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Abstract: In this study, we solved the forced Korteweg-de Vries-Burgers (FKdVB) with variable coefficient
arises in nonlinear wave propagation in an elastic tube with a symmetrical stenosis filled with varible viscocity
thud by two numerical methods, namely method of lines and fimte-difference method. We then compared both
numerical solutions with its progressive wave solution. Both methods solve the FKdVB equation with maximum

absolute errors of 107
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INTRODUCTION

A weakly nonlmear wave propagaton m a
prestressed fluid-filled stenosed elastic tube filled with a
Newtoman fluid with variable viscosity fluid was studied
by Gaik and Demiray (2008) by applymng the reductive
per-turbation method m long wave approximation. By
using the stretched coordmate of boundary-value type
and extending the field quantities mto the asymptotic
series of order & where £ 13 a small parameter, the
governing equations were reduced to the forced
Korteweg-de Vries-Burgers (FkdVB) equation with
varia-ble coefficients:
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Where:
U = The radial displacement
E = A temporal variable

T = A spatial variable

My, Mg Ma My (1) and p(t) are the coefficients of
nonlinearity, dissipation, dispersion, variable coefficient
and forcing term, respectively. The presence of forcing
term and variable coefficient term, p, (v JU, show the
presence of ste-nosis. The dissipative term -p,Uy in the
FKdVB equation is caused by the effect of variable
viscosity fluid. The coefficients of p,, py, s Wy (T ) and
u(t) were defined by Gaik and Demiray (2008) as:
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=1948, he=4,=16,v=1,c=15391,m=0.1,G{1)=0
and g(t) = sech (0.011). Here, o refers to material constant,
Mg 1s the 1nitial circumferential stretch ratio, A, 1s the
initial axial stretch ratio, v is kinematic viscosity, m is mass
of artery, ¢ 1s the scale parameter and g (1) 1s the stenosis
function.

Note that when p, = 0, Eq. 1 becomes Forced
Korteweg-de Vries (FKdV) equation arises in nonlinear
wave propagation in a prestressed fluid-filled stenosed
elastic tube filled with an invis-cid fluid derived by Gaik
(2006):
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The FKdV Eq. 4 was solved numerically by using
method of line and pseudospectral method (Tay ef al.,
2017a, b). When p,(t) = 0 and u(t) = 0, Eq. 1 reduces
to the standard Korteweg-de Vnes-Burgers (KdVB) Eq. 5:

2 3
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The KdVB Eq. 5 describes shallow water waves on
viscous fluid (Johnson, 1972) and wave propagation in
elastic tube filled with a viscous fluid (Antar and Demiray,
1999). Notes that when u, = 0, Eq. 5 reduces to the
standard Korteweg-de Vries (KdV) Eq. 6:

3
N My U (6)

ot 1y % My aéj -

The KdV Eq. 6 was first introduced by Korteweg and
Vries (De Vries and Korteweg, 1895) to describe the
evolution of long, one-dimensional shallow water waves
with small but finite amplitude. Zabusky and Kruskal
(1965) discovered the concept of the solitons whle
studying the results of a numerical computation on the
KdV equation. Since, then, the KdV equation has been
found to describe many physical phenomena, including
long internal waves in ocean, magneto hydrodynamics
waves 1n warm plasma, lon acoustic waves i a plasma,
acoustic waves on a crystal lattice (Ozis and Ozer , 2006)
and wave propagation in an elastic tube filled with an
inviscid fluid (Demiray, 2001):
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The Burgers Hq. 7 is a non-linear partial-differential
equation which has a balance between the effects of
nonlinearity and dissipation. It is a model for the traffic
flow, twbulence, gas dy-namics, shock wave theory
(Burger, 1948) and many other physical problems. Many
studies have been devoted to the numerical solutions of
the KdV Eq. 6, Burgers Eq. 7 and KdVB Eq. 5, however,
none of the literature works dealt with numerical solutions
of the FKAVB Eq. 1.

Motivated with the works of wave propagation which
yielded the FKAVB Eq. 1 as well as numerical methods
(Tay et al., 2017a, b, Tay et al., 2018), we are going to find
numerical solution of the FkdVB by two numerical
methods, namely Method of Lines (MOL) and finite-
method. The

FKAVB Eq. 1 is then compared in terms of its maximum

difference numerical solution of the
absolute error at certain space T with progressive wave

solution conducted by Gaik and Dimroy (2008).
MATERIALS AND METHODS

The MOL: The MOL 1s a powerful method used to solve
Partial Differential Equations (PDEs). By replacing the
spatial derivatives using finite-difference approximation,
the PDEs will be reduced into time dependent system
of ODEs. These system of ODEs can be solved by
using techniques of solving mitial value problem of
ODEs such as the fourth-order Runge-Kutta (RK4)
method.

MOL has been widely used to solve the nonlinear
evolution equa-tions such as Korteweg-de Vries (KdV)
equation (Schiesser, 1994), extended nonlinear KdV
fifth-order
Kaup-Kupershmidt equation and an extended fifth-order
Korteweg-de Vries (KdV5) equation (Saucez et al., 2004),
delay differential equations (Koto, 2004), two-dimensional
sine-Gordon equation (Bratsos, 2007), the Nwogu
Boussinesq

equatior, good Boussinesq equation,

one-dimensional  extended
(Hamdi et al., 2005).

In this study, the temporal derivatives £ in Eq. 1 were

equation

firstly discre-tized using central finite difference formulae
as follows:

U.,,-U.
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ZA
U, -2U.+U
= ~ 1+]1 13 1-1 (8)
(AE)

U ~ U1+2-2U1+1+2U1-1-U1-2

2= Q(AE_,)S
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i is the index denoting the temporal position along £-axis
and AZ is the step size along the Z-axis. The E-interval 1s
divided mto M points with1=1, 2, ..., M-1, M. Therefore,
the MOL ap-proximmation of Eq. 1 1s given by:

U, - Ml,Ul(Uﬁ1 U, ) (U,,-2U,+U, )
gt 24 ( i)
u 2" 1+1+2U1-1 -Ul-2 (9)
ey )
uy () _
2AE (U U mumy =10

Since, there is only one independent variable which
is T, hence, Eq. 9 is an ODE. Besides, since, i varies from
1, 2, up to M, thus, Eq. 9 represents a system of M
equations of ODEs with the mitial condition given by:

U, t=0U,(E),i=12 . M1 M (10)

For the space integration, the RK4 method 1s applied.
Thus, the numerical solution at space T,.; is:

U = U+ L a) 420 420 +d) (an
6

Where:
~ ATE(UY),
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Here, At 1s the step size of the spatial coordinate.

The finite-difference method: The temporal and spatial
coordinates (£, 1) in Eq. 1 are discretized as coordinate
gridas (&, 7)) where § = -L4+2(-1)L/N, 7 = (j-1)At. Here, At
is the step size in spatial coordinate, i=1, 2,3, .., N, N+1,
1=1,2,3, M, M+1, N and M are the munber of intervals in
the temporal and spatial coordinates, respectively. L 1s
half interval of temporal coordinates, respectively.

The FKdVB Eq. 1 1s approximated at the
pont (&, T The 3-pomnt
approximation on space T and time £ were used. The
spatial derivatives of Eq. 1 at (§, T.,) is approximated
by averaging the approximation at the point (£, T, and
(€. 1) follows (Helal and Mehanna, 2006) Eq. 1 becomes:

central  difference

. ) U]+1 _U]+l
[, U, (JAT)}{iﬁl : 1}

2AL
utoutyult
1 1 +
: 2AL?
, ULL2UL 20 U
] ]
RSN L 2AE?
AT 2 J U (13)
[+ o | St E

Hz( 2UJJFUEH)

2AE?

[UJ 2U1]+1+2Ui]—1 'Uf-z J
3

= %[H(J‘ ATHR((-DAT))

Here, AE the step sizes in the temporal coordinates.
Simplifying and collecting the terms lead to the following
implicit scheme:

U U, U U U =g
U, +b, U +b2Ui +b3U1+1'rl~13UiJ+2 g

Where:

a, =— 1AL’ [plUj +p4(jAr)}-2rA§p2+2rp3
a, = 4+4rAlu,
a, =TAL’ [MU,J +u, (j A’c)} S2TAEp, +2rL,
b, =1AL? [plUl’ 1, (G -1)AI)]+2rA§p2—2rp3
b, =4-4rAlp,
b, = AL [plUf 1, ((j-l)Ar)} +2rAEp, +2rp,
& = 2L AT (- )AT)]

_ At

AL’

(15)

Progressive wave (Exact) solution: The progressive
wave solution of the FKdVB equation as givenby
Gaik and Demiray (2008):

T 3 (sech - 2tanhC)

My 2500, (16)
%{gm- El‘G(T)}

where, a i1s a constant. The phase function { can be
expressed as:
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RESULTS AND DISCUSSION
For both numerical methods, we need the mitial

condition to start the numerical simulations. By letting ©
=0in Eq. 16 and a = 2, we used the initial condition as:

sech?| L E_,J
{10“3 (18)

2
e, 0) = 2+ M

Moo 25001,
2
_% e lios
25,1, 10u,

To calculate the accuracy of the numerical solution
with the pro-gressive wave solution, the maximum
absolute errors between the progressive wave and
numerical solutions were calculated based on the Eqg. 19:

Loo = (19)

max‘ progressive Unumen:al

By utilizing AZ = 0.1, At = 0.001 in the MOL scheme,
we obtamned the MOL solution of the FKdVB Eq. 1 with
time £ at certain space T as displaved i Fig. la. On
the other hand, Fig. 1b represents the progressive wave
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solution of the FKdVB Eq. 1 with time parameter £ at
certain space T. The solution of the FKdVB Eq. 1
with time £ shows a decreasing shock profile
propagating to the nght with a decrease m wave
amplitude as space T increases. Intuitively, both Fig. 1a
and b are 1dentical.

To check if both Fig. 1a and b are indistinguishable,
both MOT, and progressive wave solutions were plotted
on the same figure. Tt can be seen that both MOL and
progressive wave solutions are exactly the same in terms
of amplitude and its position as shown m Fig. 2 as they
are overlapped exactly mtuitively.

To confirm, if there is any numerical error, the
absolute errors between MOL and progressive wave
solutions were plotted in Fig. 3. Tt is worth noting that
there are still some small errors even both MOL and
progressive wave solutions were overlapped exactly
intuitively.

We then compute the maximum absolute error
between the progressive wave and MOL solutions for
each discretized time £ point at certain space T based on
the Eq. 19 as given in Table 1. It shows that most of the
maximum absolute errors are in order of 107,

Table 1: Maximum absolute error of the FKAVB equation for different
space T by MOT, method

Space (1) L.

0 0

5 1.3592x107
2.7x107
4.0103%107
5.2739x107

-50 0
Time (x)

100

Fig. 1: a) MOL and b) Progressive wave solutions of the FKAVB equation versus time £ for different space t with AE

=0.1, At =0.001
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Next, by using 0.1, 0.01 AZ = 0.1, At = 0.01 in
the finite-difference scheme, we obtained the finite-
difference solution of the FKdVB Eq. 1 with time £ at
certain space T as given in Fig. 4a while Fig. 4b shows the
progressive wave solution of the FKAVB Eq. 1 with
temporal parameter £ at certain space T. Both Fig. 4a and
b are synonymous.

To confirm, if both the fmite-difference and
progressive wave solutions are similar, both the
finite-difference and progressive wave solutions were
plotted on the same graph as pictured in Fig. 5.
Noteworthy, Fig. 5 shows there 1s no difference

and progressive wave solution were de-picted in
Fig. 6. Surprisingly, there are still some small errors
between finite-difference and progressive wave
solutions.

On the other hand, the maximum absolute error
between the pro-gressive wave and finite-difference
solutions for each temporal point at certain space were
calculated based on the Eq. 19 and tabulated in Table 2. It
shows that the maximum absolute errors are in order
of 107,

Table 2: Maximum absolute error of the FKdVB equation for different space
T by finite-difference method

between both solutions as both graphs are overlapped Space (1) L,
exactly. 0 0 .
Similarly to check, if there 1s any error between fo }'gzggz}gg
fimte-difference and progressive wave solutions, the 15 2.2417%10%
absolute errors between the finite-difference scheme 20 2.8955x10°
0.910 T T T T T
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S 0.905 | 1
5
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Fig. 2: MOL and progressive wave solutions of the FKdVB equation versus time £ for different space t©
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Fig. 3: Absolute error between MOL and progressive wave solutions of the FKdVB equation versus time £ for different

space T
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Fig. 4: a) Finite-difference and b) Progressive wave solutions of the FKdVB equation versus time £ for different space
with AZ = 0.1, At =0.01
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Fig. 5: Finite-difference and progressive wave solutions of the FKdVB equation versus time £ for different space t
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Fig. 6: Absolute error between finite-difference and progressive wave solutions of the FKdVB equation versus time £
for different space 1: a) Space T =0, b) Space T =5, ¢) Space T = 10; d) Space 1 =15and e) Space T = 20

CONCLUSION

We have solved the FKdVB Eq. 1 by using the
MOL and finite-difference method. The MOI and
finite-difference solutions of the FKAVB Eq 1 were
plotted versus the progressive wave solution. From the
observation, 1t was found that there were no differences
for both MOL, finite-difference and progressive wave
solutions. MOL and fmite-difference method can solve
the FlkdVB Eq. 1 pretty well with maximum absolute
error in order of 107 and 107 respectively. Hence,
finite-difference solves the FKAVB better, since, it gives
smaller maximum absolute error, if compared to MOL

method.
ACKNOWLEDGEMENT

We would like to thank UTHM Research fund,
UTHM Tier 1 2018 research grant vote number H258 and
Fundamental Research Grant Scheme (FRGS) vot K095
granted by Mimistry of Education (MOE) Malaysia for
financial support of this project and fundamental research
Grant scheme (FRGS) vot Ko93 granted by ministry of
education (Moe) Malaysia.

REFERENCES

Antar, N. and H. Demiray, 1999. Weakly nonlinear waves
in a prestressed thin elastic tube containing a
viscous fluid. Intl. T. Eng. Sci., 37: 1859-1876.

Bratsos, A.G., 2007. The solution of the two-dimensional
sine-Gordon equation using the method of lines.
I. Comput. Appl. Math., 206: 251-277.

Burgers, TM., 1948. A mathematical model illustrating the
theory of turbulence. Adv. Applied Mech., 11:
171-199.

De Vries, G. and D.J. Korteweg, 1895. On the change of
form of long waves advancing in a rectangular canal
and on a new type of long stationary waves. Phil.
Mag., 39: 422-443,

Demiray, H., 2001. Solitary waves in fluid-filled elastic
tubes: Weakly dispersive case. Intl. J. Eng. Sci., 39:
439-451.

Gaik, T.K. and H. Demiray, 2008. Forced korteweg-de
vries-burgers equation n an elastic tube filled with a
variable viscosity fluid. Chaos Solitons Fractals, 38:
1134-1145.

Gailk, T.K., 2006. Forced Korteweg-de Vries equation in an
elastic tube filled with an mviscid fluid. Intl. J. Eng.
Sct., 44 621-632.

Gaik, TK, Y.Y. Choy, WK. Tionng and C.T. Ong,
2018, Numerical solutions of the dissipative
nonlinear Schrodinger equation with variable
coefficient arises in elastic tube. Dyn. Continuous
Discrete Impulsive Syst. Ser. B. Appl. Algorithms, 25:
53-61.

Hamd, S., W.H. Enright, Y. Ouellet and W.E. Schiesser,
2005. Method of lines solutions of the extended
Boussinesq equations. J. Comput. Appl. Math., 183:
327-342,

Helal, M.A. and M.S. Mehanna, 2006. A comparison

different methods solving
KdV-burgers equation. Chaos, Solitons Fractails, 28:
320-326.

Tohnson, R.S., 1972. Shallow water waves on a viscous
fluid-the undular bore. Phys. Fluids, 15: 1693-1699.

Koto, T., 2004. Method of lines approximations of delay

between two for

differential equations. Comput. Math. Appl, 48:
45-59.

4210



J. Eng. Applied Sci., 14 (12): 4204-4211, 2019

Ozis, T. and 8. 2006, A simple
similarity-transformation-iterative scheme applied to
Korteweg-de Vries equation. Applied Math. Comput.,
173:19-32.

Saucez, P, AV. Wouwer, W.E. Schiesser and P.
Zegeling, 2004. Method of lines study of nonlinear
dispersive waves. J. Comput. Appl. Math., 168:
413-423.

Schiesser, W.E., 1994, Method of lines solution of the
Korteweg-de Vries equation. Comput. Math. Appl.,
28:147-154.

Ozer,

4211

Tay, K.G., WK. Tiong, Y.Y. Choy and C.T. Ong, 201 7b.
Method of lines and pseudospectral solutions of the
forced Korteweg-de Vries equation with variable
coefficients arises n elastic tube. Intl. J. Pure Appl.
Math., 116; 985-999.

Tay, K.G., Y.Y. Choy, W.K. Tiong, C.T. Ong and N.M.
Yazid, 2017a. Numerical solutions of the forced
perturbed korteweg-de vries equation with variable
coefficients. Intl. J. Pure Appl. Math., 112: 557-569.

Zabusky, N.J. and M.D. Kruskal, 1965. Interaction of
solitons m a collisionless plasma and the recurrence
of imitial states. Phys. Rev. Let., 15: 240-243.



	4204-4211 - Copy_Page_1
	4204-4211 - Copy_Page_2
	4204-4211 - Copy_Page_3
	4204-4211 - Copy_Page_4
	4204-4211 - Copy_Page_5
	4204-4211 - Copy_Page_6
	4204-4211 - Copy_Page_7
	4204-4211 - Copy_Page_8

