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Abstract: Visual tracking has become one of the most important components in computer vision as the
knowledge 1in thus field can be applied into a wide range of applications in computer vision such as medical
imaging, pattern recognition, video surveillance mndustrial robot, computer-human nteraction, etc. A lot of
researches have been conducted and many types of state-of-the-art methods and modifications such as sparse
representation, online similarity learmng, self-expressive, spatial kemel phase correlation filter and others are
proposed m order to increase the robustness of the tracking. Despite of many methods has been demonstrated
successfully but there are several issues that still need to be addressed. There still have some unsolvable
difficulties in which they become a challenging task to track an object effectively and robustly and it will tend
to decrease the accuracy of the results and hence. Until now, there are still no perfect algorithm to track the
target flawlessly. In order to wmprove the performance, the main idea proposed 1s mmplementing optimization
technicue on the selected parameters and obtain a better performance. In this research, the tracking is proposed
by using the Overlap Ratio (OR) and Centre Location Error (CLE). In our case, our target is to obtain a better
accuracy which 1s higher OR and lower CLE than the result from the algorithms available in public. A simple
optimization 1s used in here where the global best results with respect to the value of the parameters are selected
through a range of values defined in our research. Through the optimization, the overall OR is increased to 0.554
and overall CLE is decreased to 19.803 pixels. Thus, the proposed method had increased the accuracy and
robustness of the visual tracking on many of the video sequences.
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INTRODUCTION

Visual tracking is one of the research field in
computer science that increases in popularity due to the
importance to many applications in computer vision such
as medical 1maging, pattern recognition, video
swrveillance industrial robot, computer-human interaction,
etc. Basically, the main objective of visual tracking is to
estimate and locate the target objects in consecutive
video frames.

In general, the basis working principle of visual
tracking 1s after inputting a video sequence, we require a
description for the object to be tracked. For example,
shape, colour model, texture or others can use to be the
template image of the object. Next, some context is applied
mto the object as implementing a good and proper
integration of such context information into a tracking
framework will bring some positive effects to visual
tracking. After context information integration, the
classifier classifies the image patches, then updated from
time to time which is also known as online learning in

order to handle and adapt the new appearance changes in
the subsequent frames. These steps are repeated to track
the object and stop when it reaches the last frame of the
video.

Although, wvisual tracking has been studied for
several decades but it is remainming as a challenging topic
to be researched as mainly due to abrupt object motion,
appearance pattern change, non-rigid object structures,
occlusion and camera motion. And thus, there are no a
single comprehensive method to handle all these
destabilizing factors where these destabilizing factors
are mainly consist of 11 attributes which are shown in
Table 1 with description respectively (Wu ef al., 2013,
Yang et al., 2011).

In recent years, different algorithms have been
proposed m order to solve the challenging 1ssues. One of
the methods is choose the right features or the most
desirable property of a visual feature in order to be
distinguished in the feature space easily. So, feature
descriptors are playing an important role in selecting the
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Table 1: The 11 attributes annotated to test sequences with threshold values provided

Name Description

Illumination Variation (I'V)
Scale Variation (SV)
Occlusion (OCC)

Deformation (DEF) Non-rigid object deformation
Motion Blur (MB)

Fast Motion (FM)

In-Plane Rotation (IPR) The target rotates in the image plane

Out-of-Plane Rotation (OPR)
Out-of-View (OV)
BRackground Clutters (BC)
Low Resolution (LR)

The illumnination in the target region is significantly changed
The ratio of the bounding boxes of the first frame and the current frame is out of the range [1/t,, t], t. =1 (,=2)
The target is partially or fully occluded

The target region is blurred due to the motion of target or camera
The motion of the ground truth is larger than tm pixels (t, = 20)

The target rotates out of the image plane

Some portion of the target leaves the view

The background near the target has the similar color or texture as the target

The number of pixels inside the ground-truth bounding box is less than (t, = 400)

right features. For instances, gradient feature is proved to
have advantageous in human detection (Dalal and Triggs,
2005; Sabzmeydam and Mo, 2007); colour features which
are robust against certain photomatic changes, texture
features where texture is used to measure the intensity of
a surface and quantifies properties such as smootlness
and regularity (Fergus er af., 2003; Shotton ef af., 2009,
Winn et al., 2005), spatio-temporal features which used as
representation for action recognition and visual detection,
multiple features fusion which 1s more robust for image
and video retrieval, visual tracking and detection
Despite these feature descriptors, visual tracking still
requires online learning based tracking methods to handle
appearance varlations of a target object. Online learming
1s required in for the tracker to adapt these appearance
changes, adjust and update to new situations from time to
time. There are 2 types of appearances variations which
are intrinsic (pose changing, shape deformation) and
extrnnsic (occlusion, camera motion, camera viewpount and
illumination variation). Thus, these appearance variations
must be handled by the online learning algorithm which is
divided into 2 categories:
discriminative method.

generative method and

Appearance model: Generally, generative online learning
method will learn the appearance of the object, then 1t will
update online on the object model n order to adapt the
appearance changes. Adam et al. (2006) represented the
target using integral histogram and robust in target with
partial occlusions or pose changes. Ross et al. (2008)
presented an appearance-based tracker to gradually learn
a low dimensional Eigen basis representation for tracking
the target that with changing pose, illumination and
appearance from time to time. Ross ef af. (2008) Model 1s
satisfying but it will encounter drifting problem. Jia et al.
(2012) implemented a template update strategy which
incremental subspace learning and sparse representation
are combined together. The adaption of the template
reduces possibility of dnfting and the effect of the
occluded target template.
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Bao et al. (2012) proposed by adding an 12 norm
regularization on the coefficients associated with the
trivial templates mto a new 11 norm related mimimization
meodel, it can achieved a better tracking accuracy than
other 11 tracker, (Mei and Ling, 2009; Mei et al.,
2011). Mei and Ling (2009) casted the tracking as a sparse
approximation problem in a particle filter framework and
achieved a very promising tracking result. Mei e al.
(2011) presented a new approach known as Bounded
Particle Resampling (BPR)-L.1 tracker to enhance the
template updates by detect occlusions and lessen the
drifting problem.

Liu et al. (2013) proposed a new selection-based
dictionary learning method known as K-selection and
modelled the target appearance by using a sparse coding
histogram based on a leamed dictionary. By this way, it
can adapt to appearance changes and drifting problem is
reduced. Liu et al. (2010) proposed a two stage sparse
optimization to mimmize the reconstruction error of the
target and select a sparse set of features to maximize the
discriminative power. Tian et al (2015) gathered the
sparse coefficients of all patches in an object into a
histogram based on their spatial distribution. The
candidates are predicted for object verification during
tracking by using particle filter methodology. Sparse
coding is implemented to evaluate degree of changes of
the appearance model and thus reduced the drifting
problem.

Cheng et al. (2015) had conducted both generative
and discrimmative trackers under the particle filter
frameworle. Commeon method implemented by Cheng et al.
(2015), Na et al. (2012), Liu ef al. (2010, 2013), Me1 and
Ling (2009) and Tian et al. (2015) is utilizing sparse
representation to represent the target and their research
prove that sparse representation s more powerful tool to
handle and analysis appearance representation during
online tracking where 1t had overcame many challenging
attribute such as heavy occlusions, illumination changes
and pose variation. L1 ef al. (2016a) embedded “Online
Reconstruction Error Prediction (OREP)” into the TVT
(Ross et al, 2008) framework to predict appearance
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reconstruction error and proven that OREP greatly
mnproved the performance of some video sequences as
compared with Bao et al (2012) and Ross et al
(2008).

Meanwhile, discriminative learning method required a
classifier to be trained and updated online to differentiate
the object from the background. It 15 also known as
tracking-by-detection because it requires the user to
manually identify the target in the first frame to generate
a set of features of target. Then, another separate set of
features 1s generated automatically to describe the
background. Next, the target will be separated from the
background m the subsequent frames. Similarly, it must be
updated continuously to handle the appearance changes.

Support vector tracking (Avidan, 2004) proposed
SVM to optimize the classification score by generating a
Gaussian pyramid from every support vector, known as
“Support Vector Pyramid” to account large motions in the
image plane. The experiment shows that it performs better
in long period of vehicles tracking. Babenlko et al. (2009)
proposed online MIL algorithm for object tracking and
achieves promising performance with real-time tracking.
Henriques et al. (2012) proposed Fourier analysis that
capable for extremely fast learning and detection with the
fast fourier transform. Closed-form solutions for training
and detection with several types of kernels including the
popular Gaussian and polynomial kernels are derived and
the algorithm achieved competitive performance.

Yang et al. (2014) proposed superpixels in an
appearance model that gives flexible and effective
mid-level cues to distinguish the background and the
foreground target. This model is more capable to handle
the situations with big changes of pose and scale, shape
deformation, occlusion and camera shake. Zhang and
Song (2013) presented online Weighted Multiple Instance
Learning (WMIL) to integrate the sample importance into
the learning procedure, compute a new bag probability
function that combines the weighted instance probability.
Patras and Hancock (2010) presented a discriminative
framework that coupled the predictor to a probabilistic
classifier to predict the target accurately.

Yuan et al. (2014) proposed a robust
superpixel-based tracker via depth fusion, developed
sufficient structural information and high flexibility of
mid-level features, depth-map’s discrimimative ability for
the target and background separation, thus generated
stronger discriminative ability. Fan ez al. (2014) presented
a supervised approach to learn and update a structured,
sparse and discriminative representation that alternating
between robust sparse coding and dictionary updating.
Zhuang et al. (2014) presented Discriminative Sparse
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Similarity map (DSS map) to find the candidate with
highest score in the evaluation model based upon a matrix
and thus, obtain the best tracking results effectively.

Chen et al. (2016a) presented a robust Discriminative
Local Collaborative (DLC). DLC encodes the candidates
by an efficient local regularized least square solver with
the 12 norm mimmization by using the local image patches
of both the target templates and the ones on the
background cooperatively. Yang et al. (2016) applied
Laplacian Regularized Least Squares (LapRLS) to leam a
robust classifier for exploiting unlabelled data and
preserving the local geometrical structure of the feature
space adequately.

Qian and Xu (2016) presented Subclass Discriminant
Constramt (SDC) for visual tracking. The SDC searches
for a discriminative subspace to allow linear separation of
image blocks that connected with the object and the
background. Two dictionaries are constructed and learned
i such subspaces for tracking and detection. A
transformation matrix and sparse coefficient codes are
being found out during dictionary learning. The similarity
between the target candidate and the template is
determined over sparse coefficients according to the
histogram mtersection.

Correlation filter: Correlation filter based tracking
(Bolme et al., 2010) utilized filters trained on example
images to model the appearance of objects. The object is
initially selected by a tracking window that centred on the
object in the first frame. By correlating the filter over a
search window m next frame tracking and filter traming
collaborate to track the target. Next the new position of
the target i1s indicated from the location respective to the
maximum value in the correlation output. Based on this
new location, appearance variation 1s updated online.
Fourier domain Fast Fourier Transform (FFT) is applied to
compute correlation to generate a fast tracker.

Zhang et al. (2016) presented spatial kernel phase
correlation based tracker (SPC) that only implements
phase correlation filter on adoption of the phase spectrum
to estimate the object’s translation. SPC achieves
favourable tracking performance as it 1s more robust to
noise and cluster. Liu er al. (2016b) presented a part-
based representation tracker via kemelized correlation
filter for visual tracking and Spatial-Temporal Angle
Matrix (STAM) that used to select reliable patches from
parts via multiple comrelation filters to obtamn stable
patches effectively. Combination of this framework
increases the diversity of affine matrices and related
candidates.

Chen et al. (2016b) proposed a patch based tracker
which adaptively integrates the kernel correlation filters
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with multiple effective features to handle occlusion
challenges. The effective patches are selected by using an
adaptive weight selection scheme and thus, mmproves
the robustness of algorithm. L1 ef al. (2016a, b) presented
a multi-view correlation tracker where multi-view model
fuses various features and more discriminative
features 1s selected. Fast traiming and efficient target
locating provided by correlation filter framework had

enhanced stability of scale variation tracking.

Others state of art method: Sevilla-Lara and Leamed-
Miller (2012) proposed Distribution Fields (DFs) to buld
an 1unage that allows smoothing the objective function
and the information about pixel values is keep intact. DFs
descriptor has the advantage on slow changes in
appearance and pose and minor occlusions. Zhang et al.
(2012) proposed Compressive Tracking (CT) to
preserve the structure of original image space based on
non-adaptive random projections. By adopting a very
sparse measurement matrix, features from the foreground
and background targets are compressed efficiently.
Generative and discriminative appearance models are
combined in CT algorithim te encounter for scene
variations.

Grabner et al. (2006) presented an on-line AdaBoost
feature selection algorithm that has an advantages on its
capability of on-line training, allowing the adaption of the
classifier while tracking the object. Thereby appearance
changes of the object such as out of plane rotations,
illumination changes are handled effectively. Oron et al.
(2015) proposed Locally Orderless Tracking (LOT) that
will estimate the amount of local (dis) order in the target
automatically, allows the tracker specific in both rigid and
deformable objects on-line without prior assumptions.

Dinh et al (2011) proposed auto exploration on the
context nformation mn two semantic terms which are
distracters and supporters by using a sequential
randomized forest an online template-based appearance
model and local features. The tracker able to handle
some challenges 1n tracking i
environments with abrupt motion, occlusion, motion
blur and frame-cut. Grabner et al. (2008) proposed a
novel on-line semi-supervised boosting method to reduce

wncontrolled

drifing problem in tracking applications. The update
process is formulated in a semi-supervised fashion as
combined decision of a given prior and an on-line classier
without adjusting any parameters.

Kwon and Lee (2010) proposed visual tracking
decomposition scheme that efficiently highlights the
object with drastic changes of motion and appearance or
both. Zhuang et al. (2016) proposed a shallow and deep
collaborative model that collaborates generative model to

296

construct a local binary mask for handling occlusion
tracking and a discrimmative classifier to learn generic
features. Cooperation between of these two models is
more favourable to overcome occlusion and target
appearance change.

Hu et al. (2016) proposed a Deep Metric Learning
(DML) approach for under the particle filter framework
that utilizes a feed-forward neural network architecture
to classify the target object and background regions.
A set of hierarchical nonlinear transformations in the
feed-forward neural network 15 learned in order to project
both the template and particles into the same feature
space. The marginal between objects and backgrounds
are maximized and thus, that objects are separated from
the background regions easily.

MATERIALS AND METHODS

In this study, we will discuss on the basic concept of
high speed tracking with Kemelized Correlation Filters
(KCF) (Henriques et al. 2015). The parameters and idea of
optimization technique used to optimize the performance
of KCF m our research 18 presented with imtial setting and
procedures required. The research flow is presented in a
flow chart to highlight the crucial procedures in our
framework. The proposed method will be evaluated by its
tacking performances which is OR and CLE where the
calculation for both evaluator is discussed in study
below.

Proposed method: The proposed method is basically a
simple modification on the KCF. Instead of the default
values, two parameters are selected to be varied in the
optimization process which are p (padding) and s (spatial
bandwidth). Padding is the extra area swrounding the
target while spatial bandwidth is used to predict the
response of an imaging system to very small objects
which directly related to the size of the image and its
object.

The range of values are defined at first in order to
determine the global best values that are corresponding
to the best result obtained. At first, the original setting for
padding and spatial bandwidth is 1.5 and 0.1, respectively.
By altering the values of padding from 1-2 with mcrement
of 0.1 while 0.05-0.5 with increment of 0.05 for spatial
bandwidth, the OR and CLE will be computed at each
combmation. Then, the global best tracking performance
is obtained from all the combinations and recorded for all
different sequences.

However, for some video sequences, the results
obtained cannot achieved any improvement within the
combination of these values. Thus, we increase the range
of values to be optimmized where padding is increased from
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Fig. 1: The flow chart of the KCFop tracking algorithm

0.1-4.0 with increment of 0.1 while spatial bandwidth 1s
increased from 0.01-0.4 with increment of 0.05. The
reasons of choosing 0.1 and 0.05 as the increment value
for padding and spatial bandwidth, respectively are
because of some limitations which are time constraint and
the value of the OR and CLE are not affected even when
the number of decimal 1s mcreased further for the
increment value. This ensure the time to compute the
tracking results to be as fast as possible.

The algorithm is run by using MATLAB 2012a
with the computer’s specification of Intel (R) Core (TM)
17-3520M CPU @ 2.90 GHz The global best tracking
results are obtained when the highest OR and the lowest
CLE achieved. The analysis will be presented using colour
mapping technique where the colour will provide the
information each performance. In addition, the global best
results are selected and compared with the others tracking
methods which the OR and CLE can be obtained from the
website of visual tracking benchmark under the category
of TB-100 sequences.

Flow chart: The tracking pipeline is presented in this
study with a flow chart shown in Fig. 1 where the main
procedures conducted to perform the parameters
enhancement of the visual tracking 1s listed out here step
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by step. The performance evaluator or and CLE are used
to measure the tracking performance of all video
sequences because OR and CLE are the most used and
common performance evaluators in visual tracking and
thus provide an easier way to compare with other tracking
method. The techniques to calculate OR and CLE will be
discussed in the following study.

Initially the padding and spatial bandwidth is set to be
1.5 and 0.1. However, this default setting will limit the
performance of the tracking. Thus, in owr proposed
method, padding and spatial bandwidth will be varied
corresponding to frame size and the target size i the first
frame for every different sequence. First, the algorithm of
KCF is modified, so that, it can run through the different
set of combinations of padding and spatial bandwidth. As
the first set of combmation 1s finmished, the second
combination 18 looped and proceeded the same as before
and continue until the last combination. The tracking
begins with the first sequence until the last secuences
one by one.

Next, it will undergo several processes that are sunilar
with the original KCF tracking algorithm where a model is
trained with the image patch at the initial position of the
target with the feature descriptor. Thus, a feature template
15 created to extract the feature of image patches. Then,
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Fig. 2. Area overlapped between target's location and
bounding box’s location

the tracking process is started from the first frame until the
last frame. The patch i1s detected at the previous position
and the target position with maximum value of tracking
performance 1s created and updated with a new model is
trained at the new position. Based on the obtained value,
it is interpolated linearly and classified with kernel
default

correlation filters which 1s similar with the
algorithm by Henriques et al. (2015).

Performance evaluation: Both are qualitative evaluation
and OR and CLE of our proposed method will be
compared with other algorithms proposed in this visual
tracking field OR is defined as the percentage of the
overlapping area between the region of ground truth and
target as shown in Fig. 2. OR is calculated based on Eq. 1.
Based on this concept or 1s calculated by using a
MATLAB command which 1s “rectin” to calculate the
intersecting area of these two boxes:

_ area{ROI, AROI |

= (1)
area {ROI, U ROL}

AOR

CLE 1s defined as the euclidean distance between the
centre location of a target size and the ground truth as
shown in Fig. 3 where it is measured in pixel as shown in
Eq 2

CLE :,j(x;xg)2+(yﬁyg)z @)

This concept is basically the same with calculating the
distance between 2 pomts using the x and y coordmate
where in our case is the coordinates at the centre of the
box. The higher the OR indicated that the target 1s tracked
more accurately. OR score with more than 0.5 will only be
considered as a successtul tracking. While for the CLE,
the lower the score it 1s, the better the tracking 1s.
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Fig. 3: CLE between target's location and bonding box’s
location

RESULTS AND DISCUSSION

The results obtained from the optimization and
tracking performance of the proposed algorithm will be
discussed in this study. A total of 86 sequences have
been run through the experiment and the results of the
global best performance corresponding with its own
padding, p and spatial bandwidth, s are recorded.
Meanwhule, the global best values of p and s obtained for
each sequence are also discussed and tabulated with
respect to their best tracking performance in term of OR
and CLE. The results of the proposed algorithm are
compared with other algorithms. In this study, 15 out of
the 86 sequences results are illustrated in Fig. 4.

They are Basketball, Bolt2, Boy, Car4, Coke, Crowds,
David3, Deer, DragonBaby, FaceOccl, Freemanl,
Humané, Tronman, MotorRoelling and Skiing in ascending
order. A bounding box with red outline is plotted on the
deswred target location and the target will be tracked
continuously with the newly updated desired tracking
location until the end. Only 5 out of 12 state-of-the-art
methods are depicted to be compared m these
sequences where, red, green, blue, yellow, white and
black represents the ground truth (desired target
location), KCFop, KCF, DFT, CT and CXT,
respectively.

Optimization analysis: Once, the tracking performances
of one sequence is obtained, a map data study where
colour scale 1s applied in order to determine the best
tracking results. Table 2 and 3 display the colour mapping
of OR and CLE, respectively for the walking sequence. In
this case, there are 3 colours used as the scale mn this
colour mapping analysis. The best value which 1s
corresponding to the highest OR and the lowest CLE will
be indicated with light green while the worst value which
is corresponding to the lowest OR and highest CL.E will be
indicated with dark red. The mean value between the best
and the worst value will be indicated with yellow.
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Fig. 4: a-o)Tracking performance comparisons

The density of the colour is varied through all
according to the colour scale used. In walking sequence,
the best tracking result of 0.486 OR and 4.280 CLE
acquired at 1.0 padding and 0.05 spatial bandwidth. Thus,
after obtaining these values of padding and spatial
bandwidth, the process of analysis for the global best OR
and CLE with respect with its own padding and spatial
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bandwidth for all 86 video sequences. Once, optimization
complete, the proposed algorithm, KCFop, (1.e., Kenelized

Correlation Filters Optimized) results are presented in
Table 4.

Tracking result: The OR and CLE comparison with the
KCFop and the other 12 tracking algorithms as tabulated
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Table 2: Color map for deciding the padding and spatial bandwith for walking sequence in term of OR
84. Walking - OR

Table 3: Color map for deciding the padding and spatial bandwith for walking sequence mn term of CLE

84. Walking - CLE

I 0.05 ] 010 | 015 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1.0

1.1 219 35

1.2 211.19

1.3 12377

1.4 68,31

1.5 40,238 215,55

1.6 4141 | z11.67

1.7 207 98

1.3 205,02 | 222.63

1.9 20476 | 219.01

2.0 20470 | 212.10 | 280 56
Table 4: All 86 video sequences tracking performance of KCFop
No. Sequence p g OR. CLE No. Sequence p 8 OR CLE
1 Basketball 1.8 0.08 0.761 6.1390 44 Human4 1.7 0.07 0.428 64.9430
2 Biker 1.5 Q.10 0.243 77177 45 Human5 2.0 0.04 0.330 6.35900
3 Birdl 1.8 Q.10 0.257 73.363 46 Human6 1.2 0.05 0.210 94,6240
4 Bird2 0.9 0.05 0.782 8.2460 47 Human?7 1.6 0.08 0416 5.89700
5 BRlurBody 1.8 0.05 0.696 6.9420 48 Human8 1.0 015 0.492 3.02000
6 BlurCar3 2.4 0.03 0.814 3.3340 49 Human9 1.3 Q10 0.316 11.4320
7 BlurFace 1.4 0.04 0.758 7.2230 50 Tronman 1.5 Q10 0.145 194.943
8 Board 1.2 Q10 0715 14.377 51 Jogging 1.6 015 0.710 4.14200
9 Bolt 1.4 Q10 0.682 6.3250 52 Jump 1.9 015 0.114 47.2740
10 Bolt2 2.1 025 0.358 41.030 53 Jumping 2.6 015 0.691 3.49000
11 BRoy 1.4 0.06 0.763 24440 54 KiteSurf 1.3 015 0.509 14.4270
12 Carl 0.9 0.25 0121 39,410 55 Lermming 1.5 Q10 0.397 77.8680
13 Car2 1.4 0.03 0.685 3.8760 56 Liquor 1.5 Q10 0.843 5.26900
14 Car4 1.4 014 0491 9.6850 57 Man 14 0.06 0.832 2.24300
15 CarDark 0.4 0.05 0777 23380 58 Matrix 1.8 025 0.282 52.2740
16 CarScale 0.6 0.06 0.39 15.427 59 Mhyang 1.0 015 0.800 2.93600

300
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Table 4: Continue

No. Sequence p 8 OR CLE No. Sequence p s OR CLE

17 ClifBar 1.8 0.20 0.456 10.284 a0 MotorRolling 0.1 0.40 0.203 102.511
18 Coke 1.7 0.20 0.703 9.8050 61 MountainBike 1.4 0.15 0.663 6.57200
19 Couple 38 0.07 0.631 3.3860 a2 Panda 1.2 0.07 0.179 41.0710
20 Coupon 1.2 0.05 0.916 1.5320 63 RedTeam 1.2 0.10 0.478 3.52900
21 Crossing 1.4 0.07 0.673 2.1070 L Shaking 2.1 0.03 0.714 6.75700
22 Crowds 1.5 0.10 0.794 3.0650 65 Ringerl 0.7 0.15 0.346 12.63500
23 Dancer2 1.6 0.01 0.742 5.9930 a5 Singer2 1.2 0.01 0.736 8.58500
24 David 1.1 0.35 0.464 7.4480 67 Skater 1.2 0.15 0.572 10.6670
25 David2 1.7 0.11 0.831 1.9800 a8 Skater2 2.1 0.15 0.598 13.8200
26 David3 1.2 0.09 0.749 4.1180 69 Skatingl 2.4 0.15 0.487 7.44800
27 Deer 1.3 0.05 0.660 8.1010 70 Skating2 1.7 0.11 0419 23,3740
28 Diving 1.3 012 0.330 23.051 71 Skiing 1.4 0.30 0.093 180.515
29 Dogl 1.7 0.15 0.528 34340 72 Soccer 1.7 0.30 0.395 13.5160
30 Doll 1.7 0.05 0.565 6.8320 73 Subway 1.7 0.15 0.783 246100
31 DragonBaby 2.1 0.30 0.426 39.201 74 Surfer 1.8 0.20 0.439 3.96400
32 Dudek 1.5 0.20 0.715 10.922 75 Suv 1.5 0.13 0.879 3.42500
33 FaceOccl 2.3 0.03 0.789 13.406 75 Sylvester 1.8 0.15 0.623 12.53490
34 FaceOcc2 1.8 0.20 0.760 6.6390 77 Tigerl 2.0 0.10 0.793 7.65400
35 Fish 1.4 0.02 0.814 3.8670 78 Tiger2 2.2 0.04 0.707 10.9740
36 FleetFace 2.5 0.30 0.615 17.146 TG Tay 1.4 0.05 0.461 7.65300
37 Football 1.7 0.40 0.611 6.6710 80 Trans 1.2 0.05 0.523 27.2720
38 Footballl 2.5 0.10 0.824 21570 81 Trellis 1.9 0.30 0.595 7.37900
39 Freemanl 1.3 0.25 0.408 7.9080 82 Twinnings 1.4 0.10 0.590 4.41400
40 Freeman3 1.6 0.10 0.317 19.254 83 Vase 1.3 0.09 0.279 10.3670
41 Freeman4d 1.6 0.10 0.391 4.9940 8 Walking 1.2 0.07 0.486 4.28000
42 Girl 1.2 0.15 0.579 8.4330 85 Walking2 0.6 0.15 0.374 8.52300
43 Gym 1.3 0.10 0.448 11.844 85 Woman 1.7 0.10 0.662 9.66300

in Table Al and A2, respectively for all 86 video
sequences. The colour of the words represents the
ranking of the performance where green, blue and red
colour indicate the best (highest OR), second and third
place. Some of the sequences achieved significant
improvement on OR and CLE but there are 6 video
sequences which unable to be mnproved such as Biker,
Crowds, Freeman3, Ironman, Lemming and Liquor.

KCFop has the best tracking performance in OR
evaluation for 27 sequences, 15 sequences obtained the
second highest OR and 13 sequences obtained the third
highest OR. In addition, 39 sequences obtained the lowest
CLE, 20 sequences obtained the second lowest CLE and
13 sequences obtained the third lowest CLE. In general,
the proposed KCFop method
outstanding results in term of both average OR and CLE
of all 86 video sequences which are 0.554 and 19.803,
respectively. The average OR and CLE of all 86 vedio
sequences for all 13 methods are also, tabulated in
Table 4 and 5.

The improvement on average OR is 18.30%, from
0.468 merease to 0.554, there 1s sigmficant improvement
onaverage CLE, from 38.789 pixels reduce to 19.803 pixels
which 1s reduced by 48.95%. The result of tracking
performance shows that KCFop has achieved better
tracking performance followed by KCF and struck with
both having 0.468 and then by CXT with 0.422. KCFop
has surpassed semiB the most by 125.41%, followed by
CT with 92.54% and lastly Frag with 67.35%.

obtained the most

301

Table 5: Comparison of average OR and CLE between KCFop and the

other methods
OR CLE

Methods Average  Different in (%) Average Different in (%)
KCFop 0.554 - 19.8030 -
KCF 0.468 18.30 38.7890 4895
Struck 0.468 18.48 44.2110 5521
DFT 0.343 61.45 78.6000 74.81
CSK 0.399 38.70 91.5060 78.36
MIL 0.350 58.51 65.2640 69.66
Frag 0.331 67.35 78.8090 74.87
CT 0.288 92.54 774310 7442
OAB 0.357 55.16 71.9730 72.49
LOT 0.335 65.20 63.3740 68.75
CXT 0.422 31.26 66.8110 70.36
semiB 0.246 12541 175,495 88.72
VTD 0.387 43.20 53.6630 63.10

KCFop also, acquired the lowest average CLE among
the other methods, followed by KCF with 38.789 pixels
and later by struck with 44.211 pixels. Furthermore, based
on the CLE percentage difference, KCFop has also,
outperformed semiB by 88.72%, followed by CSK with
78.36% and lastly Frag with 74.87%. Thus, KCFop had
achieved a better improved and able to obtain a promising
tracking performance i1n our proposed method
(Appendex).

CONCLUSION

The proposed method, KCFop has promising tracking
performance among the 12 tracking methods as compared
inhere. There are still having many challenging issues
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due to the destabilizing attributes that lead to the
performance drift. Overall, the proposed concept of simple
optimization that is implemented into the tracking
algorithm by enhancing the global best padding and
spatial bandwidth obtained. Through this parameters
optimization, the average OR of the proposed method 1s
increased to 0.554 with 18.30% of improvement and
the average CLE of the proposed method 1s
decreased to 19.803 pixels with 48.95% of improvement as
compared to the KCF when tested on 86 video sequences.
Thus, KCFop is commended to enhance visual

tracking.
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Table Alb: Comparison of OR between KCFop with other algorithms
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Table A2a: Comparison of CLE between KCFop with other algorithms
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Table A2¢: Comparison of CLE between KCFop with other algorithms
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