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CNN Architectures for Hand Gesture Recognition using
EMG Signals Throw Wavelet Feature Extraction
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Abstract: This study presents the implementation of 3 convolutional neural network architectures for the
recognition of hand gestures by means of electromyographic signals. The acquisition of signals 1s done by
means of electrodes located in the forearm and the development platform specialized in biomedical signals
MySignals HW V2.0 which will be applied a pre-processing of the signal by means of the Wavelet Packet
Transform (WPT) for the feature extraction. The architectures that are proposed have as input base to the
network the map of features obtained by the wavelet power spectrum with which the database of training and
validation was constructed. Finally, in the tests perform in real time, the first archutecture reached an accuracy
of 93.8325%, the second architecture, reaches a degree of accuracy of 95.8824% and finally, the tlurd
arclutecture reaches an accuracy of 96.4706%. This means that the architecture with the highest accuracy
performs better when it comes to recognizing gestures, even with small databases.

Key words: Deep convolutional neural network, EMG signal, wavelet power spectrum, discrete wavelet
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INTRODUCTION

Electromyography (EMG) signals have been the
subject of study after the discovery of diseases caused
by the neuromuscular system. Therefore, an EMG signal
provides the mformation necessary to diagnose a
neuromuscular disease or some damage caused by an
mjury to any of the muscles of the body. However,
researchers and scientists have taken advantage of these
signals by implementing them for the control of
prostheses (Cipriani ef al., 2008, Romo et af., 2007) and
robotic manipulators (Fulkuda ef af., 2003). In other words,
they are electrical signals that are generated by the
various (Na’, K', Ca™, Cl, etc.) ions (Cardinali, 2007) that
are present in the muscle during the flexion and
contraction movements which can be monitored by 2
techniques. The first technique is invasive through
electrodes mnserted inside the muscle, mamly used for the
study of deep muscles which consists of stimulating the
muscle with small electrical impulses and observing the
behavior of the muscle before the discharges. The second
is through non-invasive electrodes, using surface
electrodes that allow the study of muscle activity in
dynamic actions m other words it allows simultaneous
analysis of different muscles in movements.

Monttoring  of EMG  signals then allows
discrimination of muscle failures but also characterization
of intention of movement of a person. For this it is
necessary to use pattern recognition techniques, framed

within Artificial Intelligence (AI) algorithms, currently
these have been focused on deep neural networks which
correspond to a model inspired by the functioning of the
brain which analyzes information as a deep architecture,
for example, 5-10 layers of processing for wvisual
information (Serre et al., 2007). By its layered learning
architecture, this techmque allows to reach several levels
of abstraction and to obtain remarkable results in the
recognition of patterns (LeCun et al., 2015). A specific
algorithm of deep learning are the Convolutional Neural
Networks (CNN) defined as multi-layered, trainable
structures which guarantee with their convolution filters
a learning of specific characteristics during each level of
the network.

Recently, the development of applications to create
human-machine interfaces, presents reductions in the
performance of the results, due to a poor implementation
in the process of extraction of characteristics of the
corporal signals. Because of this in Englehart ef af. (2001)
they focus an investigation on the recognition and
classifications of EMG signal patterns, the technique is
based on the implementation of the wavelets functions for
the analysis of the main characteristics of the signal, the
results show that the myoelectric control has a greater
precision when four channels are implemented, however,
the increase of channels could cause delays m the
response.

On the other hand, the investigations focused on the
processing of EMG signals using CNN for the recognition
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of patterns, just begin to be explored. By Park and Lee
(2016), a decoding method adaptable to each user to
obtain the mntention of movement 1s proposed using EMG
signals for the portable rehabilitation of upper limbs where
they use a CNN network to predict 6 different hand
movements. By Atzori et al. (2016), they use a simple CNN
architecture, consisting of 5 convolution layers where
they conclude that the architecture 1s successful,
although with an accuracy of 66.59+6.4%, due to the large
number of patterns that they seek to recogmize.

Taking into account the above, the contribution of
the present study is to evaluate 3 CNN architectures for
the recognition of gestures, implementing a technique
specialized in feature extraction with the purpose of
umproving the input of the network and m this way and in
this way, to improve the precision i the recogmtion of
the network.

MATERIALS AND METHODS

The surface Electromyography signals (EMGs) are
one-dimensional patterns, so, any technique of extraction
features 13 applicable to this type of signal (Romo et al,
2007). The acquisition of the signals is performed
using the MySignals HW V2 card (Anonymous, 2017),
obtaining a continuous signal that expresses the
behavior of the muscle by the voltage variation before
a movement as a function of time.

Thus, for the development of an algorithm
capable of recognizing hand gestures based on EMG
signals, the electrodes should be placed in the
muscles where hand movements predominate, using the
methodology presented in Fig. 1. Figure 1 shows the
steps of capture of the signal its digitalization to a
computer, processing by means of MATLAB for feature
extraction and the training of the convolutional neural
network evaluated by means of confusion matrices. These
steps are described as follows.

Signal acquisition: The EMG signals are generated by the
muscular contraction which leads to an analysis of the
muscular region mvolved in the movements caused
by the gestures to be classified. Derived from this, the
short radial extensor muscle of the carpus is chosen as
shown in Fig. 2a. Therefore, it is necessary to malke a
correct placement of the electrodes as shown in Fig. 2b
and it must have a reference electrode or ground
which should be located m a place where it i1s not
affected by the gestures as it is presented in Fig. 2c. It is
important to emphasize that the EMGs signals are
collected by non-invasive surface electrodes, made up
of an electrolytic gel layer responsible for increasing
the conductivity and achieving a better adhesion on

the skin.
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Fig. 1: Blocks diagram of operation of the algorithm
developed

Hand gesture recognition: According to the muscular
group chosen, a group of gestures are set that will be
recognized and clagsified. A previous analysis of these is
important to establish which are the movements
associated to the location of the electrodes which will
allow a better extraction of characteristics. Throughout
this work, the gestures presented in Fig. 3 are used.

Signal preprocessing: For the analysis of EMG
signals it 1s necessary to perform a pre-processing
to elimmate noise and to be able to extract the
real characteristics of the same for its classification
(Romo et al., 2007). By Phinyomark et al. (2011) a
in the pre-processing stage 1s
presented, applying the wavelet denoising algorithm
technique which allows to achieve an increase in the
precision of the recognition of EMG signals between 50
and 60%. Next, the basic concepts of this technique are
presented which are basis for the suppression of noise n
this research.

case of success
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Fig. 2: Location of the electrodes on the forearm: a) The
posterior region of the forearm 1s seen where the
short radial extensor muscle of the carpus is
illustrated; b) The location of the 2 electrodes that
acquire the signal is shown and c¢) The third
electrode 1s shown

Fig. 3: Hand gestures: a) “Close-fingers” gesture; b)
“Fist” gesture; ¢) “Wave-in" gesture and d) “Gun”
gesture

Fig. 4. Wavelet decomposition tree (Phinyomark et af.,
2011) where S represents the Signal input, T
the Low pass filter, H the High pass filter, cA
Approximation c¢D  Detail
coefficient

coefficient and

Feature extraction using discrete wavelet transform
Wavelet Packet Transform (WPT): The WPT is
developed by a modification of the Wavelet Transform
(WT) responsible only to decompose the approximations
(Low frequencies) of the signal In other words, if the
most important features of the signal are in the details
(lugh frequencies) this method could cause loss of
information (Shinde and Hou, 2005). The WPT consists of
passing the signal through several levels which is
recommended to determine by means of a signal behavior
branch (Misiti ef af., 2017).

It is important to emphasize that in the first level the
approach obtains new details and approximations as
presented m Fig. 4, thus, achieving a better resolution n
frequency which in turmn allows to increase the quality of
the features of the signal (Misiti et al., 2017).

Mother wavelet function: The mother wavelet is a
necessary function to implement the WPT its choice is
made identifying the best correlation that it has with the
signal under study. Tt is associated with the mother
wavelet function Daubechies (dB) (Daubechies, 1992)
which 15 defined from dB 1-45. This order is determined by
the behavior of the function, for example, Fig. 5 shows the
behavior from dB 2-10. This function is mainly applied in
low order configuration (dB 1-20) (Wu and Liu, 2008).
According to the above, the Daubechies function is
chosen with an order 7 (dB 7), according to the correlation
with the EM@ signal that it has.

Wavelet packet spectrum: This package is responsible for
processing the coefficients provided by the WPT where
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Fig. 6: Wavelet packet decomposition “Packet spectrum”

it performs the following processes: first, extracts the
coefficients from the WPT terminals and converts them to
absolute values. Second, it determines the length of time
corresponding to each wavelet packet coefficient and it
fills the time slots between neighbors by creating a vector
of length equal to the first level of the wavelet packet tree
object (Misiti et al., 2017).

CNN architectures

Architecture of a convolutional neural network: CNN
architectures are mainly designed for the recognition of
patterns in 1mages as presented by Knizhevsky er al.
(2012). On the other hand for the recognition of gestures
from EMG signals, they present greater difficulty in not
having defined parameters as dimension and object to be
recognized but they require to work with much more
complex patterns that make difficult to create an efficient
architecture i comparison with the high efficiency that
the CNN architectures oriented to images.

Dataset: The network to be implemented must be able to
recognize the 4 gestures shown in Fig. 3 and 6, 1.e., each
one 18 a classification category m the network output.
For this, the EMG signal 15 acquired for a time interval of
1 sec, sufficient time to contain the information necessary
to test the performance of the CNN. The network enters a
database preprocessed by feature extracting through the

wavelet packet transform and Wavelet Power Spectrum
(WPS) 1s in charge of processing the mformation
extracted from the WPT (Wavelet Packet Tree) with the
objective of recreating the characteristics map,
presented and processed as a matrix. In which it is
clear to appreciate the information of the coefficients in
each one of the frequency bands (Fig. 6), presenting
variations of tone in the violet to blue scales. Where
the violet presents greater activity in the band and the
highest values in the coefficients and blue presents null
activity. It 1s going to use for generates the feature map
(Fig. 6) that will be entered mto the network (mput).

The WPD provides a time-frequency decomposition
of a signal in the mammer illustrated m (Fig. 6), the
time-frequency plane with rectangles of different size
means that energy components of the signal within
different rectangles of specific time and frequency
coordinates can be discerned. Accordingly, the rectangles
are an indication of the optimal resolution achieved by the
time-frequency. The WPD stipulate an octave-based
decomposition of the frequency domam and gives good
frequency resolution in the lower frequencies. Also, the
WPD provides a useful time resolution m the lhigher
frequencies that gets worse as it pass through to lower
frequencies.

Architecture implemented: Three different architectures
were 1mplemented to test thewr performance in
gesture recogmition. It 18 mmportant to clanfy that all 3
architectures used the same training database.

Architecture 1: This arclutecture consists of 3
(Convolution/Rel.U-Convolution/ Rel.Ul-Max Pooling)
packages for feature extraction with a padding of 2 in the
first package and 1 m the others with the objective
of not losing information of the corners and edges in the
first convolutions. Finally, 3 fully-connected layers are
used. Table 1 it is possible to better appreciate the
construction of architecture where S is Stride and P is
Padding.
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Table 1: Architecture 1

Table 3: Architecture 3

Tyvpes Kemel #Filters Type Kemel # Filters
Input 8x31 - Input 8x31 -
Convolution/ReL U 5x5 5=1 P=2 18 Convolution %5 §=1 P=2 18
Convolution/ReLU Sx4 5=1 P=2 36 Convolution 54 g=1 P=2 36
Maxpooling 2 Maxpooling 2 §=2 P=0 -
8=2 P=0 - Convolution 3x5 s=1 P=1 72
Convolution/ReL.U 3x5 5=1 P=1 72 Convolution x5 §=1 P=1 108
Convolution/Rel.U 35 §5=1 P=1 108 Maxpooling 1x2 §=1x2 P=0 -
Maxpooling =2 §=1=2  P=0 - Convolution 33 §=1 P=1 288
Convohition/Rel. U 33 83=1 P=1 288 Convolution 3x3 S=1 P=1 576
1(\Iﬂomrolult_lonf’ReLU 3;3 z = é g = é 576 Maxpooling 9 g=2 P=0 R
axpooling - - . Fully- ted/ReLU 1 2880
Fully-connected/ReL.U 1 2880 y-connec €
DropouLayer 0s Dropoulayer 0.5 -
Fully-connected/ReLU 1 2880 Fully-connected/Rel.U 1 2880
Dropoulayer 0.5 -
DropouLayer 0.5 -
Fully-cormected 1 -
Fully-connected 1 - Softm 4
Softmasx 4 - olmax .
- . .
. i Training accur
Table 2: Architecture 2 : Accuray o 9_ < acy
Tvpes Kemel #Eilters o
Input 8x31 - " Vaidation accuracy:
Convolution 5x5 s=1 P=2 18 ,-."_'. - little overfitting
Convolution Sx4 §=1 P=2 36 ,a:f ;
Maxpooling 2 8=2 P=0 - /”H |
Convolution 3x5 5=1 P=1 72 & _— i -
Convolution 35 g=1 P=1 108 ;/' Validation accuracy: strong overfitting
Maxpaoling 1x2  §=1x2  P=0 ; B
Convolution 33 83=1 P=1 288
Convolution 3%3 5=1 P=1 576
Max pooling 2 5=2 P=0 -
Fully-connected/ReL.U 1 2880
DropouLayer 0.5 -
Fully-connected 1 -
Softmax 4 - Epoch -
Architecture 2: This architecture consists of 3 Fig. 7:Behavior of traming accuracy (Johnson and

(Convolution-Convolution-MaxPooling), packages with
a padding of 2 in the first package and the others of 1,
ending with 2 fully-connected layers. Table 2 it can be
seen the construction of architecture in a better way.

Architecture 3: This architecture consists of 3
(Convolution-Conv olution-MaxPooling), packages ending
in three fully-connected layers, as set in Table 3.

In order to obtain the best training behavior of each
of the implemented networks it is necessary to first
understand the graph traiming accuracy presented in
Fig. 7 which allows to determine in the first instants 1f the
training can present overfitting. However, 1t 1s important
to monitor their behavior during traiming, to discriminate
if the network is learning over the epochs.

Secondly, the behavior associated with the loss
training, presented in Fig. 8 should be analyzed. This
allows to determine in its first data if the chosen learming
rate 18 adequate for the training. This also allows
validating 1f the network is actually learning or is
experiencing a decrease in learning loss.

Architecture training and wvalidation: Each of the
proposed architectures was trained with a previously
processed dataset composed of 180 samples per category

Karpathy, 2017)

Very high learning rate

Low learning rate

Fig. 8 Behavior of training loss (Johnson and Karpathy,
2017)

for a total of 720 training samples. According to the above
it is important to note that the proposed architectures
reached 100% training accuracy but the architecture that
best behaves 1s architecture 3 as shown m Fig. 9,
compared to the architectires 1 and 2 that present a
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Fig. 9: Traiming accuracy and traiming loss: a) Architecture 1; b) Architecture 2 and ¢) Architecture 3

slower learmning and with greater training loss. The
main difference of the architectures lies in that the
configuration of the architecture 3 does not use the
Linear Rectification function (Rel.UJ) among its
convolution capable and in turn consists of three
layers of fully-connected at the end.

Considering the above 1t will be used the successful
architecture 3. Figure 9 shows the behavior of the training
accuracy graph which begins to leam from the earliest
epochs and reaches its first 100% accuracy around the
200 epoch where it reached its stabilization m the 450
epoch having a suitable behavior to discard overfitting.
On the other hand, traming loss shows that effectively the
network is learning with the passing of the epochs and
the behavior of the graph shows that the learming rate
chosen is adequate.

Taking into account that it was obtained an accuracy
of =95%, the validation of the network is performed, 1.e.,
A database 1s made under the same conditions with which
the dataset training base was acquired but in this case
with a smaller amount and is assigned the name test,
composed of 85 samples per category for a total of 340
samples.

The implemented validation technique corresponds
to the confusion matrix Fig. 10 which is designed to
evaluate the behavior of the network with a database
different from that of training. This consists of rows
corresponding to the predicted category (Output class)
and columns that show the corresponding real category
(Target class). The diagonal cells show the true positives
of the category and finally, 1.e., the comrectly classified

Confusion matrix

77 2 4 0
22.6% 0.6% 1.2% 0.0%
0 79 3 0 96.3%
0.0% 23.2% 0.9% 0.0% 3.7%
v
=
S 8 3 78 0 87.6%
al 24% 0.9% 22.9% 0.0% 12.4%
3
0 1 0 85
0.0% 0.3% 0.0% 25.0%

Target class
Fig. 10: Validation confusion matrix
members of the category in the lower right comer, the

overall accuracy of the network in the recogmtion of the
database 1s shown.

RESULTS AND DISCUSSION
First, to evaluate the behavior of the feature
extraction, Wavelet Discrete Transform (WDT) is used.

Applying the wavelet packet transform tree which is
presented in Fig. 11 where for each gesture two graphs are
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Fig. 11: Wavelet packet tree description: a) Close-fingers; b) Wave-in; ¢) Fist and d) Gun gesture
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Fig. 12: Wavelet packet tree: a) Approximation coefficients and b) Detail coefficients
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Fig. 13: Wavelet power spectrum behavior: a) Close-fingers; b) Fist; ¢) Wave-in and d) Gun

illustrated: to the left side, the frequency decomposition
that makes the tree before the input signal and to the right
side, the behavior of the signal applying the tree of
frequency decomposition.

Next, Fig. 12 shows the behavior of the signal for
each level of the wavelet packet tree. For example, to
observe the behavior of the gesture close-fingers it is
decomposed into approximation coefficients as shown
in Fig. 12a and the detail coefficients, illustrated in
Fig. 12b in charge of determining the frequencies in
which the most important characteristics of the signal are
found.

In the second place, after decomposing the signal
and obtaming the approximation coefficients and the
detailed coefficients, the packet spectrum is applied which
allows to do the reconstruction of the signal from the
coefficients and in this way, determine the frequency
bands in which the greatest number of features are
accumulated as can be shown in Fig. 13 which 1s
characterized in the range of purple tones presenting a
greater tone in the frequencies where there is greater
activity. Also it fades its color in the frequencies with
lower activities until presenting a blue tonality that
presents mactivity.

Thirdly, the feature map 1s entered into the proposed
network and the network validation is performed with the
“test” database Fig. 14, obtaining a 96.5% of accuracy,
from where it is possible to observe the percentage of
accuracy in the recognition of each one of the categories.
According to the above, the lowest accuracy with a 91.8%
for the “Gun” gesture, may be caused by 2 important
factors: first with the gesture “Fist” by the similarity of the

Confusion matrix

Close-fingers

Fist

Output class

Gun

Wave-in

1 2 3 4

Close-fingers  Fist Gun Wave-in

Fig. 14: Validation of the architecture 3

gesture in which simply a movement variation is done
in 2 fingers of the hand, this similarity is evidenced
in the map of features in Fig. 13¢, d. Second with the
gesture “Close-fingers” does not present similarity in
the gesture but there 15 activity of the same muscles
with small variations of force when making each
gesture, this similarity is evidenced in the feature map
i Fig. 13a, b.

Fourth, the performance of the architecture 1s
determined by evaluating the degree of membership with
which the gesture was recognized, considering that the
validation of the network 1s performed in real time by
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Table 4: Gesture recognition results
Degree of membership (0-100%%)

Tests  Close-fingers (%) Fist (%) Wave-in (%) Gun (%)
1 99.988 100 100 99.844
2 100 99.969 100 99.875
3 99.998 99.994 100 91.495
4 100 99.676 100 82.831
5 100 99.799 100 54.190

means of 5 repetitions per gesture, thus obtaining the
percentage of accuracy and the recognition label of the
gesture performed (Table 4).

Finally, after the analysis of the three architectures
that have been implemented it was obtained as a result
that architecture 1, reached an accuracy of 93.8325% and
arclitecture 3 with the same configuration unlike it was
not built with ReLU activation functions between its
convolution layers, reached the highest accuracy
percentage with 96.4706% of accuracy.

On the other hand, the architecture 2 obtamned an
accuracy of 95.8824% while the architecture 3 which
reached the highest percentage with a similar architecture
with the difference that in the end consists of 3
fully-connected, allows to evaluate the importance of
this last layer m the analysis of the characteristics
obtained by the last layer of convolution, obtaining
better performance applying 3 layers fully-connected
mncreasing the percentage of effectiveness ma 0.6%.

CONCLUSION

The results obtamned through techniques based on
deep learning for the recognition of patterns have
revolutionized several fields of engineering. For this
reason, this techmique 18 applied to the processing of
signals, more specifically in EMG signals, allowing the
development of much more efficient and functional
devices. For example, contribute to the development of
protein devices or robots focused on tele-operation.

The 3 architectures proposed are novel, since, they
were not wnplemented in previous studies, satisfactory
results were obtained for the 3 architectures reaching a
percentage of accuracy >90%. However, it is important to
emphasize the techmque of feature extraction
unplemented, since, this technique allows to evaluate ina
more detailed way the behavior of the signal in different
frequency bands, managing to capture to the minimum
details that allow to differentiate a signal from the
other.

On the other hand, the implementation of the 3
architectures has allowed to evaluate 2 important points:
First, the function ReLU, although, theoretically
converts the negative values to 0. In this case, for signals

where its feature map does not contain negative
values but if very close to 0 it would be recognizing them
as 0, generating a significant loss of the mformation
evidenced in the efficiency of the network Second,
the importance of fully-connected in this type of
architecture, since, the similarity of signal behavior is
high and success 18 i the greater recognition of
characteristics that differentiate one signal from the
other. Tt was necessary to implement 2 fully-connected
specifically to learn a greater number of characteristics
and a third one for connection with the softmax and final
classification.

IMPLEMENTATIONS

Considering the results obtained, convolutional
neural networl architectures for the recognition of
gestures can be implemented in applications such as limb
rehabilitation, neuromuscular disease recognition, protein
device construction or man-machine mteraction for the
control of a teleoperated robot.
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