Tournal of Engineering and Applied Sciences 14 (12): 4102-4108, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

HBase Based Multi-Row Transaction Management Techniques

Jeong-Joon Kim
Department of Computer Engineering, Korea Polytechnic University,
Gyeonggi-do, 15073 Siheung-si, South Korea

Abstract: Recently, NoSQL (Not Only SQL) is receiving attention as one of the technologies to deal with big
data countless users are making around the world. NoSQL 1s a database presented as an alternative to the
technical and monetary restrictions of conventional relational database and focusing on availability and
expandability for swift treatment of atypical data. But NoSQL does not guarantee data integrity because it
abandons transaction for availability and scalability. Thus, studies are underway to implement the multi-row
transaction on NoSQL 1in particular, various studies on the multi-row transaction system based on HBase has
been actively in progress. However, traditional studies are limited to performance improvement proportional
to number of clients and low concurrency because there are too many information that column manages.
Therefore, in this study, propose an efficient multi-row transaction system based on HBase has exceptional
performance improvement proportional to number of clients and supports high concurrency. This system
creates column for managing transaction mformation. In addition, designs and implements the transaction
manager for efficiently controlling the state of transaction and communication manager for exchanging

information it need for transaction by communicating with HBase.

Key words: Multi-row transaction, HBase,
conventional relational

coneurrency  control,

transaction recovery, proportional,

INTRODUCTION

Concurrent input and various attributes of big data
have limitations in terms of technical or cost to process in
existing relational database. Therefore, various kinds of
NoSQL such as a column-based database and a
document-based database have appeared to handle this
problem (George, 2011). Many NoSQL solutions for big
data processing are distributed
environments. Typical NoSQL solutions melude Bigtable,
HBase, MongoDB and Cassandra (Abadi et af., 2009).

However, these NoSQL solutions do not support
multiple row transactions for availability and scalability
which 1s a disadvantage of data integrity. The mtegrity of
data 1s crucial to real services that deal primanly with
financial or personal information. Therefore, to use a
NoSQL solution as a commercial service, there is a need
to develop a multi-row transaction system for the NoSQL
solution. Because of this necessity, the NoSQL-based
multi-row transaction system has recently become an
important research field and related researches are
actively proceeding (Dean and Ghemawat, 2004).

In this study, we design and implement an
HBase-based Multi-Row Transaction system (HMRT)
through client library implementation on HBase of
Hadoop (Ghemawat ef al., 2003; Levandoski et al., 2011;
Peng and Dabek, 2010) which is one of the most recently

aimmed at most

studied NoSQIL.. The system designed and implemented a
transaction execution manager to control transaction
execution and added a collision detection and recovery
manager to detect and effectively recover from a conflict
situation. In addition, we added a special column to the
HBase table to design for high concurrency. In the case
of a transaction conflict, the collision information manager
can quickly recover the collision using the collision
information.

Literature review

Multi low transactions: A multi-row transaction mearns
that individual operations for two or more rows are
grouped together into a single unit of work. Table 1 is an
instance of a table called account which manages account
balance information (Stonebraker, 2010).

There are currently three rows A-C m the account
table in Table 1. Each row contains a balance of $ 100, 20
and 30. Assuming that there 13 a transaction “fetch $ 50
from A”, this transaction is a single row transaction
because it only accesses one row of the table’s rows.
However, assuming that there is a transaction of “transfer

Table 1: Account table

Row key Values
A 100
B 20
C 30

4102



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

2
=
S |Row1 [ 1 [ hupimbase.apache.org [ 3t64) | HEase Home | Great toal! | <htmi=-<head= <title=HBase Home=</ti.. |
E Row 2 I 2 I hittp:/farsgecrge.com [ 1337 I Linetand I{NULL} l <html=><body=Newest Posts_ ._. l
= |Row3 | 3 | hitp:/ffocbar.comindexhtml [ H24h | <MULL> | Readaboutit... | 404 Page not found. |
o -
URLS

url_id url ref_short_id | title description |content
% INTEGER PK | VARCHAR(4096) CHAR(8) VARCHAR(Z00) | VARCHAR{400) | TEXT
= 1 hittp://Mbase.apache.org 3fG4) HBase Home | Great tooi! <html=<head=<title=HBase Home </ti...
oo
§ 2 http://larsgeorge.com 1337 Lineland <NULL= = htmil= <body =MNewest Posts...

3 hittp:/ffoobar.com/index.html | H34h <NULL= Read about it.... [404 Page not found.
4 httpe/fonn.com/page123.html | Co001 Sport News Soccer Mews  |<htmi= <body=Results, Reviews, ...

L] L] L] ] L] ] 1

' ' 1 ' ' ' '
&
= |Col L:url I httpz//hbase apache.org I http://larsgeorge.com Ihrq::fffoobat.mm.ﬁnde:,mmll hitp:/fonn.com/pagel?... ]
'% e 3fG4) | 1337 | Hf34h | 00001 -
= |3 tive | HBase Home | Lineland | <NULL=> | Sport News | =

| 4: e

3; Fl:strlpﬁun | Great tool! | <HULL= | Read about it... | Socger News |

Col 5: content [ <html=<head><title=HBa...| <html=<body=Newest Po...|

404 Page not found. [<htrmi=<body=Results,...] ...

Fig. 1: Column-based and row-based storage

Table 2: Tn the case of the operation on row C fails

Row key Values
A 40
B 50
C 30

$ 30 to B and C rows in row A" this transaction 1s a
multiple row transaction because it needs to access two
Or More TOws,

To execute the above example, you need to subtract
the balance from A and add the balance to B and C.
However, if any of these operations fails, all operations
must be considered as failed. Table 2 shows that the
operation to msert the balance subtracted from A into B
succeeded but the operation to insert the balance
subtracted from A into C failed.

Table 2, A has gone out of § 60 to send § 30 to B and
C, respectively. Row B receives $ 30 of the balance
subtracted from A to be $ 50 but row C can confirm that
the calculation failed and there 1s no change m the
balance. In this case, all operations must be canceled to
ensure the integrity of the data, so, a multi-row
transaction is required.

However, existing NoSQL does not support multi-row
transactions, so, data integrity cannot be guaranteed in
the above situation. Therefore, in order to utilize NoSQL
even in areas where data integrity is important, there is a
steady progress to apply multirow transactions to NoSQL
recently.

HBase: HBase is an open source clone project from
Google Bigtable and 13 a column-based distributed
database that hooks into Hadoop, a kind of NoSQL
(Shin et al., 2016). HBase manages the data in memory and
takes a write delay method that flushes to an aligned file
when memory is full. Therefore, it is possible to reduce the
disk /O as much as possible and HDFS 15 used as a
storage as a distributed database suitable for random
reading and real time reading/writing of small data.

HBase is a column-based database that stores data of
the same type in columns. Relational databases perform
data reading and writing in row umts and are more
advantageous when using the entire row. However, a
column-based database such as HBase has better storage
efficiency because it stores data with the same data type
by column and performs better than existing relational
database when [/O 1s performed on a single column basis.
Figure 1 shows the differences between column-oriented
storage and row-oriented storage.

When the schema of the web page is called URLS in
Fig. 1, URL Schema of URLS comnsists of url id
(INTEGER), wrl (VARCHAR (4096)), ref short id (CHAR
(8)), title (VARCHAR Description (VARCHAR (400)) and
content (TEXT) columns. In a relational database, various
attributes of URLS are stored in a single tuple through a

4103



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

Region server Region server

HBase
Region server

Region server  Region server

o

/

Data request module

Communi cations manager

Datainput module |

Transaction manager

Transaction execution management module ! I
Transaction impact management module I

\ Transaction recovery management module

Fig. 2: Overall system architecture

row-based storage method as shown above in Fig. 1.
This results in poor spatial efficiency because it
requires storing various types of data and storing
empty spaces such as NULL wvalues. On the other
hand in the column-based storage method, data
having the same shape 1s displayed by storing data for
each column having similar properties as shown in
Fig. 1. This provides a basis for increasing space
efficiency which can greatly reduce the load on the
network in a distributed processing environment. Thus, a
column-based database is an effective alternative to
handling large data m which instances of rows are not
uniformly typed.

MATERIALS AND METHODS

System design

Overall system architecture: The multirow transaction
system proposed in this study is based on HBase, a
column-based distributed database among Hadoop
platforms.

Existing HBase supports transactions for a single row
but does not support multiple row transactions that
require concurrent access to multiple rows. Therefore, n
this system, a transaction column that manages
transaction information is added to HBase in order to
support multi row transactions in HBase. And a
transaction manager that manages transaction execution,
conflict and recovery and a communication manager
which 1s responsible for data request and data mput are
designed and implemented.

We have designed HMRT, a system that can
efficiently process multiple row transactions in HBase by
applying the functions described above. Figure 2 shows
the structure of HMRT.

Table 3: Initial state of table A

Rowkey Values Transactions
1 100 Stable 1
2 5000 Stable 4
3 600 Stable &
4 1300 Stable 4
5 1700 Stable 3
6 300 Stable 7
7 200 Stable 1
8 1000 Stable 2
100000 400 Stable 8

Communications manager: The communication manager
is responsible for requesting HBase for transaction
execution, collision and recovery between the transaction
manager and HBase and for transferring them to the
transaction manager. Transaction execution managemernt
module, data request module and data transfer module.

Transaction manager: The transaction manager is used
to efficiently control the execution, collision and recovery
of transactions. Transaction execution management
module, transaction conflict management module and
transaction recovery management module. Each module
performs operations through the communication manager
with transaction execution information, transaction
conflict information and transaction recovery information.

RESULTS AND DISCUSSION

System implementation
Transaction execution: In this study, the HMRT
developed in this study is shown. Table 3 shows that a
total of 100,000 data are inserted in table A. Table 3 shows
the mitial states of table A m order to show the state
change of transaction columns.

As shown in Table 1-4, table A has the row keys
arranged in ascending order and the value column has

4104



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

push data success
push data success
push data success
push data success
push data success
wvailting for lock released...
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
push data success
wvwailting for lock released...
push data success

Fig. 3: The screen where the transaction is running

Table 4: Initial state of table B

Row key Values Transactions
1 200 Stable 3
2 700 Stable 6
3 1200 Stable 7
4 5000 Stable 4
5 1800 Stable 1
6 500 Stable 4
7 600 Stable 9
8 2000 Stable 5
100000 1200 Stable 5

arbitrary values. The lock state of the transaction column
1s all stable and each has its commit timestamp at the time
of 1its final commit. A total of 100,000 of these data are
input.

Table 4 shows the table B mitial states in order to
show the state change of the transaction columns. As
shown in Table 4, the B table i1s also arranged in
ascending order of row keys and arbitrary values are
inputted in the value column. The transaction state of the
transaction column 1s all stable and each has its commit
timestamp at the time of its final commit. Similarly, 100,000
of these data are entered.

Now, we execute a total of 100 million multirow
transactions by sending value of row A of table A
torow 1 of table B and value of row 2 of table A to row 2
of table B. Figure 3 shows the screen where the multi-row
transaction is executed.

Figure 3, push data success means that the
transaction has been performed successfully and waring
for lock released means that there is a conflict between
transactions. Table 5 shows the moment when the
transaction 1s executed in the row 1 of the table A during
the execution of the transaction, the lock status of the

Table 5: Situation where value is missing fiom table A

Row key Values Transactions
1 0 Prewritten 10
100000 400 Stable 8

Table 6: Situation where value is missing firom table B

Row key Values Transactions
1 1000 Prewritten 10
100000 1200 Stable 5

Table 7: Table A with transaction execution completed

Row key Values Transactions
1 0 Stable 10

2 0 Stable 162

3 0 Stable 33

4 0 Stable 4523
5 0 Stable 8632
3] 0 Stable 452

7 0 Stable 667

8 0 Stable 25609
100000 0 Stable 56283

Table 8: Table B with transaction execution completed

Row key Values Transactions
1 1000 Stable 10

2 5700 Stable 162
3 1800 Stable 33

4 6300 Stable 4523
5 3500 Stable 8632
6 800 Stable 452
7 800 Stable 667
8 3000 Stable 25609
100000 1600 Stable 56283

transaction column and the commit timestamp are
changed and the value 100 is exited with the transaction
column.

Table 5, a transaction with a commit timestamp of 10
1s accessed to prevent other transactions from accessing
by changing the lock state of row 1 of the row transaction
to prewritten state. Table 6 shows the value 100 entered
from table A in B. Similarly, the lock status and commit
timestamp of the transaction column are changed and
value 100 is added.

Table 7 shows the state of the table A in which the
transaction execution 1s completed to show the state
change of the transaction column together.

Table 7, all the values are changed to 0 and the
transaction column status is returned to stable again. In
addition, the commit timestamp has also changed.
Table 8 shows the state of table B 1 which transaction
execution is completed to show the state change of
transaction column together. This shows how multiple
row transactions are executed in the HMRT.

4105



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

Q99985 column=cf:value, timestamp=1423056343331, value="300"
99986 column=cfivalue, timestamp=1423056343331, value="700"
99987 column=cf:value, timestamp=1423056343331, value="1600"
99988 column=cfivalue, timestamp=1423056343331, value="800"
99989 column=cf:value, timestamp=1423056343331, value="700"
99990 column=cf:value, timestamp=1423056343331, value="0"
99991 column=cfivalue, timestamp=1423056343331, value="0"
99992 column=cf:value, timestamp=1423056343331, value="500"
99993 column=cfivalue, timestamp=1423056343331, value="1200"
99994 column=cf:value, timestamp=1423056343332, value="300"
99995 column=cfivalue, timestamp=1423056343332, value="1100"
99996 column=cfivalue, timestamp=1423056343332, value="500"
99997 column=cfivalue, timestamp=1423056343332, value="600"
99998 column=cf:ivalue, timestamp=1423056343332, value="0"
99999 column=cf:value, timestamp=1423056343332, value="100"
100000 column=cfivalue, timestamp=1423056343332, value="600"
100000 row(s) in 111.0500 seconds

hbase(mam):021:0>

Fig. 4: Screen with data entered in table C

Table 9: Initial state of table C

Table 11: State where a conflict occurred in table B

Row key Values Transactions Row key Values Transactions
1 1000 Stable 9 1 1900 Prewritten 7
2 500 Stable 8

3 100 Stable 2 100000 1200 Stable 5

4 300 Stable 1

5 700 Stable 6 .

6 1300 Stable 4 Table 12: State of table B after T2 is complete

7 1100 Stable 5 Row key Values Transactions
8 200 Stable 7 1 1900 Stable 7
100000 600 Stable 7 100000 1200 Stable 5
Table 10: Situation where Value is missing from table A Table 13: State of table A after the rollback is complete

Row key Values Transactions Row key Values Transactions
1 0 Prewritten 10 1 100 Stable 1
100000 400 Stable 8 100000 400 Stable 8

Transaction conflict: In this study, HMRT shows the
collision of multiple row transactions and their solution.
Figure 4 shows HBase’s table C with 100,000 data
entries.

Table ¢ shows the initial state of table C as a table to
show the state change of transaction column together.
Table C has the same structure as table A and B and has
100,000 rows as well. You want to transfer the value from
table A-B in the same way as the preceding transaction
execution example. At this time, table C also executes
100,000 multiple row transactions that transfer the value
to table B in the same manner as table A. Since, both the
value of table A and the value of table C must be
transmitted to Table B in B, a conflict occurs between the
transaction accessed in table A and the transaction
accessed 1 table C. A transaction with a conflict will be
queued up as “waiting for lock released” as shown in
Fig. 4.

Table 10 shows that Transaction T1 is executed in
row 1 of row A and the lock status and commit timestamp
of transaction column are changed and value 100 1s exited.

Table 10, Transaction T1 with a commit timestamp of
10 is accessed to prevent another transaction from
accessing by changing the lock state of row 1 of the row

transaction to prewritten state. Table 11 shows that the
Transaction T2 generated in the C table occupies the table
before entering the value 100 that has exited from the table
A mthe B.

As 1n Table 11, you can see that transaction of B
Table row 1 is already prewritten by Transaction T2 with
commit timestamp 7. Therefore, transaction T1 waits until
the transaction column lock status of B table row becomes
stable. Table 12 shows that Transaction T2 completes the
operation and changes the transaction column lock status
of B table row 1 to stable and the transaction is
completed.

Table 12, since, the lock status of the transaction
column 15 stable, the Transaction T1 that is waiting 1s
accessible. At this time, however, the commit timestamp
1 which was 1nitially known to T1 1s different from the
commit timestamp 7 stored in the current transaction
column, so, the transaction must be relled back and
re-executed. As described above, the transaction conflict
management module transmits the rollback data to the
data mput module and the data input module performs the
put operation using the rollback data, thereby returning
the table A to its original state as shown in Table 13.

4106



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

Table 14: State of table A after re-execution

Table 18: Table C with transaction execution cormpleted

Row key Values Transactions
1 0 Prewritten 10
100000 400 Stable 8

Table 15: State of table B after re-execution

Row key Values Transactions
1 2000 Prewritten 10
100000 1200 Stable 5

Table 16: Table A that has been re-executed after the rollback

Row key Values Transactions
1 0 Stable 10

2 0 Stable 162

3 0 Stable 33

4 0 Stable 4523
5 0 Stable 8632
6 0 Stable 452

7 0 Stable 667

8 0 Stable 25609
100000 0 Stable 56283

Table 17: Table B that has been re-executed after the rollback

Row key Values Transactions
1 2000 Stable 10

2 6200 Stable 162

3 1900 Stable 222

4 6600 Stable 1966
5 4200 Stable 8632
6 2100 Stable 452

7 1900 Stable 667

8 3200 Stable 9902
100000 2200 Stable 56283

As shown in Table 13, after the rollback is completed,
a multi-row transaction 1s performed to transfer the value
to the table B using the transaction execution information
again. Since, the value corresponding to row key 1 of
table B is 900-1,900, insert 2,000 mstead of 1,000 which
was inserted before rollback. Table 14 shows that the
transaction is re-executed after the rollback and the value
1s again missing from the table A.

Transaction T1 with commit timestamp 10
re-accessed in Table 14 re-approaches to change the lock
state of row 1 row transaction to prewritten state.
Therefore, other transactions can not be accessed. In this
case, no collision occurred and table B was changed to
prewritten state as shown in Table 15 and values were
normally inserted.

Table 4-13, we can see that the value of T1 is updated
normally by performing the operation on table B. Table 16
shows the final state of table A after T1 has successfully
completed re-execution.

Table 16, we can see that the value of table A 1s exited
and the status of the transaction column becomes stable.
Table 17 shows the final state of table B after T1 and T2
have successfully completed re-execution.

Row key Values Transactions
1 0 Stable 7

2 0 Stable 83

3 0 Stable 222
4 0 Stable 1966
5 0 Stable 8409
6 0 Stable 437

7 0 Stable 1797
8 0 Stable 9902
100000 0 Stable 7921

Table 19: Table A where the transaction was aborted due to a system

Row key Values Transactions
1 0 Prewritten 10
100000 400 Stable 8
Table 20: State of table B after recovery

Row key Values Transactions
1 100 Prewritten
100000 400 Stable 8

It can be seen that the existing value 15 added to the
value entered in table A and the value entered in table C.
Finally, Table 18 shows the appearance of table C after the
successful completion of T1 and T2. In this way, HMRT
shows the collision of multiple row transactions and the
solution process.

Transaction recovery: This study shows the recovery
process, when multiple row transactions in HMRT are
executed abnormally and are restarted. Table 19 shows the
system error before adding the value of table B after the
value of table A becomes 0 in the preceding transaction
execution example.

Table 19 shows that when a transaction to be added
to the value of a row with a row key of 1 is executed in
table B except for the value of a row whose row key is 1 in
table A, the status of the transaction terminated
abnormally. Table 20 shows that the transaction is
restored and the value is successfully inserted into
the B table.

As shown m Table 20, it can be confirmed that the
value is normally input to the table B. Table 21 shows the
table A after the transaction completes the recovery and
all the operations are completed successfully in the above
manner.

Table 22 shows table B after the transaction
completes the recovery and all the operations are
completed successtully.

As shown m Table 22, it can be confirmed that the
value 1s normally mputted nto the Table B. As a result,
the HMRT was shown to have completed its normal
operation after recovering from an abnormal system error.

4107



J. Eng. Applied Sci., 14 (12): 4102-4108, 2019

Table 21: State of table A after recovery

Row key Values Transactions
1 0 Stable 10
100000 0 Stable 56283

Table 22: Table B with recovery completed

Row key Values Transactions

1 1000 Stable 10

.1.(.)0000 .2.2.00 s.t.able 56283
CONCLUSION

As interest in big data has mcreased recently,
NoSQL, a solution for storing and processing big data 1s
getting attention. NoSQL supports high speed, high
availability and high scalability but it is limited in areas
where data integrity 1s important because it does not
support multiple row transactions. To overcome these
drawbacks, many studies are underway to support
multiple row transactions in NoSQL.

Therefore, this study proposes an HBase-based
efficient multi-row transaction system that can add a
column that manages transaction information to all user
tables and separate multiple modules for managing
recovery information to perform multi-row transactions
with low load and high concurrency. This study creates
column for managing transaction information. In addition,
designs and implements the transaction manager for
efficiently controlling the state of tremsaction and
communication manager for exchanging mformation it
need for transaction by communicating with Hbase.

ACKNOWLEDGEMENT
This research was supported by the National

Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIP) (No. 201 7TR1A2B4011243).

4108

REFERENCES

Abadi, DI, P.A. Bonez and S. Harizopoulos, 2009.
Column-oriented database systems. Proc. VLDB.
Endowment, 2: 1664-1665.

Dean, J. and S. Ghemawat, 2004. MapReduce:
Simplified data processing on large clusters.

Proceedings of the 6th Symposium on Operating

Systems Design and Implementation, December

6-8, 2004, San Francisco, CA., USA., pp: 137-

150.
George, L., 2011. HBase: The Definitive Guide. O’Reilly
Media, Sebastopol, Califorma, USA.,

ISBN:9781449315221, Pages: 556.

Ghemawat, S., H. Gobioff and S. Leung, 2003. The google
file system. ACM SIGOPS Operat. Syst. Rev., 37:
29-43,

Levandoski, I.J., D.B. Lomet, M.F. Mokbel and K. K. Zhao,
2011. Deuteronomy: Transaction support for cloud
data. Proceedings of the 5th Biermial Conference on
Innovative Data Systems Research, JTanuary 9-12,
2011, Asilomar, CA., USA., pp: 123-133.

Peng, D. and F. Dabek, 2010. Large-scale incremental
processing using distributed transactions and
notifications. Proceedings of the 9th TUSENIX
Conference on Operating Systems Design and
Implementation, October 4-6, 2010, Vancouver,
Canada, pp: 1-15.

Shin, I.S., J.J. Kim, Y.S. Lee and J.Y. Moon, 2016.
NoSQL-based spatial data processing systems in big
data environments. Intl. Inf. Instit. Tokyo Inf., 19:
4219-4236.

Stonebraker, M., 2010. SQL databases v. NoSQL
databases. Commun. ACM., 53: 10-11.



	4102-4108 - Copy_Page_1
	4102-4108 - Copy_Page_2
	4102-4108 - Copy_Page_3
	4102-4108 - Copy_Page_4
	4102-4108 - Copy_Page_5
	4102-4108 - Copy_Page_6
	4102-4108 - Copy_Page_7

