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Abstract: This research study examines the homogeneous balance method to obtain an exact solution of
travelling wave non-linear equations. The proposed homogeneous balance method is used to obtain new
solutions for Generalized Regulanized Long Wave (GRLW) equation, Modified Dispersive Water Wave
(MDWW) equation and Kawahara equation. Many solitary wave solutions are calculated from the solution by
the hyperbolic function when parameters were talken as special values. The obtained results are compared with
the F-expansion method solution and (G’/G)-expansion method solution. The comparison reveals that our
obtamed results are 1dentical to the F-expansion method and (G'/G)-expansion method solutions when certain
hypothesis 1s adopted. Maple Software 1s used to plot the 3D graph of the obtammed exact solution.
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INTRODUCTION

There 1s a wide range of nonlinear phenomena accord
in nature and obtaining a solution for such phenomena
have a significant impact, especially in physics and
applied mathematics. When studying nonlinear physical
phenomena, the exact solution of nonlinear evolution
equation has a major nfluence on this types of study
(Zayed and Arnous, 2012). There are several algebraic
methods to calculate exact travelling wave solution was
proposed in the literature. The most important and
appropriate method called homogeneous balance method.
This method was first proposed by Wang (1993),
Wang ef al. (1996) then further developed by many
researchers (Elwakil er al, 2004, Fan, 2000, 2003
Khalfallah, 2009, Zhao et al., 2006). According to Fan
(2000) applied homogeneous balance method was
used to  calculate  solution for  Becklund
transformation when an assumption was made in
the reducton of the nonlinear partial differential
equation. Fan proves that there 1s a close relationship
between the HB method, Clarkson Kruskal (CK)
method and Weiss Tabor Carnevale (WTC) method. A
new algebraic method was proposed by Fan (2003).
The suggested method was used to calculate a new
solution for selitary wave of NLPDEs and many other
nonlinear evolution equations. The obtained solution

has a significant impact in many areas such as
applied  mathematics and  theoretical  physics
(Antonova and Biswas, 2009, Biswas, 2010
Razborova et al., 2013). The obtained solution can be
expressed as a polynomial in an element that satisfies
general Riccati equation and Elwakil et «al. (2003).
When the homogeneous balance method was applied an
auto-Backlund transformation for the generalized shallow
water wave equation and generalized variable coefficient
2D KdV equation, new exact solitary wave solutions was
calculated. This idea of this research study depends on
the characteristic of travelling wave solution of nonlinear
equations where this solution can be expressed by a
polynomial in u = Z¥,_ g0, u = w&) such that £ = kx+wt.
The degree of this polynomial can be calculated from
considering the homogenous balance between the
highest order derivatives and the nonlinear term
appearing in a giving equation. The coefficient of the
consider polynomial can be resulted from solving a set of
algebraic equation appeared during the process of using
the proposed method (Wang et «f, 2008). The
significance of the homogeneous balance method i1s
making the calculation of shock or solitary type of
solution easy. A general exact solution of the nonlinear
equations of the Generalized Long Wave (GRLW), the
(MDWW) equation and Kawahera equation was
obtaned.
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MATERIALS AND METHODS

Mechanism of homogeneous balance method: Consider
we have a nonlinear evolution equation in the form
of Eq. 1:

Flu,u,,u,,u,,1u,,,..,)=0 (1)
where, F 1s a polynomial in u = u(x, t) and its PDEs in
which the highest order derivatives and nonlinear terms
are mvolved. The main steps of applying the homogenous
balance method can be illustrated in the following points
(Zayed and Arnous, 2012; Zayed and Alurrfi, 201 4):

Step 1: Using the wave transformation Eq. 2:
w(x, t) = u(E), & = kxtwt (2)

Reduce Eq. 1 to the following ODE in Eq. 3
P(uu,u’,...)=0 (3)

where, P is a polynomial in u(&) and its general derivatives
while k and w are constants.

Step 2: We suppose that Eq. 3 has a solution shown in
Eq 4

W= v )

where, q(1 = 0, 1, ..., N) are constants to be calculated,
such that g, # O and () is the solution of Eq. 5:

W) = (EyE) (5)

Equation 5 has the solution:
__ 1 6
W) == (6)

Step 3: We calculate all the derivatives of u’, u”, ..., of the
polynomial u(£) which results:

U =g, Hq g

u = (y-1wg, +2q,yt...]

u” = (yr-Dyr [(-1-29) g, 29 (-243y)g, +. ]
u" = (yr-1y[(1-6yr+6 ), +2yn(4-15yr+
129%)g, +...]

™ = (T [(-1+14y-36y° +24y 7 )g, +
2 (-8+57y-108yr* +60y ), +...]

u® = (yr-Dy((-130yr+150y° 240y +
120y )q, + 2y (16-165y+660yr* -

840y +360y g, +..]

Step 4: We determine the positive integer N in Eq. 4 by
considering the homogeneous balance between the
highest order derivatives and the nonlinear terms mn
Eq. 3.

Step 5: Substitute Eq. 4 into Eq. 3, we calculate all the
necessary derivatives u’, u”, .., of the equation u(Z). As a
result of this substitution, we obtain a polynomial of (¥
(i=0,1, 2, .., N). Inthis polynomial, we gather all terms of
same powers and equating them to zero, we obtain a
system of algebraic equations which can be solved
by the Maple to get the unknown parameters g{i =
0,1, .., N), k and w consequently, we get the exact
solutions of Eq. 1.

Application of homogeneous balance method

Generalized Regularized Long Wave (GRLW) equation:
In this study, our proposed method is applied to obtain a
new and more general exact solution of the
Generalized Regularized Long Wave (GRLW) equation

read (Abazari, 2010):
u,+u_+a(u’) -bu_ =0 7

where, a and b are positive constants. Equation 7 was first
proposed as a model for small amplitude long waves on
the surface of the water m a channel by Peregrine (1996)
and then by Benjamin ef al. (1972). In physics phenomena
such as umdirectional waves propagation in a water
channel, long-crested waves in near shore zones and
many other, the Generalized Regularized Long Wave
(GRLW) equation works as an alternative model to the
KdV equations. Suppose the following Eq. 8:

ulx, t) = uf), & = kxtwt (8)
we obtain:
(wku'+akiu? y-bk*wu” = 0 (9

Integrating Eq. 9 once with respect to £ and the
setting the integration constant as zero yields:

(wHkutaku® -bk*wu" = 0 (10)

Now, we are balancing between U’ and u” then we
obtain N+2 = 2N, then, N = 2, suppose that Eq. 10 has the
following formal solution:

u(f) = g, +qw+g, W’ an
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Table 1: Comparison of proposed solution with solution of (G*/G)-expansion method (Abazari, 2010)

The solution of (G*/G)-expansion method

Proposed homogeneous balance solution

IfA =1, ¢, =1, ¢; = 0 then, Eq. (34a) becomes

-3bk? 5 kx k
+

—sech”(— 3
2a(bk-1) 2 2(bk"-1)

ulx,ty= t)

Tt b0, a0 then, Eq.12 becomes
2
() -3bk B kar k

= s—sech”(— 3
2a(bk*-1) 2 2(bk"-1)

t)

Substituting Eq. 11 and the derivatives in step 3 and
collecting all terms with the same order of (ef), we
have the following:

()’ : akq; kg, twe, =0

(w)' :-bk"wa, +2akq, g, +2kg, +q,w =0

(Y’ :3bk’q w-blc’q, w2akq,q, takq; +kq, +
q,0=0

(W) -2bk’q, w100k g, w2akq,q, =0

(un' 60k’ g, whakqiw =0

And solving the system of equation by using to
maple, we obtain Table 1.

Status 1:
6bi 6bi? k
Tabken T apkeay " tea
iy - albk - - (12)
7_31)2 sech2(§+ kz
2a(bk?-1) 2 2bke-T)

4, =0.q

u(x,t)=

t)
Status 2:

bk’ o - 6bk? 0= -6hk?
a(bk?+1)” " ak’+D)T 7 a(bki+1)’
k
W=
bk?+1

9o

X
-bk? 3bk? ]
ech’ t

ui{x,t) = 3eC
(.0 a(bk2+1) 2a(bk2+1)

(13)

The MDWW equation: The MDWW equations will be
studied m this study (Alzaidy, 2013; Neyrame ef al., 2010)
by the form of the following Eq. 13 and 14:

1 1
u, =-—v,_t+—(uv (14
t 4 hio:d 2( )X
v, = -uXX-QquX'F%VVX (15)

The traveling wave variables as:

u(x, t)y =ud), v(x, hH=v(&), & =x-ct (16)

Converting Eq. 16 and 17 mto ODEs for u(x, t) = u(£)
and v(x, t) = v(£) as follow:

lv"-l(uv)'-cu' =0 (17)
4 2

u"+2uu'—%vv’—cv' =0 (18)

where, k and w are the wave number and the wave
speed, respectively. On integrating Eq. 17 and 18 with
respect to £ once, yields:

lV'-l(uv)-cu= 0 (19
4 2

u'+u? —%Vz cv=0 (20)

where, ¢ is constant, suppose that the solution of the
ODEs Eq. 19 and 20 can be expressed by polynomials in
the terms of as follows:

N
w@ =3 a0 1)
M
vE) =X b (22)
where, a1=0,1, ., N)and b1 =0, 1, ..., M) are arbitrary

constant and we balancing between the highest order
derivatives and the nonlinear term in Eq. 21 and 22, we get
N =M =1, thus, we have:

u(E)y=a,+tay,a =0 (23)
V(E) =b,+by, b, #0 (24)

where, a,, a,, b, and b, are constant to be determine later.
substituting Eq. 23 and 24 with derivatives in step 3 and
collecting all terms with the same power of |1 and setting
them to zero, we have the following system of algebraic
equation:
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() CanJr%anbn =0

1

1 1 1
() 3031+Zb1+53nb1+531bn =0
1 1
() :'Zb1+ga1b1 =0
3 3 2 2
) :an -4, +¢cby =0
3
' a, -blc-2a[,al-5-5b[,b1 :

3
()’ -af+ ba, =0

Solving the above algebraic equations from ()" into

()’ by using the maple, vields.

Status 1:
a,=0,2,=1/2,b,=0,b,=1,c=-1/2

Status 2:
a,=0,a=1/2,b,=0,b,=-1,c=1/2

11 XJr%t
u(x, t) = —+—tanh
(%, 1) 2 ( 5 )

11 x+%t
v(x,t) = —-—tanh
(x,t) 575 ( 5 )

Status 3:
a,=1/2,a,=-1,b;=1,b,=0,¢c=-1/2

1 XJr%t
u{x,t) = —tanh
(x,1) 5 ( > )

Status 4:
2,=1/2,a,=-1,b;=-1,b,=0,¢c=-1/2

1
1 X—Et

u(x,t) = —tanh
(x,1) 5 (2)

(25)

(26)

(27)

(28)

(29)

(30)

Status 5:
a,=1/72,a,=-1,b,=-1,b,=0,¢=-1/2

1
11, Xt (31)
u(x,t) = -—-—tanh
(x,t) e ( > )
x+1t (32)
11 2
.ty ==—+—tanh
vix, ) 573 ( 5 )

Status 6:
a,=-1/2,a,=12,b,=-1,b;=1,c=1%

1
X+—t 33
() = - tanh— 2 Gy
2
11 Xt (34)
V(X0 = - tanh(—2)

Kawahara equation: Let us consider the so-called
Kawahara equation (Ozis and Aslan, 2010, Wazwaz, 2006):

u +ouu, +Hu -y, =0 (35)
where, a-c 1s not equal zero arbitrary constants. Equation
36, proposed first by Kawahara (1972) and this equation
15 a model equation for plasma waves, capillary-gravity
water waves (Bridges and Derks, 2002). Moreover, this
equation characterize the water waves with surface
tension (Benjamin et al., 1972) (Table 2).

Let us now solve Eq. 35 by applymg the
homogeneous balance method. To this end, we apply the
wave transformation Eq. 2 to reduce Eq. 36 to the
following ODE:

wu' ok +Hk " vk u® =0 (36)

And integrating the resulting ordinary differential
equation once, result:

2
vk (B i = 0 37)

Balancing u* with u® yields N = 4. Consequently,
Eq. 37 has the formal solution:

u={q Jr‘:11‘“”“:12‘”2 Jrqa‘”3 Jr‘:14‘”4 (38)
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Table 2: Comparison of proposed solution with solution of (G*/G)-expansion method (Nevrame et af., 2010)

The solution of (G*/G)-expansion method

Proposed homogeneous balance solition

Ife;=1,c,=0,4=1, c=1/2 then Eq. 12 becomes

u(x,t) = -

vix,t) = -%-%tanh(

Tt c>0 then, Eq. 33 and Eq. 34 becomes

u(x,t)y=-—-

vix,t) = -%-%taﬂh(

where, q;-q, are constants such that q, # 0, now determine
the derivative of Eq. 38 and we get the following system:

1
()’ :Eqﬁ +eq, =0
(\If)l :G‘quq1 +Bq1'Cq1 'qu =0
1

(y)* :-cq, +50tqf +4Bq,-3Bq, +15vq, -
16yq, +0uq,q, = 0
(yry’ o, q; o, g, +2Bq,-10Bq, +9Bq, -
¢q,-50vq, +130vq;-81lyq; =0

1
(yr* o aug; +6Pq, -6, -21 P, +525vq,-
256vq,-330vq, +60vq, +0q,q,+0q,q, +
168q, = 0
(W) :0q,q, +0uq,q, +12Pq,-36 P, 24vq, +
336yq2-1164yq3+1476yq4 =0
()’ —thz 120vq, +1080vq,-3020vq, +
20Bq, +aq,q, =0
fury’ :otqlq4 -360yq, +2640vq, =0

() 0Lq4 840vq, =0

Selving the system of equations from () to (U)° by
using the Maple, we get:

Status 1:
9, =0, q, =0, q,=1680v/a, q;=-3360y/c, q,=1680v/c,
B=13y,c =36y
u(x, t) = IOSY-ZIOYtEth{X_%w}r
[0 0. 2 (39)
105ytanh4(x-36yt)
o 2
Status 2 A
340 1
p="2 v+f1*/~/_ 9 =0.9 =~ { +62YI~/3_1}

840/ -5 3360 1680
q; ——[—YJ’—YI\Bl} 9s :—Y= " —Y=
o |2 o o

C :Tw—ly\/_

1057 5
u(x, t) = ———Iysech
(% t) N Y 2
7V+—Iv~/_ }
105Ytanh2 ( 2 105y
o 2 o
x- (—v+—w_ )t
tanh?(
2
(40)
Status 2 B:

-1 39 840
B-" v 1Bl g, —0, l—a( LA }
840 A o 3360y 1680y
9. = o ( r-—v1 } 244 = >

[0 oL
C = Ey_gl .\/_

105 ( _125 “"23””3—1}
u(x, t)= -—Ylysech2

NEST 2

t -

-15 39
IVJ_ }

2

105V (

t |+

(41)
Status 3:
_ 1680y

72
B =13y, q, ="

| -3360y

3 > Yy
o

w0 - ”—Y-—zloytanh{—“%ﬁ}
oL oL

=qf0 q,
:1680\(,(3
oA

=367

2 (42)

105Ytanh“(X+36Y 0
o 2
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Status 4 A:

B~—W—MF%—(Y#MIW

_ -840ad o

a 829 *91\/_

840213591L g[J—O
—g+— Iov31

1 =

_ 33609

a &
_1680g
a

13
10

Fig. 1. The solitary wave 3D graphics of Eq.
for a=2,b=2k=2,x=-10, ...,

10andt=0, ..,
@Iytanhz

uix, t)= Jﬁa

&l5 39
&

g+—Ig\/ig 9

62 B+t

(43)
Status 4 B:

13, 39 13
b=

[51/- VIJB_IJ,

_ 840

1

i,

o

3360y

4

_ 1680y, _15

840( v-— IJ_]

39

10
468

15Y§
2

Irf31 1

103V p tan b (

uix, —
( N

t)=-

2

15\'%
2

105y
o

31 1

tanh® ( t |+

0

15\'%
“

Fraf31)

105y

- ( 15y 661y
o

OLJ_Ot

tH+—
(44)

RESULTS AND DISCUSSION

Graphical representations of the solutions: Maple
software 1s used to plot the obtain result. Figure 1-3 show
the graphical representation of the solution (Table 3).

Fig. 2: a) The solitary wave 3D graphics of Eq. 26 for
x=-10,..,10and t =0, ..., 10 and b) The solitary
10

wave 3D graphics of Eq. 27 for x = -10, ..,
and t =0,

. 10

Fig. 3: The solitary wave 3D graphics of Eq. 39 for ¢ = 3,
y=3,x=-10,..,10andt=0,..,10
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Table 3: Comparison of proposed solutions with solution of (G*/G)-expansion method (Wazwaz, 2006)

Solution of (G*/G)-expansion method

Proposed homogeneous balance solution

Ifp=4, v =-1/13 then Eq. 33 becomes
u(x, ty= 328 3360 n2[ x 1308 |t
13
1680 a 576
_tﬂ.ﬂ _
130 3

If v = 16/13 then, Eq. 42
u(x, ty= 328 3360 n?[ 208 |t
13
1630
——tan
130

CONCLUSION

In this research study, the homogeneous balance
method is proposed to find the an exact solution for
nonlinear equations such as the Generalized Regularized
Long Wave (GRLW) equation, the MDWW equation and
the kawahara equation. The proposed method has high
efficiency and practicality in finding exact solutions.
The obtained other
proposed methods in the lterature under special
condition. The finding that owr proposed

result was compared with
reveals
method is less complex and more efficient than the
methods used m the literature. Additionally, the proposed
method is capable to be applied to wide range of
different selected equation and the result would be
useful in different applied situation.
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