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Abstract: Tn this research paper, we present a generalization of Tterated Function System (IFS) called the
Recurrent Tterated Function System (RIFS). We explore RIFS, investigate the existence of the fractal attractor
of RIFS and present its main properties. Finally, MATLAB program 1s presented to implement the algorithm for

determiming the attractor of the RIFS.
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INTRODUCTION

Tterated Function System (TFS) theory is an important
part of fractal theory; it is widely used in fields of image
compression due to the pioneering works done by
Bransley (1988a, b), Bamsley er al. (1989). Bransley
(1988a, b) put forward another concept: Recurrent Tterated
Function System (RTFS). Tt reflects the similarities among
local regions of a graph. It can generate more complex
graphics. That i1s recurrent modeling 1s the process of
partitioning an object into components and representing
each component as a collection of contraction copies of
possibly itself and possibly other components. This
representation 1s described by a RIFS which 1s based on
the simpler case of the TFS which represents the entire
object as a collection of contraction copies of itself.
Bamsley gave a strict proof for the existence and
uniqueness of the mvariant measure (invariant set) of an
RIFS. Based on researches of Barnsley, this study first
extends the defimtion of IFS from the viewpomt of graph
theory and product space, and then investigates the proof
of the existence and uniqueness of the fractal attractor of
the RIFS.

Recurrent modeling by Bransley (1988a, b) and
Bamsley ef al. (1989) is the process of partitioning an
object into components and representing each component
as a collection of contraction copies of possibly itself and
possibly other components. This representation is
described by a recurrent iterated function system, based
on the simpler case of the iterated function system which
ultimately represents the entire object as a collection of
contraction copies of itself.

This study paper 1s organized as follows. The second
section reviews the concepts that will help us to define
several properties of digraphs. Section 3 presents the
recurrent Hausdorff distance metric and recurrent
Hutchinson operator whereas Section 4 develops the
theory of RIFS and investigates the existence of the
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attractor of RIFS. Section 5 presents the mmplementation,
results conducted and the discussions made. Finally,
Section 6 concludes with directions for future research on
the relationship between RIFS and recursive fractal
interpolation function (RFIF) and provides theoretical
basis for their applications.

MATERIALS AND METHODS

Diagraph: Graphs are described here as an ordered pair of
sets. The first 1s the set of vertices, the second is the set
of edges. Edges are dencted as ordered pairs of vertices.
Now, let us fix the most important notions which furmsh
the more general setting called diagraph. All notions
are well-known and may be found in the literature
(Hart, 1996).

A digraph G is a set of N vertices G, = {v;}"._, and a
set of edges G, which are ordered pairs (v;, v), 1<1, j<N
where (v,, v)€G, implies G contamns a directed edge from
v, to v,. Since, G, 1s a set, the same edge cannot appear
twice in G. Thus, the cardinality of G, 1s at most the
cardinality of G, squared. The number of edges mto a
vertex is called the “in-degree” of the vertex. Similarly, the
number of edges out of vertex is called “out-degree” of
the vertex.

A directed (undirected) path of vertices v;, v, ..., ¥i
connects vertex vitevy if and only if for each pair of
neighboring vertices vi.v,, the edge (v,,v,,)€Ge. We shall
follow (Al-shameri, 2001, Hart, 1996) to review the
concepts that will help us to define several properties of
digraphs.

A cycle of edges is simply a path from a vertex to
itself while diagraph G contains a (directed, undirected)
cycle if and only if there exists a vertex v;eG, such that
there exists a (directed, undirected) path of vertices in G,
connecting vertex v, to itself. The term cycle will imply
directed cycle. A cycle may be as sinple as the edge
(v, v;). An “acyelic” digraph contains no cycles.
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(b)

Fig. 1 a-d): Examples of diagraph

Figure la-d are examples of diagraph. The graph in
Fig. la-c is a diagraph with the set of vertices G, = {K,,
K,} and the set of edges G, = {a, b, ¢, d, e, f}. We have,
e.g., 1) =K, tlc) = K, where 1(c) and t(¢) denoted to the
initial and terminal vertex of the edge c, respectively where
I G-, t: G~ (Al-shameri, 2001; Edgar, 1990).

As with any geometric model, there are certain
properties that recurrent models may satisfy. For example,
the partitioning may satisfy the open set property and the
directed graph that describes how components combine
to form components may be weakly or strongly
connected. The following concepts are needed for
digraph connectedness. We shall follow (Deo, 1974).

A digraph G is (strongly, weakly)-connected if and
only 1f every pair of vertices v;, v;eG; 1s connected by a
(directed, undirected) path of vertices (Al-shamer,
2001; Edgar, 1990). We follow the convention, implied
from this defimtion, that strongly-comnected implies
weakly-connected which differs form (Deo, 1974). Hence,
a weakly-connected digraph may or may not be
strongly-connected too (Deo, 1974; Edgar, 1990; Hart,
1996). If digraph G 18 weakly comnected, then the
cardinality of G, is at least one less than the cardinality
of G,

A strongly-comnected digraph necessarily contamns
a cycle. A strictly weakly-connected digraph necessarily
contains no cycle. An Iterated Function System (IFS) 1s a
couple (X, d) of a complete metric space together with a
finite set of contraction mappings £;2-X, n=1,2, ., N
where the metric d 15 a distance function between
elements of X, i.e., &:XxX-R". Note that, f, transforms a
subset of the complete metric space AcX onto smaller
subsets f(3), i.e., an TFS models an object by constructing
it out of smaller copies of itself (Barnsley and Demko,
1985). Symbolically, anIFS {X:f, £, ..., f;} models the set
AcX is called the attractor of the IFS as the union of
attractorlets A, = £(A) as the solution A of :

N
A=1U

n=1

An

s
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It 18 often convenient to write an IFS somewhat more
briefly as IFS {X;f, ;} instead of IFS {Xf, £, ..., fi;}. Let,
(X)) = {AcX A is compact} be the collection or space of
all compact subsets of the complete metric space X. Then,
the metric d is now used to define a metric A9 denotes
the Hausdorff metric (distance) between elements A and
B of ¢(X) as follows. Let, & oX)x=5(X) >0 be a mapping
such that:

A(A, B)= max{d(A, B), d(B, A)}

1s the Hausdorff metric between A and B of ¢(X)
{(Al-Shameri, 2015; Barnsley and Demko, 1985; Falconer,
1999). The recurrent versions of the standard TFS analysis
tools operate on N-tuples of sets. These will be denoted
by:

S=(5,8,,...5,

A set N-tuple S of n-dimensional sets 5, belongs to
the nxN dimensional space (R™". Moreover, functions on
these sets in this space are denoted with a superscripted
Nie, f=f").

One can think of (R")" as N copies of R" overlayed on
top of each other. A set ScR® is better understood by
drawing each of its N parts A; on a separate clear sheet.
Then, the set S can be visualized in the space by
overlaying all N transparent sheets (Bamsley et af., 1989).
The subset relation in (R*)" is defined as the logical “and”

of the subset relation of its components. That is,

ifA=(A, A, ., AYand (B, B,, .., By). Then, AcB if and
only if, AcB, WVvi=1, .., N Notice that, if AcB then
UACUB,.

The recurrent Hausdorff metric and recurrent
Hutchinson operator: The extension of the Hausdortf
distance (metric) as originally defined by Barnsley et al.
(1989), combines the individual Hausdorft distances of the
component sets. One possible space 15 P(R") the set of all
subsets of R". A subspace of P(R") 1s ¢ the collection of
non-empty compact subsets of R®. Then the Hausdorff
distance between the points A and B in ¢ is defined by
A(A,B) = d(A, B) vdB, A) where (A, B) = max{d(x, B)xcA}
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and x\Vy means the maximum of x and y. We also call #
the Hausdor{f metric on ¢. Now, (® is a complete metric
space (Hart, 1996).

The recurrent version of Hausdorff metric denoted

by #* measures the distance between two subsets
A=(ALA, ., AYand B = (B, B, ..., By of (R)"(org"™)
as:

R"(A, BY= max kA, B)

1=1, ., N

Now, .#") 13 a complete metric space (Hart, 1996).
Here, a set A=(R")" is compact if and only if every one of
its parts A, 18 compact in R*. A Recurrent Tterated
Function System (RIFS) consists of a finite set of strictly
contractive maps {f}",_, from R" into itself, along with an
N-vertex weakly-connected digraph G = (G,,, G,) contaimng
some directed cycle from every vertex v,€G, back to itself.
The digraph G is used to restrict map compositions. The
iteration sequence fof, 1s allowed 1f and only 1f a directed
edge from vertex v, to v, exists in G. Symbolically, we write
((§£}";_ ., G for RIFS.

According to comnectedness of the digraph
many different names for IFS enhancement are given
(Barnsley et al., 1989; Prusinkiewicz and Hammel, 1991;
Prusinkaiewicz et af., 1990, Reuter, 1987). In this study, we
mention that (f, G) is a RIFS where f' = {£}"._, and G is
weakly-connected diagraph. If each partition is the union
of mmages of every partition including itself, then the
graph G 1s complete and the RIFS 1s simply an [FS. Hence,
every IFS is an RIFS and we will focus in the upcoming
section on existence of the attractor of RIFS
representation.

The degree of overlap of the partitioning is dictated
by the open set property. An RIFS (({f}" -, G satisfies
the open set property, if and only if there exists a
set-vector U = (U,, U,, U,, ..., Uy) of open sets U,cR" such
that f(1N)cU and UNU; = ¢vi = ). An attractor 1s “Just
touching™ (Bransley, 1988a, b), if and only if it 1s
connected and its RIFS satisfies the open set property.
The recurrent Hutchinson operator as first developed by
Bamsley ef al. (1989) 1s a generalization of the standard
Hutchinson operator. Let (({f1",_,, G) be an RTFS. Then,
the recurrent Hutchinsen operator ™(R™"-(R")" is
defined (Hutchinson, 1981):

fN(A) = (fl (A), fz (A ., fN (A

where, A = (A, A, ..., A)e(®RY and:

f(A) = f(A)

U 1
{a:r;. w;)€G, )}
The recurrent Hutchinson operator is a contraction.

However, this proof will need the following and its proof
based on the version that appears in Barnsley et al.

{1989). Lemma (Hart, 1996) for collections A = {A}_,,
B = {B}"._, where A, B, are subset of metric space (3{, d).

h( U A, U BJ)S sup A(A, B)
i=1, .., N i=1 N

i=1 .., N

Proof; Let:
s:h( U A, U B)
i=1,., 8 Yi=1 ., n !
Then:
U A, U B+
i=1,., N i=1,., N !
For each 1 <i<N we have:
Ao U Byte
1=1.. 0
and specifically:
A CBireg

where, £, 1s minimal still, £;,>£. Likewise, for each 1 there
15 a comresponding €,>e. For each 1 the maximum
thickening radius matches or exceeds the original
thickening radius:

maX{SAl,SBJ}ZS

as does its maximum over 1. The proof 18 complete once
the reader realizes that the left-hand side of this inequality
is the Hausdorff distance between A, and B, and the right
hand side 1s the Hausdorff distance between the union of
A; and the union of B, Now, we are ready to prove that
the recurrent Hutchinson operator 1s a contraction.

Theorem (Hart, 1996): Let ' be the recurrent version of
Hutchinsen operator of RIFS ({f}" -, G). Then " is a
contraction on the metric space (. ")

Proof: Let, A=(A A, ..A,), B=(B,B,. ..
Consider the following chan of inequalities:

- Bye(®)"

(Y ALE(B)) = max H(f;(A), f;(B))

< max A(E(A). £(B)

i

=
< max s A(A,B)

Lj=1 .

<s max A (A LB

=sh"(f,(A,B)

where:
5= max Lipf
N

=1, .,
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Since, s<1, {' is a contraction on the complete metric
space (57, #").

Existness and uniquness of the attractor of recurrent
iterated function system: Now, we consider fundamental
result that a unique set be associated with an RTFS as a
consequence of the following theorem and proof are
based on (Bamsley et al., 1989).

Theorem 1 (Hart, 1996): For any RIFS (({f}"._, &) there
exists a unique N-tuple. Ac(R™" of nen-empty compact
sets such that:

A=A

Proof: Since, ¢", h" is complete metric space (the finite
product of complete spaces (the finite product of
complete: Theorem 76 of (Kaplansky, 1977) and ' is a
contraction on (¢, h') the Contraction Mapping Principle
implies that " possesses a unique fixed point in (¢", ™).

The attractor of a RIFS is not an N-tuple
because we want to deal in an n-dimensional space
not an nxN-dimensional space. Thus, we have from
(Barnsley ef al., 1989), the attractor of a RIFS.

Tet, A = (A, A, .., Ay be a set such that it is
mvariant under the recurrent Hutchinson operator of a
RIFS (Y, G):

A=A

Then, the attractor A of the RIFS 1s given by:

A = UAIi
1=1,.,HN

We need the following result.

Corollary 1; (Hart, 1996): Let (3, d) be a complete metric
space and let: £X~X be a contraction 1s on X. Then all
points in X converge to the same fixed point under
iteration of f Finally, we have the useful result that
any initial set N-tuple will iterate to the attractor of an
RIFS.

Corollary 2; (Hart, 1996): Consider the RIFS ( {, Q)

Ae(R"N of non-empty compact sets such that A = ' (A).

Let B be an N-tuple of nonempty bounded sets. Then:
Em(f™y*(B)= A

Proof: Since, each component of B 15 bounded, there
exists a compact set B'>B, for all BeB. Let:

B =(B",B",...B")

Since, each component of B is non-empty, there exists a
compact set BcB'. Let:

B =(B,B,..B)
Then, by Corollary 1 and Theorem 1:
A clm(fYYB ) < Imif" ) (B c im(F" Y (B c A

they are all equal.
RESULTS AND DISCUSSION

The attractor of RIFS 1s determined by the diagraph
G or by the nxn transition matrix (adjacency matrix) of
the diagraph representing the probabilities of the choice
of the transformaticns (affine maps) w, in the space R* in
which:

w, = + ,1:1,2,...,11
Yy C1 di ¥ f1

whereas n 1s the number of the transformations w, defined
in the space R’ The diagraph corresponding to the
transition matrix for the RIFS:

03 06 0.1
P=(P)=|01 05 04|ij=123
0.4 04 02

given in Fig. 2. The code for RIFS 1s presented in Table 1
and the attractor of RIFS is shown in Fig. 3 while the
diagraph corresponding to the transition matrix::

21,j=123.4

—_— O =
[ o
—

Fig. 2: Diagraph for RTFS code given in Table 1 whose
RIFS attractor 1s a Version of Sierpimsk Gasket
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given in Fig. 4. The code for RIFS is presented
in Table 2 and the attractor of RIFS
m Fig. 5.

Both RIFS fractal attractors shown in Fig. 3 and 5
were constructed by using MATLAB program listed in
the algorithm 1. This program is using the random
iteration algorithm (Al-Shameri, 2015; Al-shamer1, 2001,
Bamsley, 1988a, b) for generation these fractal
attractors of the RTFS in the space R*. The program inputs
are pg, W, p, n, k and r where p, is the initial point
represented by a 12 matrix, p 1s the transition

is shown

Table 1: Recurrent IFS code for sierpiniski gasket

i N by < d; g i
1 0.5 0 0 0.5 0 0
2 0.5 0 0 0.5 0 18
3 0.5 0 0 0.5 128 128
Table 2: Recurrent IFS code for quadtree fractal
Wi a b; [ d; g fi
1 0.5 0 0 0.5 0.0 0.0
2 0.5 0 0 0.5 0.5 0.0
3 0.5 0 0 0.5 0.0 0.5
4 0.5 0 0 0.5 0.5 0.5
300
20 PR il g A
Al e A
200g7 & &
E’::P’:' g’gﬂ e ?‘_ b

AR R

Values
=
(o1
o
44

=
Q
o

€,

100 150 200 250 300
|FS attractor

Fig. 3. Recurrent TFS attractor (Version of Sierpiniski
Gasket) corresponding to the diagraph

represented in Fig. 2 with RIFS code mn Table 1

(adjacency) matrix nxn of the directed graph (diagraph)
representing the probabilities (transition of the graph).

Algorithm 1:
%MATLAB program (Hahn and Valentine, 2007) plots the fractal attractor
of RIFS of
R2
clear all; clc
%The version of Sierpiniski Gasket
w=[0.500000500
0.50.00.0050128
0.50.00.00.5128128]
p0=[00]
P=[030601
010504
0.4040.2]
%The quadtree fi-actal
%w=[0500000500
%0.5000005050
200.50.00.005005
%00.5 0.0 0.00.5 0.5 0.5]
%p0 =[0 0]
%P=14%1111
%1101
%1011
°%0111]
Fig. 1
hold on
n=4; k =30000
fori=1mn
TP(1,1=P(1,1)

forj=2mn
TP, j) =TP(, j-1HP(, 1)
end
end
x=p0{l, 1% y=p0(l, 2)
r = floor(n*rand-0.00001 1
fori=1k
newx =w (r, L)¥x+tw (r, 2)*y+w(r, 5)
newy = w(r, 3)*xtwir, *y-+wir, 6)
X =NEWX; ¥ = Newy
plot (x,y,'b.", "MarkerSize', 2)
s =rand (1)
forj=1mn
i s<TP (r, j)
r=j
break
end
end
end

Fig. 4: Diagraph for RTFS code given in Table 2 whose RIFS attractor is a quadtree fractal
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00 kas Mol M
00 01 02 03 04 05 06 07 08 09 10
IFS attractor
Fig. 5. Recurrent IFS (quadtree  fractal)

corresponding to the diagraph represented in
Fig. 4 with RIFS code in Table 2

attractor

The number of the transformations (affine maps) is n,
k 18 the number of iterations, w i1s the nx6 matrix
containing the parameters of the affine maps w, and r 1s
the random choice of the affine map w, that it 1s applied to
the initial point p, randomly. Each row i in Table 1 and 2
contains the 6 coefficients a, b, ¢, d, e, and f; of the affine
maps w,, 1= 1, 2, ..., nrepresenting the code of RIFS.

CONCLUSION

The mathematical principles behind RIFS have been
mtroduced by Barnsley (1988a, b) and Bamsley ef al,
(1989). In this study we explored the RIFS and
investigated the proof of the existence and uniqueness of
1ts attractor. We observe that the RIFS from the viewpomnt
of graph theory reflects the similarities among local
regions of a diagraph, it generates more complex fractal
attractors using random iteration algorithm. Future
research may focus on recursive fractal interpolation
function which 15 an extension of fractal interpolation
function. The latter is the attractor of IFS while recursive
fractal interpolation function is the attractor of RTFS.
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