Tournal of Engineering and Applied Sciences 14 (1): 259-264, 2019

ISSN: 1816-949%
© Medwell Journals, 2019

Design of 3 kW Grid-Connected PV Inverter without Transformer
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Abstract: This study presents the design of 3 kW grid-connected PV inverter using boost converter to increase
PV voltage instead of a transformer. Specifically, the key control methods for boost converter and full bridge
mverter are presented. In addition, the PLL technology by using all pass filter 1s presented. In order to vernify
the feasibility of the presented 3 kW PV inverter design, experimental results were presented such as Maximum
Power Point Tracking (MPPT) function and power factor control. According to the experimental results, the
designed PV mverter shows high performances such as 95% MPPT efficiency and 0.99 power factor. The
presented design methodology could be extended to higher power PV application.
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INTRODUCTION

Grid interactive PV system has the fastest growing
rate in the world PV market and has started to play the
dominant role (Vithayasrichareon et af., 2015). A PV
mverter has to fulfill two main functions in order to feed
energy from a PV array into the utility grid: firstly, the
mverter should shape the current mto a sinusoidal AC
waveform and then the PV amray voltage has to be
boosted if PV array voltage is lower than the grid voltage
(Li et al., 2015; Deshpande and Bhasme, 2017; Noor et al.,
2013; Variath ef af., 2010). The voltage amplification can
be implemented as transformer or boost converter. To
date, there are three widely used arrangements for grid
interactive PV inverter topologies based on the
transformer as shown in Fig. 1 (Kjaer et af, 2005;
Xue ef al., 2004). The line frequency transformer has the
highest safety function than the others but it 1s regarded
as a poor component due to increased size, weight and
price (Papanikolaou et af., 2015; Tian et af., 2006). Thus,
the transformer-less PV inverters which use boost
converter for voltage boosting has been used widely for
small power application due to its high efficiency and low
cost. In addition, PV mverter using the high frequency
transformer has been paid attention in the PV market
because it has competitive high efficiency and low cost
with galvanic isolation rather than transformer-less type
(Kafle et al., 2017).

This study presents the design of 3 kW
grid-connected PV inverter using boost converter to
mcrease PV voltage mstead of transformer. As a
single-phase PV mverter, the transformer-less PV
inverter consists of a boost converter, followed by a
Voltage-Source Inverter (VSI). A Digital Signal Processor
(DSP) is used as the main controller. The boost converter
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Fig. 1: PV inverter topology classification based on
transformer: a) Low frequency transformer; b)
Transformer-less and «¢) High frequency
transformer

provides Maximum Power Point Tracking (MPPT)
function and the voltage source inverter makes a stable
DC link voltage from an unregulated output voltage of PV
array.

MATERIALS AND METHODS

System configuration: As discussed in introduction, the
transformer-less PV inverter is implemented using a boost
converter, followed by a voltage-source full-bridge
inverter shown as in Fig. 2. The boost converter is
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functioning for Maximum Power Point Tracking (MPPT)
from PV array and the full bridge Pulse Width Modulation
(PWM) mverter makes the regulated DC link voltage of
boost converter and sinusoidal AC waveform m phase
with utility voltage.

Design of 3 kW PV inverter

Boost converter: As shown in Fig. 3, the MPPT takes
measurement of PV voltage and current and then tracking
algorithm calculates the reference inductor current I, .
where the current should move next. The task of MPPT
algorithm 1s to set 1, . only and it 1s repeated
pericdically. Then, there is another control loop that the
Proportional and TIntegral (PT) controller regulates the
inductor current. Its task 1s to minimize error between I, .
and the measured current 1, . by adjusting the duty
cycle. The PT loop operates with a much faster rate and
provides fast response and overall system stability. The
PI controller 1s mmplemented with DSP-based controller.
The PI controller design for the boost converter is
explained as follows. In the boost converter, the switch
voltage equation is expressed as:

Loy A AA
Full
L Boost bridge .
- chopper PWM Utility
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MPPT _| Inverting
»| algorithm algorithm |

Fig. 2: The mplemented PV power conditioming system
for single phase

V.=V, L, Aoy @)
dt

Where:
V, = A DC compensate of voltage across the IGBT
V,, = The PV terminal voltage
I... = The converter inductor current

The boost converter transfer function can be derived
from the block diagram in Fig. 4. The desired amplitude of
the Inductor current I, .. is generated by the MFPT
algorithm. The measurement of the nductor current I, 1s
used to implement the DC cumrent control loop. The
inverter is controlled on the basis of the instantaneous
current error AL, = I, I, through a conventional PI
current regulator. Therefore, the following expression can
be derived from the block diagram represented in Fig. 4:
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Fig. 3: Converter topology and control strategy for PV power conditioning system
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Tt is difficult to specify a default set of controller
parameters which will work well in all applications. The
proportional gam and mtegral gams can be selected
as 1mitial settings and fine-tuned as necessary by
trial-and-error in experiments. For the converter current
controller, the optimum gains are found mn experiments to
be K, = 10, K;, = 0.6. The unit-step respense for this
controller is shown in the Fig. 5.
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Fig. 4: Block diagram of DC-DC boost converter
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Fig. 5. Unit-step response curves for the converter

current controller

Full bridge inverter: As shown in Fig. 6, the inverter
controller consists of two control loops, the outer DC-link
voltage control loop and the inner current control loop.
The function of the outer loop is to control the DC-link
The task of
the PI controller is to minimize the error between the
reference Voltage V,, . and the measured Voltage V.. The
controller output is the inverter reference current L, p .
which 1s then controlled by another faster PI controller.
The task of this controller is to minimize the error between

voltage to the pre-determined level

the reference and measured mverter currents and produce
the PWM signal. The PI controllers design for the inverter
1s explained m the next sub-sections.

DC link controller: Figure 7 shows block diagram of
DC-link voltage control where V. ; is reference DC-link
voltage and Ty, is input current to de-link Capacitor Cpe
from solar cell array. The transfer function of the DC-link
voltage controller i1s derived from the block diagram
shown in Fig. 7. The error between the reference DC-link
Voltage V,, .rand the sensed DC-link Voltage Vo is fed to
the PI voltage controller. Low pass filter 13 used to
mitigate the effect of 2nd order harmonic voltage which
results in performance degradation.

In order to control the DC link voltage to the
pre-determined level, DC link voltage controller shown in
Fig. 7 is employed and transfer function is like Eq. 5:
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Fig. & Inverter topology and control strategy for PV power conditioning system
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Fig. 7: Block diagram of DC link voltage
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controller

In the same way, the proportional and integral gains
are selected and then tuned to obtain a satisfactory
performance m experiments by trial and error. The DC link
voltage contreller gains are K, = 0.09, K;;, = 0.0005. The
unit response 1s shown in Fig. 8.

Grid current controller: The desired amplitude of the
inductor current I, ¢ . o 15 generated by the DC voltage
controller, considering the DC link voltage error V-V,
as the wmput variable. The reference value of the
instantaneous source current [, .. 18 generated on the
basis of the amplitude I, ; ;. .- and on the phase angle of
the fundamental component of the supply voltage. The
measurement of the source current 1s used to unplement
the AC current control loop as shown in Fig. 9. The
mverter 13 controlled on the basis of the mstantaneous
current error Al = [ I, ,through a conventional PI
current regulator. By the same way as in Eq. 5, the transfer
function could be written as follow:
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Similarly, the inverter current controller gains
are K; = 25, K; = 1.3, The unit response is shown
in Fig. 10.
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Fig. 9: Block diagram of grid side current controller
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Fig. 10: Unit-step response curves for the inverter

current controller
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for simple control, the single-phase voltage should
have virtual two-phase voltage with 90° out of phase
(Yu, 2018). Based on this concept, the PLL for single
phase system consists of two stages: one is two-phase
generator and the other 1s phase controller as Fig. 11:

[VdE J cos sind [Vds} v, - cos0 +V, - sin 0
Vee Sind  cosd Vo -V, -Siné+Vqs -cos0
9

Vo = Vg, rcos+V  -sin6 =V, sinf-cos6-

&)
V_cos0-sinb=V_sin(0-0)

With the grid voltage V, and the calculated lagging
90° out of phase voltage V , the active and reactive
component in the reference frame can be drawn by
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applying the reverse Park transformation as Eq. 7. As
shown in Eq. 7 and 8, the rotating reference frame is based
on the estimated phase angle & and the estimated
frequency ® (Fig. 12).

As shown in Eq. 8, the reactive voltage component
V. should be controlled to be zero for unity power factor
for the estimated phase angle & to be equal to the real
phase angle 0. In order to control the estimated phase
angle error, Aw is obtained using PT controller. The
Aw is added to the initial value w; to achieve the

inverter are as follows: firstly, maximum power tracking
function for boost converter and then AC power quality
of PV mverter output.

For 3 kW PV inverter testing, the PV simulator 1s set
to 3197 W power capacity as Table 1. The instant
maximum power tracking efficiency under four different
wrradiance conditions 100, 75, 50 and 25% are measured
97.41, 97.03, 96.58 and 96.01%, respectively as shown in
Fig. 12. The MPPT performance is high enough over 95%
which requires in Korean PV inverter standard.

estimated frequency © and the estimated phase When the inverter output power 15 the nominal
angle & power 3 kW as shown m Fig. 13, the total harmonic
distortion of inverter current is 0.94% and the power
RESULTS AND DISCUSSION factor is 0.9995 which meets the Korean PV inverter
standard.
Based on PV inverter hardware and software

configuration, the 3 kW PV inverter is tested for its normal

grid connected operation. The high precision PV array

simulator and grid simulator are utilized for 3 kW PV

wmverter testing. The test items of the implemented
@

(b)

Table 1: PV amray condition for MPPT test

Ttems Values

PV array capacity 3197 (W) at 25°C (V= 304V, L, = 1052 A)
Open PV voltage 380 (V)

Short PV current 11.64 (A)
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Fig. 12: MPPT performance evaluation of the implemented single-phase PV inverter: a) Under 100% irradiance; b) Under

75% 1rradiance; ¢) Under 50% irradiance and d)y Under 25% uradiance
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Fig. 13: Inverter output voltage and current waveforms
CONCLUSION

As a smgle-phase PV mverter, the design of a
transformer-less PV inverter comsisted of a boost
converter, followed by a Voltage-Source Tnverter (VSI)
was presented in this study. The boost converter
provided Maximum Power Pomt Tracking (MPPT)
fimetion and the voltage source mverter made a stable DC
link voltage from an unregulated output voltage of PV
array in addition to DC/AC inverting. With these control
targets, the full control block diagrams were presented.
Furthermore, the PLL techmique as a key control
technique for single phase inverter was presented by
using the all pass filter. The instant maximum power
tracking efficiency under four different wradiances 100, 75,
50and 25% were measured 97.41, 97.03, 96.58 and 96.01%,
respectively. When the inverter generated the nominal
power 3 kW, the total harmonic distortion of inverter
current was 0.94% and the power quality 18 0.9995.
According the presented design methodology of 3 kW
class PV inverter has high performance to the Korean
standard requirements which could be extended to higher
power PV application.
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