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Abstract: This study introduce a wavelet method estimator of the density function based on the projection
property of the father wavelet functions {®;, (x)}, 0<k<2’-1, T=0 on the subspace V,cL.’ for non-parametric

randomly censoring data with assuming that the density function belong to L(R) has no specific parametric
distribution. The technique using coiflet (coifN, N =1, 2,..., 9) wavelet which i1s semi-symmetric orthogonal and
Breslow estimator for finding the cumulative function. To compare and determine the best results using the
Mean Square Error (MSE) for estimating the density fimction of real right censoring data of 214 patients called

home nursing data.
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INTRODUCTION

One of the major challenges faced by researchers in
statistical and other studies 13 to deal with non-parametric
data. The important objective is how to estimate a
function of these data without any information about this
function. Tn statistical studies, non-parametric data are
one of these challenges mn terms of estimating density
function. Most of the studies that investigated this aspect
were based on the analysis and study of data properties.
An significant property 1s that X, 3, ..., X, for n samples
are to be independent. kemel and nearest neighbors
technics are the most popular methods to non-parametric
density function. Wavelet series could be considered as
good approach for function estimator, since, the utilize
of wavelet 1n solving this problem gives an important
advantage because it build up functions belong to LX(R).
A first used of wavelets n statistics were mtroduced by
a collection of articles such as Donoho et al. (1996) and
Van Fleet (2011). One of the advantages of wavelets 1s
that have significant and distinct characteristics for time
and frequency which makes them an important
tool for estimating the functions Daubechies (1992) and
Van Fleet (2011). Antoniadis et al. (1999) presented a
wavelet-based method for estimating hazard rate and
density function for right censoring swvival data.
Chaubey et al. (2010) estumationfor derivative of density
function using wavelet-based for randomly censoring

data. Cai and Liang (2015) estimated the density
function used non-linear wavelet method for of
truncated and dependent observing data. Chesneau and
Willer (2015), estimated the cumulative fimction for
non-parametric data and construct a new adaptive
estimator based on a warped wavelet basis and a hard
thresholding rule. Abbaszadeh et al. (2013), estimated the
density function and it’s derivatives for a sample of
multiplicatively censored random variables by projection
linear wavelet estimator and non-linear term-by-term
selecion wavelet. Afshari (2014) have done some
researches about density function estimator use wavelet
method for estimating the density function for censoring
data, and evaluated the mean integrated squared error.
Chesneau and Doost1 (2016) developed a new estumator
g (x, m) based on wavelet methods of multivariate discrete
and continuous density function. Grez and Vidakovic
(2018), estimated the density function using empirical
approach linear estimator based on an orthogonal
projection wavelet with Kaplan-Meier estimator of
randomly censored data and proposed the multiresolution
space index T = log,N-log, (log(N)). In clinical trials or
survival studies, patients who need to follow up for
different periods of time may range from a few days to
several years in addition to the main event being death or
survival. ITn randomly censored medical data patients
inter the study in different times during the period, so,
their exact survival times are known. Besides that,
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censored time is specify for each individual. Before the
end of study some patient may withdraw and lost to
follow up.

Let, X, X,, X;, .., X, be an mdependent and
identically distributed (i.i.d.) survival times with unknown
density function f. let C,, C,, ..., C, be i.i.d. censoring times
unknown density function g. it is presumed that fori=1,
2, ..., n X and C are typically statistical independence.
The observing 1s for{Z, 8,} which i1s an 11.d. sequences,
such that 7, = min {¥, C.} where:

¥

This study, present a linear wavelet estimator
method dependent on semi-symmetric orthogonal coiflte
wavelet which is the main part and the primary part is
bersilow estimator for cumulative function. One of the
advance of this method 1s that used of the orthogonal
projection on the multiresolution space V,; with index
I = logy(nflog(n)) to estimator the density function for
214 patients of home nursing data which was presented
by Morris ef al. Moreover, using the Mean Square Error
(MSE) to collect the average error between the original
values and estimated values and choosing the mmimum
square error.

1if X, < C,
0if X,>C,

Wavelet: Wavelets are considering as a new class of
functions that are well localized in time and frequency.
Moreover, the wavelet 1s rapidly decaymg wave like
oscillation that has zero mean and it exists for the fimte
duration. Us a transformations wavelets could be used in
two types of Discrete Wavelet Transformation (DWT)
and Continuous Wavelet Transformation (CWT). The
method that will be displayed focus on (DWT).
Approximation and estimation of functions 1s one of the
umportant and good uses of wavelets.

A multiresolution analysis ¢ @)=ir & >, [ [pGef dmson
contains of subspaces {V,} . with v, .V, =TF(Ryand My, V;
= 0. The different subspace W, = V,,,eV, for all JeZ is a
subspace of LY (R).

The sequence of functions {®, , (x)} and {¥,, (x)},
0<k<2-1, I=20 are two basis for the subspaces V, and
W, respectively where @,(x) = 2” @ (x-k) and ¥, (x)
= 2" (xk), moreover @;,(x) and ¥,.(x) are called father
and mother wavelet, respectively.

Preliminary: Let {X, 1 = 1, 2, ., n} be 11d of
non-negative random function with density function (pdf)
() and g(.), cumulative functions (cdf) F(.) and G(.),
respectively. Let 7, = min {X, C} be the swrvival times
(observed times)with the indicator function &, = 1,,_, and
0 otherwise, so there is no censoring for ith observed time

if 6i:1-
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Now, assumed that p=max {7,i=1,2, ., n} and to
make sure that all observed times 7; belong to [0, 1], put
&, =1z md {2, 8,) be theranked of .8}

Based on hierarchical of multiresolution, any function
f belong to I.,(R) could be written as follows:

=]

> YW, Ry, (D

£(x) =3 Weljo. KD, , (x)+

k =30k
where, j=1, 2, ..., keZ, |, is an arbitrary starting scale and
j0<j. Because of that f(l) is a probability density
function, the coefficients @(j,, k) and W(j, k) can be
expressed as:

W, (jo. k) = E[ @}, (X)] )

W, (3. k) = E[w,, ()] 3)

And as mention above, since, f{.) is unknown, then:
W (oK) = 10T £ () D, (x) called “Approximation”
coefficients.

Wy (k) =143 Fx)Y, (x) is called “Detail” coefficients.
¥ and ® are known as Mother Wavelet and Father
Wavelet, respectively.

From Eq. 1 can see that j is start j; and end with
infinity. Based on that, f(x) could be approximated
from j;-1 The value of scale index 7 =1og,(n/log,, () and k is
belong to the interval [0.2"1]. Therefore, Eq. 1 reformulate
as follows:

i

1
fix)= (—Z D, (X)J(I)Jn,k(x)+

n )4

(4

L1
% 7[5 00w, .0
i=10 k n-y
Estimation of £() for the observed times: The interest
here about the work that was introduced by German ef al.
respectively, they estimated the density function based
on a hybrid between Kaplan-Meier estimator and
Symmetric (Daubechies) wavelet. So, far this study
focus to estimator the density function for observed
times {Z;, 8, Firstly, assume that G(Z)e(0, 1) for all
Z and G go to infinity for non-censored data.
Consequently, this will lead to f, = f(x), moreover,
WO=1n3"" @ (x)andW¥=1a%" P, () The estimation of

=17 Tk

density function £(x) could be written as:

72

ST W, (%)

1=30k=0

21-1

£ix)= 3 Wa,, (x)+ (5)
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Equation 5 gives us an ability to find the density
function from random variable X of fully observed
lifetimes.

MATERIALS AND METHODS

Methodology of estimation based on orthogonal
projection: One of the good advantage for wavelet is to
estimate any function fel,(R) which approximate function
based on orthogonal projection. Basically, for fixed scale
1 the orthogonal projection of £ (x) onto the subspace V;
1s denoted »(f;()) and given as:

LY

pif () = 3 {F0. D, (D), (x)

k=10

(6)

Denoting the orthogonal projection demsity function
using f,(x) Based on Eq. 6, need to find the coefficient
(f(x), @;,.(x)), so, let first denoted it as ¢®. Moreover,
since, f(.) is unknown density function, for that use the
Cdf"'s F and G to collect ¢® from the observed data
{7,811 =1,2, .. nthe joint distribution of (7, d) is:

P(Z=z8=1)=| (-G(Of(x)dx 7

P(Z<z 6=0)= j_zm(l—G(x)f(x)dx+ LmG(z)f(x)dx &)

Dependent on Eq. 7 and 8:

£,(Z)= [,(2)(1-G (2)r+g, (2)(1F,(2) ©)
AsaresultforEq. &
fx (Z) _ fZ(Z) _ gc(z)(l'}; (Z)) (1 0)

1G.(2) 1-G .

From Eq. 10, it possible to express and formed ¢, = {f (x),
D, (x)) as:

22 g @(F =)

L=

@, ()d(x)

G2 1G.(2)
.- El[%’k (Z)H_EHI-F(Z)(D]U_k(Z)
1-G(Z) 1-G(Z)

Usmg the approach — Wa(jk)=10Y fx)®,,(x) and
W (k)= 1/[12 xF () (x) for 0=2G(Z;)i=12,...n:

n (Djulk(z‘i) _
G2,

o laoo FFEZ)D,  (Z)
-1 1-G(Z.)

Go =N-1%] n-1%"

(12)
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Now, FZ,) and GEZ,) fori=1,2, ., ncan be estimated
using Breslow estimator for survival function as follows:

1 1-8(s)

s 1B, ()
Fi7 j= (1) e s=lp-st+l] (13)
Z) Z:l n-r+l
s 18, (TR
G(7Z — (1) e s=lns+] (14)
(Z) Z:ln—rﬂ
_ 1 Li—s (1'F(Z(1))) (15)
"OG(Z)  1G(Z)
Rewrite Eq. 12 as follows:
1 & -
e = ;Z(:i@ik(z(l)) 16)

1=1

Finally, the estimate of density function fitx) for chosen
scale index T=log,(mlog,,(m) and orthogonal semi-symmetric
coiflet wavelet coifN (N =1, 2, ..., 9) can be formed as:

231

fi(x)= z:g@@j,k(zm) (17)

Generally, applying this method for any types of right
censored data with considering the density function (g)
for the censoring mndicator i another word fori1=1, 2, ...,

I
.-

Therefore, the observing times take the form {3, 8}

lif censoring

0if uncensoring

Data application: For data application, the data named is
nursing home data which was first introduced by Morris,
Norton and Zhou. Data were collected for patients in a
nursing home for the elderly between 1980-1982. The
original study containg 1601 patients of home nursing and
collected by the National Center for Health Services. For
application using a subset of orignal data (n = 214).

The method of data processing for estimating the
probability density function method in this study
depends on two parts. The first involves the use of a
semi-symmetric orthogonal coiflet wavelet (cofIN, N =1,
2, ..., 9) which 18 considered the main part as it helps in
finding the father wavelet {®,,(x)}, O<k< which will be the
main element in Eq. 16. The second part which mncludes
the finding of the coefficient (¢,) in Eq. 15, depends on the
father wavelet as well as the Breslow estimator for
surviving function. Furthermore, considering the Mean
Square Error (MSE) to find the average squared difference
between the estimated values and original values

(Table 1).
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Table 1: Nursing home data of 214 patient

X 3 X 3 X 8 X ) X 3 X 3
89 1 340 0 25 1 211 1 44 1 37 1
27 1 222 1 73 1 100 1 480 0 3 1
156 1 400 1 270 1 661 0 57 1 84 1
12 1 47 0 33 1 19 1 44 1 148 1
40 1 204 1 95 1 69 1 9 1 365 0
1 1 60 1 2 1 32 1 260 1 18 1
5 1 407 0 211 1 197 1 4] 1 148 1
122 1 139 1 25 1 49 1 172 1 18 1
306 1 48 1 487 0 470 1 41 1 281 1
21 1 307 0 9 1 3572 0 298 1 24 1
597 1 250 1 44 1 82 1 178 1 18 1
140 1 54 1 00 1 136 1 370 1 o4 1
47 1 11 0 310 1 337 0 1 1 90 1
635 0 501 o 721 0 1 1 0 1 133 1
7240 462 0 18 1 54 1 180 1 547 1
J07 0 717 0 129 1 2 1 494 0 37 1
6% 0 519 1 617 0 277 1 261 1 234 1
435 1 24 1 152 1 25 1 44 1 149 1
47 1 49 1 30 1 474 0 465 0 39 1
607 0O 82 1 134 1 45 1 470 0 13 1
598 0 10 1 113 1 28 1 14 1 29 1
576 0 85 1 444 0 30 1 375 1 224 1
141 1 463 0 722 0 457 0 710 0 396 0
537 0 379 1 709 0 198 1 483 1 121 1
1 1 342 1 o642 0o 72 1 161 1
480 0 365 0 494 1 114 1 149 1
50 1 182 1 306 1 15 1 285 1
20 1 131 1 120 1 409 0 o613 0
123 1 10 1 463 0 27 1 4] 1
15 1 19 1 91 1 8 1 428 1
0 1 133 1 421 0 258 1 392 0
43 1 120 1 135 1 22 1 584 0
47 1 209 1 725 0 95 1 180 1
le5 1 151 1 19 1 382 0 44 1
695 0 4 1 25 1 673 0 24 1
38 1 47 0 687 0 o024 0 506 0
11 1 303 1 1 1 35 1 487 0
585 0O 44 1 184 1 2 1 7 1
RESULTS AND DISCUSSION

The final results of the general content are good
results dealing here with unbiased data for any
distribution (non-parametric data). In general, the

percentages of results can be considered good In
addition to the mean square error give as a good
result. From Table 1 observes, there are negative
percentages of f3(x) to explain that, the results come from
a non-preapprehension dataset which 1 Not
commensurate with the wavelet type used in the
estimation and the expansion of the periodic process.
Furthermore, the problem with the use of the wavelet in
estimating the probability density function It 1s
concluded that not all the results are positive and are
not concentrated between O and 1. From Table 2 observes,
there are negative percentages of f1(x) to explain that,
the results come from a non-preapprehension dataset
which is not commensurate with the wavelet type used in
the estimation and the expansion of the periodic process.
Furthermore, the problem with the use of the wavelet in
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Fig. 2: The smoothing splinel of ((Z.fni=1,2,...)

It
concluded that not all the results are positive and are not
concentrated between 0 and 1. These problems are due to
the tails of the probability density function taking into
of
weakens representation, an additional reason is use of
parent wavelet fumctions (Antomiadis, 1997). For MSE
results, Coif 9 give as the best result, however, it’s come

estimating the probability density function. is

consideration that these values come from areas

with the ligh percentage for negative estimator results.
Furthermore, the Tbest  percentage of negative
estimator values 1t’s come of using coif 3 with
MSE = 0.5804.

Figure 1 showed the QQ_plot or probability plotthe
density estimator for home nursing data of 214 patient
compared with standard normal using coif3 wavelet, the
estimates are consistent with a normally distributed
random variable.

To show more information about the results,
Table 2 show the using of smoothing spline (cftool.mat)
for the pair z.f+ to bridge the gap between these
nods.
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Table 2: Fitting types of smoothing spline of four parameters

Fit type RMSE) Smoothing parameter SSE. R? Adj. R?
Smoothing spline 10.01107 1 0.01292 0.9998 0.99970
Smoothing spline 2 0.99999999 0.02909 0.9997 0.9994 0.01606
Smoothing spline 30.06187 0.99999905 0.5397 0.9937 0.99050
Smoothing spline 4 0.99999992 0.9665 0.9888 0.9838 0.08094
CONCLUSION Antoniadis, A., G. Gregoire and G. Nason, 1999. Density

This study has provided a method to estimate the
probability density function for right censoring data, this
method is dependent on the construction of two parts, the
first one which can be considered as the main part where
it is used a semi_symmetric orthogonal wavelet (Coiflet
wavelet). While the second part 1s the use of the Breslow
estimator in the estimation function to find G(7). The
probability density function was expressed using the
projection property of the father wavelets {®;, (x)},
0<k<2’-1, J20 on the subspace V,, depending on the
correct selection J. Real data was applied of home nursing
data for 214 patient to estimate the density function,
besides that to collect the error, collect the Mean Square
Error (MSE). Moreover, the using of Coiflet wavelet
comes with using of all types (coifN, n=1,2, ..., 9) except
(coif6) to estimate the density function which assumed
it belong to the multire solution subspace V, with
mdex T = log,(n/log,,(r}). The best results got from using
a wavelet type coif3 with MSE = 0.5804 and with the least
percentage of negative results, also In this study, and
through the proposed method for estimating the density
function, negative values were observed for some
estimates. In addition, the existence of other estimates is
not integrated into 1. Finally, MATLAB (Ra2012) was
used for programming.
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