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Abstract: With the rapid growth of the software industry, reliability research on software has the biggest impact
on system reliability and software quality improvement. In this study, we compared and analyzed the attributes
of the software reliability model dependent on the life distribution of the Type-2 Gumble model and the Erlang
Model with Goel-Okumoto Basic Model. Software failure time data were used to identify software failure
phenomena and the maximum likelihood estimation method was used for parameter estimation. As a result in
terms of the intensity functior, the Type-2 Gumble Model showed a tendency to decrease as the failure time
progressed compared to the Goel-Okumoto Basic Model indicating that it was an efficient model but the Erlang
Model increased inversely. In the pattern of the mean value function, the Type-2 Gumble Model showed some
overestimation pattern compared to the true value but the error width was smaller than the Erlang Model. In
addition as a result of comparing reliability by applying future mission time, the Type-2 Gumble Model was
stable with the Goel-Okumoto Basic Model but the Erlang Model showed a decreasing tendency. Through thus
study, we have newly analyzed the attributes of software reliability on Type-2 Gumble Model without existing
research examples and Erlang Model widely used in reliability field and it was able to present new research
mformation that software developers could use as basic guidelines.
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INTRODUCTION

With the rapid development of the information
technology industry, the scale of computer software
systems 1s constantly expanding and complicated.

For this reason, the study on software reliability has
the greatest unpact on system reliability and software
quality improvement. Software reliability, defined as the
probability that the software will function normally
without failure for a specified amount of tume mn a
particular environment is the most important software
quality standard (Yamada and Osaki, 1985).

Over the past twenty years, many software reliability
models based on the Non-Homogeneous Poisson Process
(NHPP) have been proposed for software failure
processes to predict software reliability. Tn other words,
to estimate the reliability attributes such as the number of
residual faults and the failure rate, a software reliability
model based on NHPP using the defect intensity function
and the mean value function in the controlled test
enviroment was developed and proposed (Song ef al,
2017; Yang and Park, 2015). Yamada and Osaki (1985)
stated that the results of the mean value function can be
estimated using the maximum likelihood estimation
method while Huang (2005) presented and explaned a
graph showing the confidence interval of the mean value

function. In addition, Zhang and Wu (2012) proposed
software reliability cost model based on software
reliability model and software failure time.

In this study, based on the finite-fault NHPP Model,
we have newly analyzed the attributes of the software
reliability model based on the life distribution of the
Type-2 Gumble Model without existing research examples
and the Erlang Model widely used in the reliability field in
addition to the Goel-Okumoto Basic Model and then
present new research information through analysis of the
proposed model.

MATERIALS AND METHODS
Related research
Type-2 Gumbel Model; Finite failure NHPP: The
intensity function: A(t) sand the mean value function m(t)

of the NHPP whose life distribution follows the Type-2
Gumble distribution are as follows (Yang, 2015):
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Therefore, using the the Eq. 1 and 2, the
log-likelihood function of the finite-fault NHPP Model

for parameter estimation can be derived as follows
(Tae-Tin and Jea-Gun, 2016):

InL e (Bx) = nln6+nlna+nlnb-

- - T —@e—bzn "t (3)
(aﬂ)ElnX1 —be1
1=1 i=1

In this study, we consider the case of shape
parameter a = 2. The partial derivatives of 6 and b are as
follows:
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Therefore, the maximum likelihood estimator &, and
by satisfying the following the Eq. 4 and 5 can be
estimated by a numerical method.

Erlang Model; Finite failure NHPP: The Erlang
distribution 1s the life distribution of the Gamma famaly
widely used n the reliability field. The probability density
function and the cumulative density function considering
the shape parameter a and the scale parameter b are as
follows (Goel and Okumoto, 1979; Yang, 2018):

_ b a-1_—tt &)
£ty = F(a)t e )]

o 0 (Bt
F(t) _(1 ¢ EUT} (7
Note: a, b=0, a = 1, 2, 2, .., te[0, «]. In this study,
we consider the case of shape parameter a = 2. The
log-likelihood function to Maximum Likelthood Estimation
(MLE) by using the Eq. 6 and 7 18 derived as follows
(Tae-Tin and Jea-Gun, 2016).
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Note: x = (0<x 1<x 2<, .., <x n, ® is parameter space.
The partial derivatives of 8 and b are as follows:

% 5 ey =0 O
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Therefore, the maximum likelihcod estimator 8,,; and by
satisfymg the following the Eq. 9 and 10 can be estimated
by a numerical method.

Goel-Okumoto Basic Model; Finite failure NHPP: The
Goel-Okumoto Model 1s a well-known basic model in this
field. Let f(t) and F(t) for the Goel-Okumoto Model
(Goel and Okumoto, 1979) be a probability density
function and a cumulative density function, respectively.
Assuming that the expected value of the number of
failures of the observation point [0, t] is 6, the finite fault
strength function and the mean value function are as
follows (Yamada and Osaki, 1985):

A, b) =Bf(t) =Bbe ™, ®>0,b>0>0 (1)
m(t8, b) = BF(t) =61 —e ™) (12)

Considering the failure time data up to the n® and the
Eq. 11 and 12, the likelihood function of the finite-fault
NHPP Model is derived as follows (Song ez al., 2017):

L(8, bjx) = [ﬁebebm }exp[—e(l —e) | (13)

Note: x = (0<x_1z2x 2¢, ..., <x_n The likelihood function,
using the Eq. 13 is simplified to the following log
conditional expression:

InL ;.. (8/x) = nlnB+ninb-b 2 x, —0(1- e o) (14
k=1

Therefore, the maximum likelihood estimators &,,; and
by Tor each parameter satisfy the following conditional

eXPIession:
2 =1-exp( an) (15)
3 _
n « - ~
5 = 2 x,+0x_ exp(-bx ) (16)
1=1
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Table 1: Software failure time data

Table 2: Parameter estimation of each model

Failure Failure Failure Failure time
No. time (h) interval-time (mx10?
1 30.02 30.02 0.30
2 3146 1.44 0.31
3 53.93 22.47 0.53
4 55.29 1.36 0.55
5 58.72 3.43 0.58
6 71.92 13.20 0.71
7 77.07 5.15 0.77
8 80.90 3.83 0.80
9 101.90 21.00 1.01
10 114.87 12.97 1.14
11 115.34 0.47 1.15
12 121.57 6.23 1.21
13 124.97 3.40 1.24
14 134.07 9.10 1.34
15 136.25 2.18 1.36
16 151.78 15.53 1.51
17 177.50 25.72 1.77
18 180.29 2.79 1.80
19 182.21 1.92 1.82
20 186.34 4.13 1.86
21 256.81 70.47 2.56
22 273.88 17.07 2.73
23 277.87 3.99 2.77
24 453,93 176.06 4.53
25 535.00 81.07 5.35
26 537.27 2.27 5.37
27 552.90 15.63 5.52
28 673.68 120.78 6.73
29 704.49 30.81 7.04
30 738.68 34.19 7.38

Algorithm 1; The proposed analysis algorithm:

The analysis algorithm of the proposed software reliability model is as
follows:

Step 1: Validate the software failure data collected through the Laplace trend
test analysis

Step 2: Calculate the parameters (@, ) for the proposed model using the
Maximum Likelihood Estimation

Step 3: Calculate coefficient of determination (R?) and Mean Square Error
(MSE) for efficient model selection

Step 4: Anatyzes the transition (m(t), A(t)) of failure time for true values and
reliability (R(t)) for future mission times

Step 5: Provide research information on the optimal model by anaty zing the
attributes of the proposed model

After analyzing the attributes of the proposed model
using the above steps, we present information on the
model that software developers need. Tn order to realize
this process, we were assayed as follows:

Let compare and analyze the attributes of the
proposed reliability models using the software failure time
data (Prasad et al., 2011) (failure time information) as
shown in Table 1. Laplace trend test was used to verify
the reliability of the software failure time data (Yang,
2018).

RESULTS AND DISCUSSION

As aresult of this test in this Fig. 1, the laplace factor
between -2 and 2 appears confidence growing by
reliability growth properties. Therefore, using this data, it
1s possible to estimate the time to failure time.

Model cormparison

Models MLE- MSE R?
Type-2 Gumbel §=130p13852 b= 0.6960 254057 0.91%
Erlang 0=30.5978 b = 0.0079 454879 0.8558
Goel-Okumoto & =133 4092 b = 0.3000 5.84240 0.9814
Failure number
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0 lo—L 1 1 1 1 1 1 ] 1 1 1 1 1 1
g -05
&
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3
%
3 -1.5
-2,0

Fig. 1: Estimation results of Laplace trend

In this study, mumerical conversion data (failure time
[h]*10%) in order to facilitate the parameter estimation was
used. These calculations, solving numerically, the mitial
values given to 0.001 and 3 and tolerance value for width
of mterval (10°) given using C-language checking
adequate convergent were performed iteration of 100
times. And The Maximum Likelihood Estimation (MLE)
was used to perform parameter estimation. The results of
the parameter estimation are shown in Table 2.

Explanatory notes: MLE = Maximum Likelihood
Estimation, MSE = Mean Square Errcr, R* = Ceefficient of
determination.

As the basis for determining the efficient model,
the Mean Square Ermror (MSE) 15 defined as follows
(Chatterjee and Singh, 2014; Zhang and Wu, 2012):

> (mx) - i, )’ an
n-k

MSE =

Note that, m (x,) 1s the total accumulated number of
errors observed within time is (0, x)), m (x;) is the estimated
curnulative number of errors at time x. obtained from the
fitting mean value function, n is the number of
observations and k is the number of parameters to be
estimated. In efficient model selection, the smaller the
mean square error, the more efficient the model.

The coefficient of determination (R*) can measure
how successful the fit is in explaining the variation of the
data. It 1s defined as:

RE 1o 2imi@OO R g
Dl (mix) -1 m(x, )
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Fig. 3: Transition of intensity function

If the coefficient of determmation 1s large in
comparison, the error is relatively small and becomes an
efficient model (Yang, 2017). As shown in Table 2, we can
see that the Type-2 Gumble Model is more efficient than
the Erlang Model. But, the Goel-Okumoto Model has the
largest coefficient of determination and the smallest mean
square error 18 more efficient than the other models.

Also, Fig. 2 shows the transition of Mean Square
Ermror (MSE) according to each failure number. That 1s in
this figure, the Type-2 Gumble Model shows better
estimates than the Erlang distribution model in the
total number of faults. In this figure, similar to the
Goel-Okumoto Model, the mean squared error of the
Type-2 Gumble Model shows a trend of decreasing with
time which is more efficient than the Erlang Model in
terms of fitness.

Figure 3 shows trends in the strength function which
is the instantaneous failure rate. The Type-2 Gumble
Model shows the greatest decreasing tendency as the
failure time passes indicating that 1t 1s an efficient model
but only the Erlang Model shows an increasing
pattern.

Figure 4 shows the pattern trend for the mean
value function. In this figure, the Erlang Model has
underestimated significantly from the difference between

— ErlANg 0 sseees Type-2 Gumble
GOoel-OKUMOLD e Real value
30
25
20
T 15
10
5
0 s
S2NBE23I58RIE588 ¢
~N O S O~ © I~ LD§
SEBREEHIBEREE S
o O O o L e | - N N ~
Failuretime

Fig. 4: Pattern of mean value function
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Fig. 5: Transition of reliability

the true values but the Type-2 Gumble Model has a
slightly overestimated pattern from the difference between
the true values. That is, the Type-2 Gumble Model is more
efficient than the Erlang Model because the error width 1s
estimated to be small.

A software failure occurred at the time of testing
X, = 7.3868 of the NHPP Model and which is the
probability that a software failure does not occur between
confidence interval (x, x,+7) (where T 1s the mission time
at future), reliability 15 derived from the Eq. 19 as follows
{Chatterjee and Smgh, 2014; Zhang and Wu, 2012):

f{(’c|xn) =e— _[ X:*‘m)dr = exp[—{m{t+x, ) - m(x,)}]

(19)

As shown m Fig. 5, the Type-2 Gumble Model and

the Goel-Okumoto Model show a higher reliability trend

than the Erlang Model in which the reliability decreases
with the mission time i the future.

CONCLUSION

After quantitatively modeling the attributes of failure
or failure occurrence phenomenon during software testing
or actual software use, analyzing the usefulness of
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software can provide a relatively efficient reliability
assessment. In this study, based on the finite-fault NHPP
Model with software failure time data, we compare and
analyze the software reliability model of the Type-2
Gumbel Model and the Erlang Model which depends on
the lifetime distribution, together with Goel-Olkumoto
Basic Model.

The results of this study can be summarized as
follows: first in terms of intensity function, the Type-2
Gumble Model shows the most efficient model as the
failure time decreases as compared to the Goel-Okumoto
Basic Model but the Erlang Model increases inversely.
Second in the pattern of the averaged value function, the
Erlang Model underestimates the error from the true value
and the Type-2 Gumble Model shows a slight
overestimation pattern. However, 1t 13 found that the
Type-2 Gumble Model is more efficient than the Erlang
Model because of the small error margin.

Third m the reliability, the Type-2 Gumble Model and
the Goel-Okumoto Basic Model show stable and high
reliability trends. On the other hand, Eralng Model shows
that reliability decreases with the failure time. As a result,
through this study, along with a new analysis on the
attributes of the proposed model without existing research
examples, we were able to provide the research
information that software developers can use as basic
design guideline.
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