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Existence and Uniqueness of Weak Solution for Quasilinear Problems with a

p(x)-Biharmonic Operator
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Abstract: In this study, we show the existence and umqueness of weak solution of a problem which mvolves
the p(x)-biharmonic operator with some different bound-ary conditions. The proof of the result is made by
Browder theorem and the theory of variable exponent Sobolev spaces.
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INTRODUCTION

In recent years, increasing attention has been paid to
the study of diffrential equations and variational problems
involving variable exponent. The interest in studying
such problems was stimulated by their various physical
applications. Indeed, there are many applications
concerning nonlinear elasticity theory and in modelling
electrorheological uids (Acerbi and Mingione, 2005
(Diening, 2002; Halsey and Martin, 1993; Ruzicka, 2000)
and from the study of elastic mechanics (Zhikov, 1987)
and raise many difficult mathematical problems. After this
pioneering models, many other applications of
differential operators with variable exponents have
appeared 1n a large range of fields such as image
restoration (Chen et /., 2006) and mathematical Biology
(Fragnelli, 2010).

Fourth order elliptic equations arise in many
applications such as micro electro mechamcal systems,
thin film theory, thin plate theory, surface diffusion on
solids, mterface dynamics, flow in Hele-Shaw cells and
phase field models of multiphase systems (Danet, 2014;
Ferrero and Wammault, 2009, Myers, 1998) and the
references therein There 1s also another important class
of physical problems leading to higher order partial
differential equations. An example of this 1s
Kuramoto-Sivashinsky equation which models 1 pattern
formation in different physical contexts such as chemical
reaction-diffusion systems and a cellular gas flame in the
presence of external stabilizing factors (Wang and

Canessa, 1993). Numerous researchers investigated the
existence and multiplicity of selutions for the problems
involving biharmonic, p-biharmonic and p(x)-biharmonic
operators.

We refer the readers to Afrouzi and Sholkooh
(2015), Heidarkham et al. (2017), Heidarkhani (2012),
Bisci et al. (2014), Ym and L (2013), Yucedag (2015)
and the references there in. In this research, we

consider the following problems inwvolving p(x)-
biharmonic.
Navier problem:
(=)-
As(x) u+ep(x)‘u‘p 2u:f(x,u(x)) (1)

forxe Qu = Au = Oforx € 0Q2

Neumann problem:

Al Py = Fixuix))forx e ©Q

(2)
g—'” = ai(‘Aqu(X)'zAu):Oforx €00
iV iV

u+ep(x)‘u

No flux problem:

A u-s-ep(x)|u|p(X)'2 u =fxu(x)forxe Q

2

piz)

u = constantAu =0 forxe BQI a—u(|Au‘)l°(X)'2 Au) 3)
52

ds = Oforxe dQ
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Steklov problem:
'Ai(x) u=e (X)‘UF(XH u forxe 9Q
(4)
(|AU|)F(X)2 Q_ g(x, u(x)forxe 0Q
v
Robin problem:
A% =1(x, u, G0) forxe 80 (Auy @ 2L 4
plz) 2 - (5)
m(X)‘UF(X)_Z u=0forxe oQ

where, QcR" is a nonempty bounded domain with a
sufficient smooth boundary 3€2 and v is the outward unit
normal to Q. A’ u: = A (JAu))* ®” Au) is the, so called
p(x)-biharmonic operater of fourth order, peC (2 with
l<p: =inf,, 5 p(x)< p(x)<p”: =sup,. 5 p(x), L€ CL=EK)
geC (OQxR), e, O-Rel” (1) is a real function with
e, = inf . ep(x) > 0: and m: 3Q-ReL" is a real function
with m- = inf_,, m{ x)>0.

that elliptic equations involving the
px)-biharmonic equations are not trivial generalizations of
similar problems studied in the constant case, since, the

Precise

p(x)-btharmomc operator 15 not homogeneous and thus,
some techmques which can be applied i the case of the
p-biharmomic operators will fail in that new situation such
as the Lagrange Multiplier Theorem.

To our best of knowledge, there seems few results
about umqueness of solutions to p(x)-biharmonic
equations. Although, a natural extension of the theory,
the problem addressed, here is a natural continuation
of recent papers. By Allaow et al (2015) for the
p(x)-Laplacian problems, researchers have obtained
existence and uniqueness of weak solution which
generalizes the corresponding result by Abdelkadery and
Ourraouiz (2013), Afrouzi et al. (2009) and Khafagy (2011)
for the case when p 1s constant.

Motivated by the above papers and the ideas
mtroduced by Afrouzi ef af. (2009), the purpose of this
research 1s to extend the results by Allaoui ef al. (2015) to
the case of p(x)-biharmonic operator with some different
boundary conditions. Our technical approach is based on
Browder Theorem and the theory of variable exponent
Sobolev spaces. More precisely, we assume f (x,u) and g
(x, u) satisfies the following hypothesis:

¢+ (H) f and g are carathodory functions which are
decreasing with respect to the second variable

* (H,) there exist positive constants b, ¢, (1=1, 2) and
q € ClQ), re C (&) such that:

i, O < b +b, [, aexe Qte D
[, 0] < by by

And:
|gx, B <+, |t\’® , aexsdtel
Where:
1< q(x)<supq(x)=q’ <p’
XELL
And:

1<r{x)<supr(x)=r <p
=]

(H)f(x, O)#0gx 0020

The goal of this study 1s to prove the following result

Theorem 1.1: Suppose that f and g satisfies the
Hypothesis (H,-H,). Then the problems (1.1)-(1.5) have a

unique weak solution
MATERIALS AND METHODS

Preliminaries: In this study, we introduce some notation
that will clarify what follows. Thus, when we refer to a
Banach space X, we denote by X" its dual and by (., .) the
duality pairing between X' and X. By ||, we denote the
absolute value of a number or the Euclidean norm when it
is defined on RN(N=>2).

For the reader’s convenience, we recall some
background facts concerming the Lebesgue-Sobolev
spaces with variable exponent and ntroduce some
notation. For more details, we refer the reader to
Radulescu and Repovs (2015), Radulescu (2015) set:

CHQ):={h:he (Q) and h(x)>1, vxe O

For p(x)eC+(£)), define the variable exponent
Lebesgue space L™ (Q) by:

p(X)dX<°°

Q) {u : £ — [ measureable and I|u(x)
&

We define a norm, the so-called Luxemburg norm on
this space by equation:

| Ulyge, = inf {8 0:]] % [p(x)dx <13

And (L*® (Q), u| , ;) becomes a Banach space and we
call it variable exponent Lebesgue space. Define the
variable exponent Sobolev space W= ® () by:
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W) = fue BP(Q)| Due P (Q),|of <m]

Where:
a\al
=1
ax L oxpr

.

D™

With ¢ = (¢, , dy)1s amulti-index and |o/= %" o, .
The space W=?@ (Q), equipped with the norm:

HuHm,p(x) = E ‘Dmu|p(x)

|eel=tn

Becomes a separable, reflexive and uniformly convex
Banach space. When e (x) satisfies e gLe(€2) such that
e, = ess inf xeR" e (x>0, we defined the weighted varaible
exponent Lebesgue space I2¥ (Q) by

“aix)

1 is a measurablereal-valued funcion,
LPE(T)) (Q) —

_[g e, (X)\u(x)\p(x)dx <o
With the norm:

u(x)

X
B

p(=)
A {Epo:jg € dx< 1}

Then obviously L% (2) is a Banach
(Cruz-Uribe et al., 2011). Now, we denote:

space

X =W Q)W ()

where, W/ (2) denote the closure of ¢;{Q) in W=*®
(Q): For ueX, we define:

plx)

(z)
Au(x) +o,(x)

p

u(x)

pix)
|u|epinf{B>O:_|‘g[ desu

Clearly, we observe that X endowed with the above
norm is a separable and reflexive Banch space.

Remark 2.1: From Zang and Fu (2008) the norm |[ul|; ,, 18
equivalent to the norm |Aul,, m the space X
Consequently, the norms |[ul; .. |ule,
equivalent. For the rest of this study, we use ||ulle, instead
of ||ull, e on X

In order to discuss problem (1.3), we need to choose
a variable exponenet space that is more appropriate for
our study than the ones presented in the previous part.

and |Aul,, are

Therefore, w e introduce the following subspace of
W (Q):

X = fue W™ (0Q): 0w/ = constant}
Notice that X can be viewed also as:
X ={utc:ue W Q) WHE(Q), ce D}

and the (X, ||.|w**® (Q) is separable and reflexive Banch
space ([6, Theorem 4]).

Proposition 2.2; Repovs (2015): The conjugate space of
LM () is L"® (Q) where ,q(x) is the conjugate function of

P (%), 1e:

1 +—1 =1

PR qlx)
1 1
o] S - Dol i S 2 1Bl

Proposition 2.3; Repovs (2015): Let p(u) = [, [uf¥dx.
For w, 1,17 (), we have:
[ < (5201 & plw) <(=2)1

p(x

- +
lulm>1=u |g(x)5 p(u)=lu |§(x)

|0,y <1 =0 E7, < p(w) < ulsy,

p(x) p(x)—

[, L= 0= p,)—0

[u, L= plu,)—ee

From proposition 2.3 for ueW**® (Q) the following
inequalities hold:

s < [ (| au P ve, (x) fuf™ e <[ ul if [ufl, >1
luler< [ (1 au P se, (x) lu P ax <[ u | if u]l, 21

For all xeQ and k=1 denote by:

Np(x)

Py () =  Nokp(x]
+oo forkp(x)=N

for kp(x)<N
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Proposition 2.4; Repovs (2015): For preC,( @) such that
n(x)< . (x) for all xe @ there is a continuous and compact
embedding:

WA (0) 5 1)

Lemma 2.5; Fan and Zhao (2001): If f @ xR-R is a
caratheodory function and:

lx) —
|f(x s)[<a(x)+bjs/*®, ¥(x,s)e Q0

where, pl(x)eC{ @), a(x)eL™® (), p2(x)>1, a(x)20 and b=0
is a constant then the Nemytskii operator from T.F*®(Q)
defined nby Nf{u)(x) = f(x, u(x)) 1s a continuous and
bounded operator.

Definition 2.6 : For simplicity, let X = W?> 2 (Q) n W&
(), WH() or (W22 (Q) 1 W, (Q) oR.

We say that a function ueX is a weak solution of (1.1-
1.3)1f:

nlx)-2

.L.; A (x)]

Au{xjAu(x) dx+L e,(x) \u(x)\p(x)'zu(x)'u(x) dx =
Lf(x, u(x))'l)(x)dx

We say that a function veX 1s a weak solution of
Steklov problem (1.4) if:

(=}-2 «)-
L|Au(x)|p Au{x)Av(x) dx+jgep(x) u(x)F u{x)u(x) dx =
mg()g u(x))'l)(x) dx
We say that a function ueX 1s a weak solution of

Robimn problem (1.5) if:

-2

[LAu( ™ Au(xjAu(x)dx[_m(x) ()P 2u(x)u(x)dx =

Lf(x, u(x))u(x)dx

hold for all veX.
Define the operators T, I, K and L: X-X* by:

o) = [ JAu ()" Au(x)Av(x) dx

0= [, (u(x) u(xu(x)dx

for all v, v €X and we define the operator T: X-X* by:

(T(8). ) = (K(u). o) #a{3(w), ¥)-D{E(w), v)(L(w), )

4], m{x)lu(x)F () u(x)dx

Theorem 2.7; Leray and Lions (1965): Let X be re exive
real Banach space. Moreover, let T : X-X* be an operator
which 1s: bounded, demicentinuous,
monotone on the space X. Then the equation T(u) = f has
at least one solutionu € X for each f € X* . If moreover, T

coercive and

is strictly monotone operator then for every f € X* the
equation T(u) = f has precisely one solutionu e X .

Definition 2.8: T.et X be re exive real Banach space. An
operator A X-X* verifies:

(A(u)-A(v), u0)20

for any 1, veX is called a monotone operator. An operator
A 18 called strictly monotone if for u # v the strict
inequality holds m (2.3). An operator A 1s called strongly
monotone if there exists C>0 such that:

(A(u)-A(v), u-v) > Clu-vlf,

for any u, veX.
RESULTS AND DISCUSSION

In this study, we prove our main result by using
Browder theorem. We see that, ueX 1s a weak scolution of
(Eq. 1-5) if and only if T(u) = 0 in X* with a-d checking
some conditions in each equation. to prove the result we
show that T satisfies the assertions of the theorem (2.7).
Next, we split the proof in several steps.

Step 1: We prove that T is bounded in fact, let [[u]|,, M:
Since and J are the Frechet derivative of the

. 1 .
functional Iﬂ}](l—X)|Au(x)|P‘x’ and [ e e r

respectively and then I with J are bounded. We have
some deduction for [,.mcou ™ iz Moreover, form
proposition (2.2) and lemma (2.5) there exists C,>0 such
that:

K x*= sup Law,v) |

Ieli= 1
< sup 2[ | [Vl
ol =1

sG]

pi=)
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Similarly, in view of lemma (2.5) there exists C,;>0 such
that:

LG [|x* < C, [g] Ly, (952)

So, L is a bounded operate.

Step 2: We prove that T 1s continuous. We have I and J
are continuous operators because that are the Frechet
derivative of the functional [2 sr5lartar™ drand Ja 2o

(X) e
(x)|u(x)F™ dx respectively therefore [ and J are continous.
On the other hand, let (u,), € X be a sequence such that
u,_ u. Using the compact embedding of X into L *® (Q)
there exists a subsequence, noted also (u,),, such that u,_
uinL *® (). According to the Krasnoselki’s theorem, the
Nemytskn operator:

N, = 10 (@) - LI% (yurs f(u)
qx)-1

qix)
q(=)-1

mn view of the Holder’s in equality and the continuous
embedding of X into L ** (Q) we obtain:

Ts continuous. Hence, N; (1) -~ Ny (0) in ¢ (). Also,

{Leum)} L, = If, (F(xu, Heuoeody
<2, N | v <

qx)

C N (u, )N
[ NeCu, )N () 201

Tvle,

Thus, K (u) - K ) in X',

Further, it is known that the Nemytskii operator N u
~ g (x, 1) is a continuous bounded operator from L™® (902)
into L %(am and analogously, 1. is completely
continuous. Step 3: we prove that T is strongly monotone.
We recall the elementary in equality for a.p eR"™:

la-Bly <2v(|a )P odBy-2B(op)  ify=z2

\ Ot-Blzii(l o HEY (o™ oA Blap)  ifl<y<2

where. Denctes the standard inner product in R". Let us
define the sets of Q dependent on p:

U, ={xe Q:p(x) >2}

Vi={xe Q:l<p(x)<2]

Now, we show that T+7T is strongly monotone. Indeed:

{((T+D(W-(1+)(v)),u-u = j@q Au PP Auy | Au PP AD

(Au-AU)dx+IQ(\ u P& uuPEu)u-v)dx
By help of the elementary inequality (3.1), we get:

(| AP +HuuP )t

DI+ (v),u-u) =
(DD w), uu) 2 " zp( D

2-p(x)
(P(X)'l)_l.vp | A(u-v) [P [|AI1—A'UJ

| Au | +HAy|

Since, the fact that:

2-pl)
< | Au-Auv | <1
Au|+|Av|
2-0(x)
<[ 1ol <1
[u] +[v]

(| Aw-0) 2 +) [u-v P )+
Up

and:

It then comes:

((T+D(-I+TX0), v-u} 2

(P'-l)_llvp(\ Afu-v) P® +uuf® )dx

From proposition 2.3, taking ¢, = min {1/2", p-1}.
Hence, T+ is strongly monotone (Zeidler, 2013). Since, f
is decreasing with respect to the second variable, then:

{K(u)-K(v),u-v} :_[Q(f(x,u)—f(x,v))(u—u)dx <0
Also:
(L(u)}-l('l)),u-'l) = J.m(g(x,u)-g(x,'o))(u—u)dx <0

Consequently, T is strongly monotone. Step 4 we
prove that T is is coercive for all ueX, we have

wethera=b=1=,¢c=d=0:
H H {Tu,u)= H Hj (|Au‘9()+m(X)| p(x))dxf foouudy >
Bl
H ” (mm{ pzp}—Cl Ep)

Ifa=c=1,b=d=0, we have:

3307



J. Eng. Applied Sci., 14 (10): 3303-3309, 2019

H H {Tu,u)= H HI (|Au‘p()+ep(x)|u|p(X))dX-IQg(X, udx >

" Hmm{ Julle:, 2l @ el
I H(mm{uu\ p., e} [ule, |
Fora=c¢=0,b=d=1:
|ul||m(Tu,u> =ul|ij(Au P me )dX-IQf (xujudx >
“:1_|mm{|u||p;n, olps}-2l8]  ful, . 2

1 ) B
W(MH{HUHM Jupad ol )

With [[ull,, =
It means that the coercivity of T holds. The previous
steps guarantee the existence of solution of the problems.

| sy HMEU) 00 18 equivalent to |[ulle,.

For the umiqueness of weak solution for problems studied,
suppose that u and vthat u # v. By the strong
monotonicity of T, it follows that:

0= (TU-T'U,U-'U> 2C [lu-v|f20

Then u = v and the proof now is completed. This
solution cannot be trivial provided that we suppose
fix, 0)# = 0 and g(x, 0) # 0 because in this case T(0) # 0.

CONCLUSION

The proof of the results 1s made by Browder theorem
and the theory of variable exponent Sobolev space.
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