deciding if
another Petri net model represent the required program
with less places or arcs is equivalent to the current one by
comparing their formal languages (the set of strings
generated by all finng sequences) if these 2 languages are
equal then the new Petri net model is more optimal than
the current one.

CONCLUSION

From software engineering viewpoint, the incidence
matrix can be viewed as software Control Specification
(CSPEC) which can be used as program behavior map
enables the software engineer to adapt the program
behavior easily. This will minimize the software adaptation
cost and mncrease the whole software reusability by reuse
all or part of ncidence matrix which represents the Petr1
net model based program for applications with similar
behavior, for example, we can reuse the incidence matrix
of “tom and jerry” game illustrated above to build a
military game that contains 2 players where the mouse
player is replaced with a reconnaissance plane explores
(the mouse is looking for food in tom and jerry game) the
back lines of the enemy forces and then returns to the
base (mouse 1s backing home in tom and jerry game) of its
launch and the role of the cat is replaced with fighter jet
defense chasing the reconnaissance aircraft.

Because the software user initially knows only the
overall required software behavior, a set of externally
observable software running mode which called states
and the state is the main component of Petri nets, then the
software engineer can use Petri net as an 1imtial software
design denived easily from the user requirement statement
and after careful reviewing with the user the software
engineer can obtain a high level software design which
can be stepwise refined in a top down fashion, to obtain
a detailed Petr1 net model for the required software which
can converted to source code, of course after completing
other analysis and design aspects, according to the
suggested method. In this way, a speeding up can be
obtained by merging the behavioral analysis and
modeling phases in 1 phase and the procedural
abstraction, due to the use of the stepwise refinement
mentioned here mn event driven programming can
achieved easily.

4301

J. Eng. Applied Sci., 14 (13): 4295-4302, 2019

SUGGESTIONS

A major weakness of Petri net is the complexity
problem, 1.e., Petri net based models tend to become too
large for analysis even for a modest size system (Murata,
1989). A layered design approach 1s suggested to
overcome this problem by using hierarchal Petri net model
in which each state is a subsystem or a subprogram that
can be reformulated and programming using the
suggested method and continue n this mammer in top
down fashion. This 1s accomplishing by merging in one
place each place related to same object (such as printer
ready, paper jam and printer is busy places in a word
processing software model that belong to the printer
object) or occurs successively frequently (such as
mouse 1s looking for foed and mouse 1s backing home
places mn “tom and jerry” game modeled mn Fig. 5 and
expand 1t m the next layer. In tlis way, the
complexity problem is controlled by keeping only the main
places (states) that describe the overall current layer,
therefore, the analysis of the model at each layer will be
simplified.

RECOMMENDATIONS

Future research will focus on finding the more
reasonable software process paradigm for employing the
suggested method m a way that guarantee creating a
timely, lugh quality software.

ACKNOWLEDGEMENT

T would like to extend my thanks to all researchers
that I have adopted their research studies or dissertation
as sources for this study for their contributions in
supporting the scientific movement. T would like also to
thank particularly both Prof. Jurgen Dassow and Taishin
Yasunobu Nishida for answering my questions about
Petri nets languages.

REFERENCES

Adya, A., I. Howell, M. Theimer, W.J. Bolosky and J.R.
Douceur, 2002. Cooperative task management
without manual stack management. Proceedings of
the Amual International Conference on General
Track of the USENIX Annua Technical, June 10-15,
2002, USENIX Association Berkeley, Califorma,
USA., ISBN:1-880446-00-6, pp: 289-302.

Awasthi, V.V., 2014, A note on the computation of
incidence matrices of simplicial complexes. Intl. T.
Pure Appl. Math., 90: 433-438.

Badouel, E., L. Bernardinello and P. Darondeau, 2015.
Petr1 Net Synthesis. Springer, Berlin, Germany,
ISBN:978-3-662-47966-7, Pages: 339.

Baskocagll, C. and S. Kurtulan, 2011. Generalized state
equation for Petri nets. Wseas Trans. Syst., 10:
295-305,

Behren, IR V., I. Conditand and E.A. Brewer, 2003a. Why
events are a bad 1dea (for igh-concurrency servers).
Proceedings of the Sth International Conference on
Hot Topics in Operating Systems HOTOS'03 Vol. 9,
May 18-21, 2003, USENIX Association Berkeley,
California, USA., pp: 19-24.

Behren, R.V., I. Condit, F. Zhou, G.C. Neculaand and E.
Brewer, 2003b. Capriceio: Scalable threads for internet
services. Proceedings of the ACM International
Conference on SIGOPS Operating Systems Review
Vol. 37, October 19-22, 2003, ACM, New York, USA.,
ISBN:1-58113-757-5, pp: 268-281.

Chaouiya, C., 2007. Petri net modelling of biological
networks. Briefings Bioinf., 8: 210-219.

Dassow, J. and S. Turaev, 2009. Petri net controlled
grammars: The case of special Petri nets. J. Univ.
Comput. Sci., 15: 2808-2835.

Fischer, TM., 2008. Robust Service Composition.
University of Califormia, Los Angeles, California,
Pages: 261.

Gay, D., P. Levis, RV. Belwen, M. Welsh and
E. Brewer et al., 2003. The nesC language: A holistic
approach to networl embedded systems. Proceeding
of the 2003 ACM International Conference on
Programming Language Design and Implementation
(PLDI), June 9-11, 2003, ACM, San Diego, Califorma,
USA., pp: 1-11.

Murata, T., 1977. State equation, controllability and
maximal matchings of Petrinets. IEEE. Trans. Autom.
Control, 22: 412-416.

Murata, T., 1989. Petri nets: Properties, analysis and
applications. Proc. IEEE., 77: 541-580.

Pai, V.S, P. Druscheland and W. Zwaenepoel, 1999. Flash:
An efficient and portable web server. Proceedings of
the TUSENTX Annual Conference on Technical
General Track, Tune 6-11, 1999, USENTX, Monterey,
California, USA., pp: 199-212.

Peterson, J.L., 1981. Petr1 Net Theory and the Modeling of
Systems. Prentice-Hall, Upper Saddle River, New
Tersey, USA ., ISBN:9780136619833, Pages: 290.

Salvaneschi, G., A. Margaraand and G. Tamburrelli, 2015.
Reactive programming: A walkthrough. Proceedings
of the 2015 IEEE/ACM 37th Intemational Conference
on Software Engineering (ICSE’15) Vol. 2, May 16-24,
2015, IEEE, Florence, Italy, ISBN:978-1-4799-1934-5,
pp: 953-954.

Welsh, M., D. Cullerand and E. Brewer, 2001. SEDA: An
architecture for well-conditioned, scalable internet
services. Proceedings of the ACM International
Conference on SIGOPS Operating Systems Review
Vol. 35, October 21-24, 2001, ACM, New York, USA.,
ISBN:1-58113-389-8, pp: 230-243.

4302

	4295-4302 - Copy_Page_1
	4295-4302 - Copy_Page_2
	4295-4302 - Copy_Page_3
	4295-4302 - Copy_Page_4
	4295-4302 - Copy_Page_5
	4295-4302 - Copy_Page_6
	4295-4302 - Copy_Page_7
	4295-4302 - Copy_Page_8

