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Abstract: This study aimed to localize the elderly while moving mn a health care center or at home. Elderly
localization was achieved by using a combination of the Received Signal Strength Indicator (RSSI) of Zigbee
Anchor Nodes (ANs) and an artificial neural network. A Feed-Forward Neural Network (FFNIN) was selected
on the basis of the Levenberg-Marquardt (M) training algorithm to train, test and validate data with the
MATLAB Software. Two experiments were conducted mn an indoor environment. The first and second
experiments used three and four ANs, respectively. The effect of the numbers of ANs and neurons in each
hidden layer of the FFNN on localization error was examined in terms of statistical analyses. Results show the
better elderly localization accuracy achieved with four ANs compared with that obtained using three ANs. The
four ANs achieved a localization error of 0.232 m (for testing) and improved by 65% compared with the three
ANs. The results also reveal that the increase in the numbers of ANs and neurons can improve elderly
localization accuracy. The second experiment (four ANs) provided a lower minimwum localization error than the
first experiment. Comparison of the results showed that our proposed method outperformed the other

procedures in related literature in terms of localization error.
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INTRODUCTION

Localization techniques have aftracted considerable
mterest in the medical field on the basis of different
approaches such as Wireless Sensor Networks (WSN).
Localization 1s one of the remarkable challenges in WSNs
(Paul and Sato, 2017). Localization techniques in WSNs
play a vital role in important applications such as
person tracking, target tracking (Blumrosen et af., 2013;
Ramiro Martinez-de Dios et al., 2017), monitoring, patient
fall detection (Lo et al., 2013), environmental management
(Payal et al., 2015), wild forest areas (Zhao ef al., 2013)
and agriculture (Karim et al., 2015). For example, in sports,
tracking techniques can provide important mformation
about the movement or activity of body parts during
motion. In medicine, a precise tracking technology that
can be used in the homes of patients or at healthcare
centers can analyze fall detection of patients or elderly
people or be used for the rehabilitation of Parkinson’s
disease (Blumrosen et al., 2013; Zhang et al., 2012). In
addition, various wireless medical applications obtain
valuable information related to patient conditions (i.e.,
temperature, pressure, fall patient and heart pulse) when
accompamied by technologies that determine patient
location.

Given the various restrictions in WSN networks,
accuracy 1s one of the challenges in WSN localization
techniques (Halder and Ghosal, 2016). WSN techniques
differ on the basis of, physical location (e.g., two and
three-dimensional), types of environment (e.g., outdoor or
indoor), network topology (e.g., centralized or
decentralized remote sensing),) type of wireless protocol
(e.g., Bluetooth, Wi-Fi, Zighee or RF) and cost of
deployment. Consequently, substantial efforts have been
devoted to mmproving localization accuracy to the
centimeter scale. A battery powers the sensor nodes in
WSN applications and the amount of energy consumed
by the nodes determines the network lifespan of WSN
applications. Therefore, low-power wireless protocols
such as Zigbee or Bluetooth can be used for low-energy.
Bluetooth coverage 1s limited to a smaller area compared
with Zigbee. Wi-Fi consumes considerable power during
transmission and reception (Gharghan et al., 2016a, b).
The XBee S2C based on TEEE 802.15.4 protocol
(Perera et al., 2017) possesses characteristics such as low
power consumption within a suitable range, simple
configuration, low cost, easy usage and high scalability
(Hevrdejs et al, 2017), it is also self-configurable and
contains a Received Signal Strength Indicator (RSSI)
without adding any extra hardware. The RSSI

Corresponding Author: Sadik Kamel Gharghan, Department of Medical Instrumentation Techniques Engineering,
Electrical Engineering Technical College, Middle Technical University, Baghdad, Traq
3777



J. Eng. Applied Sci., 14 (11): 3777-3789, 2019

measurements using the Zighee Anchor Node (AN) are
appropriate for evaluating the localization or tracking of
patients (Redondi ef al., 2013).

Localization algorithms have become a substantial
requirement to enhance W3N applications by determining
the sensor node position with their absolute coordinates.
Localization approaches can be divided mto two types of
techniques, namely, traditional localization and artificial
intelligence techniques. Classical localization techniques
can be further divided into two types: the range-based
and range-free approaches (Gharghan ef al., 2016a, b).
The concept of range-based positiomng relies on either
an absolute point-to-point distance or directional
information to obtain the location of sensor nodes.
Range-based localization determines the distances or
angles between two wireless sensor nodes. A
disadvantage of this approach is that it often requires
additional hardware (Payal et al, 2015). Examples of
this approach include the Angle of Armival (Aoh)
(Tomic et al., 2017), Time Difference of Arrival (TDOA)
(Wang and Wu, 2017), Time of Arrival (TOA) (Pak et al.,
2017) and Global Positioning System (GPS) method
(Liu et al., 2018).

The TOA method utilizes the concept of TOA of
radio signal transmitting nodes. The disadvantages of this
method include the difficulty that arises in calculating the
time of flight in short distances. Establishing a highly
accurate position system also presents a problem due to
the challenges in handling time synchronization. TDOA
method also uses time of flight but requires no time
synchronization between the transmitter and receivers.
However, tlus method requires time synchromzation
among receivers. TDOA also utilizes the concept of signal
travel at different frequencies, indicating that signals
travel at different speeds. Therefore, by measuring the
difference 1n arrival time, the distance between the sensor
nodes can be determined. However, many errors exist in
the distance or location when TDOA and TOA algorithms
are used as line-of-sight and multipath effect problems
mduced by building geometry and human body
absorption, these issues result in technique complexity or
ineffectiveness of the methods for indoor positioning
systems.

GPS method depends on a series of satellites to
determine localization. This method works well in outdoor
environments but presents substantial limitations in
indoor environments, these limitations include high cost
and power consumption and the satellite’s signal
incapability to easily penetrate different types of physical
barriers (i.e., windows, walls and chairs). Thus, GPS
method 18 seldom used for indoor positioming systems
(Luoh, 2014). The RSSI method relies on the signal

strength transmitted. Previous studies have preferred this
method for year owing to its low cost localization
techmques (Zhao and Patwari, 2016) which require no
extra hardware, an antenna array nor time synchromzation
(Mahapatra and Shet, 2018). This method uses a simple
mathematical expression to express the localization
relationships among WSNs. R3SI can also be used with
Artificial Neural Networks (ANNs) (Azenha et al., 2012)
due to the nonlinear properties of RSSI and ANN.
Therefore, the RSSI m ethod is considered in this
study.

The range-free approach features low accuracy
in location detection of the wireless sensor node but is
cost-effective. The approach relies on the connectivity
among fixed nodes known as ANs and the stationary
wireless sensor or another Mobile Node (MN).
Examples of this method are weighted centroid localization
(Kaur et al., 2017), centroid localization (Chen et al., 2017),
hop-count-based localization (Sharma and Kumar,
2018) and pattern matching methods (Cheng et af., 2012).
Hop-count method is easy to plan and perform because it
can be implemented in a large wireless network. However,
the localization error will increase. Pattern matching
method 15 known for its popular fingerprint algorithm. The
fingerprint algorithm features two phases, the first phase
is called a radio map and receives signals at pre-defined
positions that are recorded m an offline database (L1 ef af.,
2016). The second phase uses a pattern-matching
algorithm that uses an observed signal online with
stored data to estimate the localization of anunknown
node.

Artificial  intelligence localization techmques,
including ANN (Zhao et al, 2014; Zhi-lkun and Zhong,
2015), Particle Swarm Optimization (PSO) (Zhao et al,
2014), Adaptive Neuro-Fuzzy Inference System (ANFIS)
(Lin et al., 2014, Gharghan et af., 2018) and fuzzy logic
(Velimirovic et al., 2012) have been employed in previous
studies. Hybrid localization techniques such as PSO-ANN
and Gravitational Search Algorithm (GSA) hybridized with
ANN (GSA-ANN) (Gharghan et al., 201 6a, b) have been
adopted recently to minimize the localization error. To
obtain an accurate prediction using an ANN Model,
considerable data from various environments should be
utilized in the training process. The model’s performance
will robustly depend on the selected input parameters.
ANNs can filter out noise as desired in assessing
localization algorithms and representing the complicated
relationships among input data and output variables with
the considerable knowledge directly obtained from these
relationships.

The feed-forward algonthm 1s generally used with
the back propagation traimng methodology which
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incorporates the standard gradient descent algorithm.
Studies often employ Feed-Forward Neural Networks
(FFNNs) that are unmecessarily complex (e.g., 3-4 ludden
layers or numerous neurons) and the network size is
occasionally neglected (Ostlin et al., 2010). Optimization
of the learning processes of neural networks improves
calculation by implementing the Levenberg-Marquardt
(LM) algorithm which helps in direct calculation of the
quasi-Hessian matrix and gradient vector without
multiplying the Jacobian matrix nor creating more
storage (Wilamowski and Yu, 2010).

Localization models based on traditional localization
techniques are computationally efficient but cannot
achieve the desired accuracy. In recent year, ANNs have
achieved more success than the previous localization
techmques. ANNs are appropriate for filtering noise
which cannot be easily and sufficiently characterized
(Payal et al., 2015; Azenha et al, 2012). We propose a
localization method that uses FFNN method on the basis
of LM traimming algorithm to obtain prediction models that
are more accurate and more computationally efficient than
traditional empirical techniques. The proposed method
measures the RSSI values from three Zigbee ANs to train,
test and validate the FFNN. The number of ANs in the
WSN and the neurons in each hidden layer of the FFNN
were investigated to improve the accuracy of elderly
localization. Our main contributions are summarized as
follows:

An accurate localization was achieved for elderly
people on the basis of RSSI and the neural network
1n an mndoor environmernt

Localization error was investigated when the number
of ANs of the WSN was increased

Localization accuracy was confirmed when the
number of neurons was increased in each lndden
layer of the neural network

The performance metrics of the proposed localization
method was explored mn terms of Mean Absolute
Error (MAE)

The proposed method outperforms previous
techniques in terms of MAE relative to the
comparative results

Literature review: Location prediction approach in WSNs
has recently received substantial attention in research. In
a study Thongpul et al. (2010), the location of a wireless
sensor node was estimated on the basis of ANN and
wavelet networks. The proposed method was used in an
electrical laboratory and implemented and assessed in real
mdoor environments. The experimental results showed
that the average location of MN error reached 0.9 m. In

harsh indoor environments such as non-line-of-sight and
multipath effect, ANN approach was employed to predict
the location of sensor nodes. In another research
Nerguizian and Nerguizian (2007), the researchers
proposed a fingerprinting technique by utilizing
wavelet-based features that were extracted with ANN for
a mobile station in an mndoor environment. Two types of
ANN algorithms were proposed, namely, the Multi Layer
Perceptron (MLP) network and the generalized regression
neural network. However, the system failed to achieve
sufficient accuracy. The system requires improvement by
increasing the number of coefficient indices, wavelet
decomposition and number of training pattermns. The
experimental results showed that the average position
error was 2 m. One study, Azenha ef al. (2012) presented
the localization of mdoor quasi-structured environments
based on MLP network method The system utilizes
hardware on the basis of the Zighee (CC2431) chip. The
dimension of a traimng grid was 5x5 m and approximately
55 points were employed within the testing area. The
experimental results showed that the average error
was 2 m.

Localization approaches were recently achieved on
the basis of artificial intelligence. Gogolak et al. (2013)
used a FFNN type on the basis of LM training algorithm
to predict the position of MNs. The experiment has
been conducted i an indoor environment. The MN
accurnulated the RSSI samples of five ANs. The RSSI data
were utilized in training the neural network. The
experiment used a Zighee wireless protocol in its WSN.
The researchers compared their results with another
method called Weighted k-Nearest Neighbor (WKNN).
The experimental study showed that the localization
accuracy of WkNN approach based on five ANs 1s better
than the ANN technique whereas the accuracy of ANN is
better than that of WkNN with three ANs. By Brunato and
Battiti (2005), a statistical learning theory for location
fingerprinting is presented. The theory utilizes
IEEER02.11b, a Wi-F1 standard based on support vector
machine. The estimated location relies on the RSSI
measurement approach. Low algorithmic complexity has
been employed as the suitable technique. However, high
localization error was recorded. The experimental results
showed that the average localization error of 3.04 m. By
Hwang et al. (2011), the researhers presented an indoor
localization technique based on ANN. The RSSI sensed
by the Zigbee/IEEE 802.15.4 module was utilized to
determine the object location. Simulation results revealed
that the proposed ANN technique yielded high accuracy,
although, the RSST sensed was unstable and the accuracy
of the polar form was better than that of the rectangular
form.
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Gharghan et al. (2018) used ANFIS to estimate the
location of a bicycle while moving on a cycle track. The
researchers utilized the RSSI of the Zighee wireless
protocol (1Le., XBee S2C) using three ANs to tramn ANFIS
in indoor and outdoor environments. The distance
between the moving bicycle (MN) and AN which was
located in the center of the cycle track was estimated.
Based on the ANFIS techmque, a 0.283 m distance error
was obtained in an indoor environment. Gharghan et al.
(2016a, b) used the hybrid techmique, GSA-ANN, to
evaluate the distance between the moving bicycle on the
track and the AN that was positioned in the center of the
cycle track. The RSSI of the Zighee was used to train, test
and validate the ANN. GSA optimization algorithm was
used to select the optimum value of the learning rate and
neurons in each hidden layer of ANN to obtain the
mimmum distance error. Consequently, the distance
estimation error improved to 0.2 m in an mndoor
environment. By Gharghan et al., (2016a, b), PSO-ANN
was used in cycling application. The RSSI of XBee S2C
was used to train ANN and accurately determine the
distance between MN (1e., bicycle) and AN. The hybrid
method accomplished minimum distance error in an indoor
environment wheremn an estimated distance of 0.208 m was
achieved.

Another study L1 ef al. (2016) adopted PSO-ANN to
improve the localization accuracy in indoor environments
using WiF1 techmology. The researchers proposed an
indoor localization scheme employing the PSO-ANN and
“Affimity Propagation (AP) clustering algorithm”. The
combination between PSO and ANN introduced less time
consuming and provided faster convergence as well
as high learning and estimation speed. The estimation
performance of the PSO-ANN is compared relative to the
common widely used methods: Backpro Pagation (BP)
ANN and k-Nearest Neighbor (KNN). The results
disclosed that the PSO-ANN outperformed the BP-ANN
and kNN in terms of localization error by 8 and 24%.
Where the PSO-ANN achieved a localization error of
1.893 m. Channel State Information (CSI) of WiF1 based
Convolutional Newral Network (CNN) for indoor
localization 1s proposed by Chen et al. (2017). The
proposed method, namely, ConFi algorithm. The ConFi
has two phases: training phase and localization phase. In
the former phase (i.e., training), the CSI is gathered from
reference points and employed for traiming the CNN
through “stochastic gradient descent algorithm”. Tn the
later phase, the CSI of the target 1s applied to the CNN
and the localization is computed as the weighted centroid
of the reference pomts with high outcome rating. The
authors compared the mean localization error of ConFi
with Deep ANN and DeepF1 (Wang et af., 2017). The
ConFi optimized the mean localization error by 21.64 and

9.2% relative to the Deep ANN and DeepFi, respectively.
However, the ConF1 presented a localization error of
1.3654 m.

The location accuracy of WSNs i1s essential for
planning wireless medical applications related to low
power consumption in WSN’s. Based on previous works
that used artificial intelligence techniques or algorithms,
the localization accuracy remains unsatisfactory for
several of these works. Consequently, in terms of an
accurate localization, a challenge exists in indoor
environments where in the estimated error must be
decreased from several meters to some centimeters. The
challenge is caused by the presence of obstacles (door,
windows and movements of people) which cause
attenuations or fluctuations in the RSSI and which
will produce errors m localization estimation. Therefore,
the previous short comings have motivated us to
employ an FFNN type on the basis of LM traming
algorithm for the improvement of the localization error
of the elderly while moving i indoor environments
based on the measurement of RSST of ANs in WSNs. We
also studied and analyzed the effect of increasing the
number of ANs and neurons in each hidden layer of the
neural network on the localization accuracy m this
research.

MATERIALS AND METHODS

Two experiments were conducted to measure the
RSSI of ANs. The first and second experiments, used
3 and 4 Zighee ANs, respectively. Both experiments
utilized the measured RSSI values to traimn, test and
validate the FFINN.

Experiment setup: In this study, two experiments were
conducted in the Electromc Lab m the Electrical
Engineering Technical College, Trag. The lab was selected
due to 1its large available area. Figure 1 shows the layout
of the WSN and the distributed ANs and MN in an indoor
environment for elderly localization. The lab featured an
area of 14x6.85 m with a free area of 86x3.23 m
considered for testing. Accordmngly, 33 locations were
used for RSSI measurements and are represented by
round poits m Fig. 1. The predefined locations were
divided into 3 groups with 3 columns and 11 rows. The
first group, Al-All, occupies the top portion of Fig. 1,
the second group, B1-B11, lies in the middle; the third
group, C1-C11, 18 found at the bottom of figure. The
distance between points or grid resolution was selected
at 0.8 m to obtamn more test points. The ANs (AN1-AN4)
were located 2.5 m away from the ground and near the
ceiling of the lab (Fig. 1). The MN was wormn by a person
moving along the predefined position points to collect
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Fig. 1: Layout of the two experiments in the electronic lab

the RSSI values from the Ans. In the first and
second experiments, the MN obtained RSSI from three
(AN1-AN3) and four ANs (AN1-AN4), respectively. The
number of ANs was mereased to 4 in the second
experiment to mncrease the elderly localization accuracy.
The experiments were conducted in similar environmental
conditions in the lab which contains electronic boards for
student teaching, measurement devices, PCs and pieces
of furniture such as chairs and table.

RSSI measurements: RSST was measured for 33
predefined pomts m the testing area of the lab.
Measurements of these pomts or locations (1.e., x and
y-axis) were determined on the basis of distance in
meters (Table 1). The tested points were located
within the testing area. The Zighee MN moved along the
33 predefined positions and collected 100 R3SI samples
from each AN at 1s for each sample. Each sample
contained 20 bytes of data packets. The ANs transmitted
the packets to the MN. The MN recorded the RSSI values
using a laptop with X-CTU Software (Erazo-Rodas et al.,
2018). The XCTU Software was adjusted to record
300 RSSI samples at each position from three ANs (100
samples for each AN) for the first experiment and 400 R3SI
samples (100 samples for each AN) for the second
experiment which used four ANs. Accordingly, 9,900 and
13,200 RSST samples were measured and recorded for
the first (three ANs) and second experiments (four ANs),
respectively. A total of 100 RSSI values were adopted to
reduce the effect of signal impairments such as equipment
and furniture, present in the electronic lab. Radio signals
are extremely sensitive to variations and reflections in
mndoor environments. Thus, the equipment, tables,

Table 1: Positions of 33 points in the electronic lab

Position {m)
Groups X v
First group
Al 2.10 0.80
A2 2.10 1.60
A3 2.10 2.40
A4 2.10 3.22
AS 2.10 430
A6 2.10 4.83
AT 2.10 5.64
A8 2.10 6.44
A9 2.10 7.25
AlOD 2.10 8.50
All 2.10 8.86
Second group
Bl J.62 0.80
B2 3.62 1.60
B3 J.62 2.40
B4 3.62 3.22
Bs 3.62 4.30
Bo 3.62 4.83
B7 J.62 5.64
B8 3.62 6.44
B9 3.62 7.25
Bl0o J.62 8.50
B11 3.62 8.86
Third group
Cl 5.24 0.80
C2 5.24 1.60
Cc3 5.24 2.40
C4 5.24 3.22
C5 5.24 4.30
C6 5.24 4.83
Cc7 5.24 5.64
C8 5.24 6.44
C9 5.24 7.25
C10 5.24 8.50
Cl1 5.24 8.86

windows and doors in the lab affected the accuracy of
localization. Figure 1 shows the 3,300 samples of RSSL
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Fig. 4: Architecture of ANN algorithm

values collected from three Ans whereas Fig. 4 shows
another 3,300 samples of RSSI values were collected
four ANs. Figure 1-4 show the fluctuation of RSSI values
due to signal impairments in indoor environments.

Neural network for elderly localization: In this study, an
FFNN type based on LM traiming algorithm was

test and validate the RSSI

employed to train,
measurements for estimation of elderly location. The
location was determined by the coordmates of the x and
y-axis. ANN was adopted to achieve minimum localization
error within a few centimeters. FFNN was implemented
using MATLAB Software 2018. The LM traming
algonthm was selected because it can achieve mimmum
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Table 2: Designed parameters of FENN

Parameters Values Descriptions

Number of inputs for first experiment 3 Three ANs

Number of inputs for second experiment 4 Four ANs

Number of outputs 2 (xand y) Linear activation function
Number of hidden layer 2 *Hyp. tan. sig. activation function
Number of neurons in hidden layerl 5,10, 20, 40 Four cases

Number of neurons in hidden layer2 5,10, 20, 40 Four cases

Learning rate 07 e

Epoch oo e

Target error =10 e

Collected RSSI for first experiment

3,300 for each AN

9,900 for three ANs

Collected RSSI for second experiment

3,300 for each AN

13,200 for four ANs

*Hyp. tan. sig.: Hyperbolic tangent sigmoid

localization error as proven by Gharghan ef al. (201 6a, b).
The LM algorithm 1s an efficient and rapidly functioming
algorithm that mamly achieves flexible traimng. This
algorithm also performs quadratic approximation to hasten
the training procedure Wilamowski and Yu (2010). The
LM algorithm was tested and used to solve for function
approximations of different problems. LM algorithm has
been proven to train ANNs faster (depending on the
problem) than that of the standard gradient descent back
propagation algorithm (Pradityo et al, 2017). When
applymg FENN to solve a specific problem, the number of
inputs and outputs, the number of hidden layers, the
nmumber of newrons in each hidden layer, learning rate,
population size and the type of activation functions used
in the neurons are remarkable parameters that must be
determined before training, testing and wvalidating the
process. Table 2 shows the designed parameters of FFNN
m our study. The number of mputs i1s based on ANs
wherein the number of inputs was 3 for the first
experiment, that is RSST 1 for AN1, RSSI 2 for AN2 and
RSSI 3 for AN3 and four for the second experiment that 1s
RSSI 1 for AN1, RSSI2 for AN2, RSSI 3 for AN3 and RSSI
4 for AN4. The output refers to the location (x and y-axis)
of MN while moving on the predefined locations inside
the testing area.

The nput and output of FFNN for indoor
environments are expressed as Eq. 1 and 2, respectively
where RSSI, denotes the RSST of kth AN for the jth sample
in Eg. 1. The x and y-axis represent the position of the
elderly nside the testing area and m indicates the entire
number of RSSI samples in Eq. 2. A total of 9,900 (first
experiment) and 13,200 (second experiment) RSST samples
were utilized for the elderly localization experiments. The
samples for the first experiment were gathered from three
ANs whereas those for the second experiment were
collected from four ANs. Among the measured RSSI
values, 70% were used for training and 30% for testing
and validating (15% for testing and 15% for validating)
FFNN:

RS8SI, RSSI, RSSI, RSSI,
Input = RS_SI21 RS_SI22 RS_SI23 RSSI,, 1)
RSVSIml RSSrlmz RSéImz RSSI_,
X Yo
Output = X:ZI y2:2 (2)
Kot Yma

Two hidden layers were selected to obtain the
mimimum localization error. One hidden layer was
excluded from this study because it failed to provide lugh
localization accuracy on the basis of our trial-and-error
test. Neurons were trained (1.e., 5. 10, 20 and 40), tested
and validated in each lidden layer to obtain mimmum
localization error. A total of 30 neurons were excluded
in our results because they yielded similar results with
another set of 20 neurons after training, testing and
validating the neural network. The selection of
learning rate, epoch and target error was subjected to the
trial-and-error process.

RESULTS AND DISCUSSION

Implementation of FFNN algorithm: After gathering the
measured RSST samples, the FFNN was trained, tested and
validated in two scenarios whereby the first and second
scenarios used three ANs (9,900 samples) and four ANs
(13,200 samples), respectively, to show the performance
of FFNN algorithm. The simulation results were
correspondingly achieved. Each scenario included four
cases (1.e., 5, 10, 20 and 40 neurons) of the 2 hidden layers
for three and four ANs as shown m Fig. 5 and 6,
respectively. The neurons for each hidden layer were
examined to determine the neurons that can vield the
minimum localization error. Figure 5a-d present the results
after traimng, testing and validating the FFNN algorithm
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Fig. 6: Fitness function versus epochs for four ANs: a) 3, b) 10; ¢) 20 and d) 40 neurons in both hidden layers

for 5, 10, 20 and 40 neurons, respectively, when three ANs
were adopted. Figure 6a-d present the similar results
observed for 5, 10, 20 and 40 neurons when four ANs
were used, respectively.

Figure 5 shows that a set of 40 neurons offers the
best solution for FFNN algorithm wherein the fitness
functions of 0.0409, 0.497 and 0.491 were achieved after
184, 225 and 76 epochs, respectively, for training, testing
and validating the proposed method as shown m Fig. 5d.
Considering the other neurcns, the sets of 5, 10 and 20
neurons obtained high error values. However, the group
of 40 neurons consumed more time than the sets of 5, 10
and 20 neurons. Figure 6 shows that the group of 40
neurons presented the best solution for FFNN algorithm

wherein the fitness functions of 0.0417, 0.0401 and 0.0408
were achieved after 188, 139 and 168 epochs, respectively,
for training, testing and validating the proposed method
as shown in Fig. 6d. Considering the other neurons,
the sets of 5, 10 and 20 neurons obtained high error
values. However, using the group 40 neurons was more
time-consuming than the sets of 5, 10 and 20 neurons. For
testing and validating, the fitness function of the four
ANs at 40 neurons improved compared with that of the
FFNN that used three ANs. Accordingly, the localization
errors were minimized.

Performance of FFNN algorithm: Figure 7 and 8
llustrate the traming, testing and validating of FENN data
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data using four ANs

for three and four ANs, respectively, when 40 neurons
were selected The actual location (i.e., the target on
x-axis) 1s plotted against the predicted location (1.e., the
output on y-axis). The correlation coefficient, R between
the predicted and actual locations serves as a good
determinant for the analysis of prediction performance
of FFNN algorithm. Figure 7 shows the R-values for
the three ANs used in the first experiment: 0.9957
(traming), 0.95 (testing ) and 0.9499 (validating). Figure 8
shows the R-values for the four ANs used in the second
experiment: 0.9958 (traming), 0.9956 (testing ) and 0.9956
(validating). The correlation coefficient results revealed a
close agreement between the predicted and actual
locations. However, the R performance of the testing and
validating data of the four ANs (Fig. 8b) 1s better than that
of the three ANs (Fig. 8c).

Elderly localization estimation: The estimated and actual
locations of the MN (elderly people) were investigated
for 33 locations in two scenarios. Figure 9a and b show
the estimated and actual locations of the MNs for three
and four ANs, respectively. The black square points
represent the actual locations in meters for 2 coordinates
(i.e., x and y-axis) whereas the red circle points indicate
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Fig. 9: Actual and predicted elderly locations based on:
a) Three and b) Four ANs
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Fig. 10: Comparison of FFNN based on LM with previous works for indoor environments

Table 3: Statistical analyses of the training, testing, and validating data on
the basis of three ANs

Table 4: Statistical analyses of the training, testing and validating data on
the basis of four ANs

Type of process/No. of

Type of process/No. of

neurons in each hidden layer MAE (m) MSE (m) RMSE (m) neurons in each hidden layer MAE (m) MSE (m) RMSE (m)
FFNN-train FFNIN-train

5 0.712 0.947 0.973 5 0.673 0.887 0.941

10 0.482 0.518 0.721 10 0.412 0.418 0.646
20 0.216 0.127 0.357 20 0.195 0.117 0.342
40 0.051 0.014 0.203 40 0.048 0.039 0.198
FFNN-test FFNN-test

5 0.851 1.391 1.179 5 0.732 1.044 1.022
10 0.734 2.797 1.672 10 0.588 0.929 0.964
20 0.684 1.194 1.092 20 0.515 1.156 1.075
40 0.674 1.667 1.080 40 0.232 0.031 0.178
FFNMN-validation FFNN-validation

5 0.897 1.527 1.235 5 0.696 1.044 1.022
10 0.794 1.832 1.141 10 0.461 0.575 0.758
20 0.725 1.246 1.116 20 0.430 0.979 0.989
40 0.693 1.244 1.115 40 0.313 0.387 0.622
the estimated locations. Figure 9a shows the number of ANs on localization error. Table 3 and 4

considerable difference between the actual and predicted
locations. However, the differences were mimimized and
convergence increased between the predicted and actual
locations when four ANs were considered as shown in
Fig. Sb. The four ANs exlubited lugher accuracy than the
three ANs. Therefore, we can conclude that the increase
in the number of Ans improves localization accuracy
(Fig. 10).

Statistical analysis of elderly localization: Tn this
subsection, the results of prediction location for two
experiments are mvestigated mn terms of statistical
analysis. Three types of statistical analyses were
considered to evaluate the accuracy of elderly
localization: MAE, Mean Square Error (MSE) and Root
MSE (RMSE). These statistical analyses were adopted to
prove the results and to show the effect of mcreased

presents the statistical analysis parameters (MAE, MSE
and RMSE) obtained on the basis of three and four ANs,
respectively. The statistical parameters were computed for
3 FFNN processes (Le., traimng, testing and validating).
Each process was calculated for 4 different cases of
neurons in each lidden layer (1e., 5, 10, 20 and 40
neurons). Table 3 shows that the elderly localization error
18 lngher for the cases of 5, 10 and 20 neurons compared
with that for the case of 40 neurons. However as shown
in Table 4, the localization error was minimized to
0.232 (MAE), 0.031 (MSE) and 0.178 m (RMSE) for the
testing data for the case of 40 neurons when four ANs
were used relative to the same parameters and neuron
cases when three ANs were employed. The elderly
localization error improved when the numbers of neurons
and ANs increased. When four ANs and the case of 40
neurons of FFNN were adopted, the MAE of elderly

3786



J. Eng. Applied Sci., 14 (11): 3777-3789, 2019

localization improved by 6.2% (training), 63% (testing)
and 54.83% (validating) compared with those of the three
ANs based on Eq. 3:

Localization

B (MAEBANS -MAE
1mprow. MAE

4alls )Jx 100 (3

3JANs

Comparison with previous researches: Elderly
localization method using three and four ANs was
compared with those mn previous studies (Fig. 10). The 16
reliable studies (Luoh, 2014; Azenha et al., 2012; Chen et
al., 2017; Sharma and Kumar, 2018; 1i et al., 2016;
Gharghan et al., 2018; Thongpul et al., 2010; Nerguizian
and Nerguizian, 2007, Brunato and Battiti, 2005, Kumar
et al., 2014; Bras et al., 2013, Moreno-Cano et al., 2013,
Rahman et al., 2012, Irfan ef ai., 2010; Mestre ef af., 2011,
Tewolde and Kwon, 2011) were compared with our work
in terms of the MAE of elderly localization. The
comparison was conducted to validate and support
our adopted FFNN-based R3SIs of the ANs. Most the
studies adopted artificial mtelligence techmiques for
localization purposes. In addition, the afore mentioned
previous works localized the nodes on the basis of
the RSSTs of Zighee WSN in indoor environments. The
comparison results indicate that elderly localization
based on FFNN using three and four ANs is superior to
that of other methods m previous studies with MAE
reaching 0.674 (three ANs) and 0.232 m (four ANs) when
using 40 neurons (Fig. 10).

CONCLUSION

This study presented an elderly localization method
using a combmation of the FFNN-based LM algorithm
and RSSIs of Zighee ANs. Two experiments were
conducted m the Electronic Lab m the Laboratories of the
Electrical Engineering Techmical College. The first
experiment adopted three ANs distributed inside the
testing area of the lab whereas the second experiment
adopted four ANs. Two hidden layers were used in
training, testing and validating the FFNN. Four sets of
neurons (5, 10, 20 and 40) for each hidden layer were
examined to evaluate the elderly localization accuracy.
The results show that when the number of ANs and
neurons mereased, the elderly localization accuracy can
be improved. In terms of statistical analysis, the
localization accuracy based on four ANs is better than
that based on three ANs for all the cases of adopted
newrons. The comparison results also show that our
proposed method outperforms other studies in terms of
MAE. Future researches will focus on the practical
unplementation of FFNN on the basis of the obtained
RSSIs in real time. Tn addition, other hybrid technicques
that use FFNN and optimization algorithm can be
evaluated to further improve the elderly localization
aceuracy.
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