Tournal of Engineering and Applied Sciences 14 (1): 159-163, 2019
ISSN: 1816-949X
© Medwell Journals, 2019

Design and Verification of Asynchronous FIFO with Novel Architecture Using
Verilog HDL

Avinash Yadlapati and Hari Kishore Kakarla
Department of Electrical and Computer Engineering (ECE), KI. University Green Fields,
522502, Vaddeswaram, Andhra Pradesh (AP), India

Abstract: A FIFO 1s a “First In First Out” memory queue between any two asynchronous domains with
simultaneous write and read access to and from the FIFO, these accesses being on different clocks. The FIFO
has input ports like data input (write), write clock, read clocls, reset and output ports like FIFO full flag, data out
(read) and FIFO empty flag. It also has control signals like write enable and read enable. The most important
signals that control the FIFO operation are the write pomnter and the read pointer. These pomters in the case
of Synchronous FIFO operate in a single clock while in the case of Asynchronous FIFO operate in two clocks,
write clock and read clock respectively. FIFO can be either Synchronous or Asynchronous. The basic difference
between them is that the entire operation of Synchronous FIFO is entirely dependent on the clock whereas the
write operation and read operation of Asynchronous FIFO are asynchronous to each other. In this study a
Novel approach to designing an Asynchronous FIFO 1s used. Instead of taking a separate bit to identify
whether the FIFO is full or empty, the resaerchers have used an internal signal (last operation) to identify if the
FIFO is full or empty.

Key words: Asynchronous FIFO, write pointer, read pointer, flags, synchromzation, gray code converter, FIFO
full, FIFO empty, memory queue

INTRODUCTION

FIFO stands for First-In First-Out memory buffer and
it is used to transfer the data between two different clock
domains with the technique of synchronization
(Anonymous, 2004). This study talks about the design
and implementation of an Asynchronous FIFO with novel
architecture in which the synchronization is done using a
gray code mechanism and by generating an internal signal
last operation. FIFO’s are primarily of two types:

¢ Synchronous FIFO
+ Asynchronous FIFO

In a Synchronous FIFO a single clock 1s used for
both writing and reading data while in Asynchronous
FIFO two separate clocks are used to read and write data
which means that both write and read are independent of
each other and hence, the mechanism of read and write 1s
faster compared with Synchronous FIFO (Cummings and
Alfke, 2003), i.e., two clocks are required for read and write
osperations. Each clock has separate frequency. Every
FIFO has a different architecture but this study details
novel architecture that uses a signal “last operation) to

generate the FIFO full and FIFO empty flags and a gray
code synchromzation in order to reduce the switching
activities thereby reducing the power dissipation in the
circuit (Han and Stevens, 2009).

MATERIALS AND METHODS

Block diagram of Asynchronous FIFO: Figure 1 shows
the diagrammatic representation of an Asynchronous
FIFO. The mput ports for an Asynchronous FIFO are as
follows:

» wr clk
» 1d clk
* Wr en
*+ 1den

s rst

¢+ data in

The output ports for an Asynchronous FIFO are as
follows:

» data out
» FIFO full
+ FIFO empty

Corresponding Author:

Avinash Yadlapati, Department of Electrical and Computer Engineering (ECE),

KL University Green Fields, 522502, Vaddeswaram, Andhra Pradesh (AP), India

J. Eng. Applied Sci., 14 (1): 159-163, 2019

WI_en ———>

rd_en — 3
data_in ———> Asynchronous FIFO —> data_out
—— Overrum

wr_clk——>

- —— Underrum
rd_clk —>
rst ———>|

Fig. 1: Block diagram of Asynchronous FIFO

We will use separate clocks for read and write
operation, wr_clk and rd_clk are the input clocks that are
used for write and read mechanisms accordingly. The
signal rst 1s for resetting the data in the Asynchronous
FIFO and to bring the FIFO to a known state. It 15 very
dangerous for the memory to not have a reset signal as 1t
will be filled with junk data values in the absence of rst
signal. data_in is the input data to the FIFO. wr_en and
rd en are the control signals to the FIFO and the complete
write and read operation happens at the behest of
these control signals. FIFO full and FIFQ _empty are the
status flags which will tell the processor or the
master when the FIFO is full or when the FIFO is empty
(Ramesh et al., 2012).

Novel architecture of Asynchronous FIFO: This study
details a unique architecture which differentiates this
FIFO design from the other designs of similar application.
Some excellent work has already been published on the
design and implementation of Asynchronous FiFO’s. Yet,
as a unique architecture with constraints like area, power
and throughput are implemented in this study. Asa
good design, every RTL design should be designed using
multiplexers, D-flip-flops and the design should be made
as modular as possible. This study discusses the
arclutecture that 1s designed only with the help of mux’s
and flip-flops. The primary concept of this architecture 1s
the last operation mechanism which differentiates it from
other architectures (Fig. 2).

Managing pointers in Asynchronous FIFO: The complete
FIFO operation is controlled by the write pointer and the
read pointer. Initially they are both pointing to the zeroth
location which means that the FIFO is in reset state. The

160

pointers will be mcremented by the control signals write
enable and the read enable. When the write enable is high,
the write pointer is incremented at every edge of the write
clock and when the read enable is high, the read pointer
is incremented at every rising edge of the read clock. Once
the pointer is incremented, it means that data is written in
the previous location. For instance, when the write pointer
1s 1mtially pointing to zero location and the write enable
signal is asserted, the write pointer gets incremented and
now the current location of the write pointer 1s location 1.
But the data 1s present in the zeroth location. Similarly, in
the case of read pointer when the read enable signal 1s
asserted, the read pointer increments to the next location
which is location 1 but the read data comes from the

[T3L]

zeroth location. If the number of address locations is “n”,
after addressing all the locations the pointers come to the
initial state depending on the enable signals. If data is
continuously written into memory and no read operation
is performed then the write pointer will come to the initial
state and will retain n the same state even 1f write enable
signal 1s asserted, the same thing happens with the read
pointer too.

In the case of Synchronous FIFO, the FIFO full flag
15 asserted when both the pomters are pomting to the
same location and when the last operation 1s write and the
FIFO empty flag is asserted when both the pointers point
to the same location and the last operation is a read
(Anonymous, 2004).

In Asynchronous FIFO design it is not possible
because here two different and asynchronous clocks are
used which would be essential to control the counter. So,
in order to determine those conditions read and write
pointers are to be compared along with individual
previous operation for write and read as they operate at
different frequencies.

Application of gray code converters: Gray code converter
is used for reducing the switching activity and thereby
reducing the probability of metastable condition. The
other of gray
representing successive binary numbers, reflecting only
1 bit change for each increment in binary values, thus,
reducing the switching activity and hence, power
(Anonymous, 2018). The lower switching activity also
accomplishes less glitch formation, thus, reducing any
metastability (Fig. 3).

The importance of reducing the metastable condition
comes when comparing the two pointers. By reducing the,
number of transitions the possibility of mterpreting a
signal transitioning from 10-0 or 0-1 as 1’s and 0’s
respectively, by the combinational logic (xnor gate as an
equivalency check) will become easier.

characteristic code comes when

J. Eng. Applied Sci., 14 (1): 159-163, 2019

Wr_ptr

S

Bit counter

\

\4

Memory

rd_ptr

Bit counter

N

Rd clk

A4

Wr_en Gray code converter

A4

rd_en

N4

Gray code converter

Data_out
RN
>

st

N4

data in

Sync into
write clock
domain

v Vv

wr_prev_logic

Sync into read
clock domain

A4

A4

rd_prev_logic

Overrum

Fig. 2: Novel architecture of Asynchronous FIFO

100

101

111

110

010

011

001

000

Fig. 3: Gray code sequence

Importance of synchronizer: FIFO full condition 1s critical
for write operation and FIFO empty condition 1s critical for
read operation. Full and empty conditions are critical for
write and read inhibition respectively. FIFO full and FIFO
empty conditions are generated based on the write and

161

A4
Underrun

>
To
comparator

8bits: >

clk

Write data

Read clk

Fig. 4: Dual flop synchromzation

read pointers position,
asynchronous design write
increment respective pointers with different clock
frequencies. Synchronization 1s achieved by syncing the
gray code write pointer with read clock domain and viz.

Hence, there’s a need for synchronizing the gray
code write pointer with read clock and gay code read
pointer with write clock.

Figure 4 the synchronization mechanism. Tn general,
a 1 bit data is synchronized using two flip-flops. The write
data 13 synchromzed with the read clock and the read data
will be synchronized with the write clock.

respectively. Being an
and read mechanisms

Generation of FIFO full and FIFO empty flags: The FIFO
full flag and FIFO empty flag are intended to prevent FIFO
full and FIFO empty conditions, 1.e., the FIFO should not
be allowed to write data again once it becomes full and the
FIFO should not be allowed to read the data again once it
becomes empty.

J. Eng. Applied Sci., 14 (1): 159-163, 2019

@ Basinewe0
| Curor-Baseine = 15003

o+ [Cusoms|

B 2
- ffodetal1 1]

Fig. 5: FIFO full flag generation

Hame v Curs
I+ o z

T Overn

T
A rek
A rex

Fig. 6 FIFO empty flag generation

When FIFO full flag (when write pomter equals the
synchronized read pointer and the last operation is write)
is asserted the total memory locations are filled with data
and there are no free locations to write any further data,
hence, no write operation can be done. When there is
FIFO empty flag (when read pointer equals synchronized
write pointer and the last operation is a read) is asserted,
the data is read out from all the memory locations and the
FIFO 15 devoid of any new data, hence, no read operation
can be done (Anonymous, 2009).

Asynchronous FIFO Implementation: The read or write
operation 1s done according to the user request. When
the user requests a write operation data is loaded into the
memory and the location will be specified by the write
pointer. When the user requests for a read operation the
data that is loaded into the memory is read out. The read

162

and write pointers keep on incrementing until it reaches
the last location and again the pointers come to 1mtial
location which is also known as wrap up condition. This
being a FIFO the first written data will be read out first and
then from the next location and so on.

The memory specified in this study can address “n”
locations of m-bit wide data. When the user requests for
continuous write operation and no read operation the
memory will load data until all the “n” locations are filled
and then it remains in the same state, 1.e., it preserves the
last data (FIFO full condition), until read enable signal 1s
asserted (Bergeron, 2003). If the memory 15 completely
filled and the user requests for a read operation, the data
will be read out until there remains no data in the memory.
Even if the user requests a read operation, the FIFO
asserts FIFO empty signal and the circuit preserves the
previous state. When there occurs read and write

J. Eng. Applied Sci., 14 (1): 159-163, 2019

operations simultaneously the data that is written mto the
memory first will be read out first. The pointers will look
after the addressesto which memory location the data is
to be sent and from which memory location the data is to
be read from.

From Fig. 2, it’s clear that the full and empty status
flags are generated by previous operation logic and
comparison of gray code pointers using a comparator
after synchronization of the read pomter with write clock
and viz. The counter used m this design 1s an n-bit
counter and the comparison between the read and write
gray code pointers 1s done as follows:

If the pointers are equal and last operation is write,
then FTFO full flag is asserted

If the pointers are equal and last operation is read,
then FIFO empty flag is asserted

RESULTS AND DISCUSSION

Simulations are carried out on Synopsys VCS using
v erilog as a hardware description language. Random test
cases are used to venfy the Asynchronous FIFO
functionality (Bergeron, 2003).

Figure 5 shows that mutially FIFO empty flag 1s
asserted as there’s no data initially loaded into the
memory. After write enable is asserted there is a
continuous write operation and no read operation
requested until the FIFO depth is completely filled Hence,
FIFO full flag is asserted. We can find that once the data
is loaded into memory there is a de-assertion of FiFO
empty flag. After read operation i1s requested we can
observe that there’s de-assertion of FiFO full flag.
Simultaneous read and write operations are also depicted
m Fig. 5. Hence, Asynchronous FiFO functionality is
verified (Bhasker, 1998). Figure 6 shows that F1IFO empty
flag 1s asserted when the FIFO data 1s read out completely.

In this study, a unique strategy to implement a rapid
Asynchronous FIFO using gray counter Synchronization
and with the help of last operation is shown. In this
design the gray counters uses a comparator along with
the last operation for the generation of FIFO full and FIFO
empty status flags. This being an asynchronous FIFO a
lot of effort 1s required to design and meet the timing of
the read clock with the write clock and viz. This novel
architecture also overcomes the problem of metastability
and mean time between failures by using Gray code
counters. Continuous writing of data mto memory,
contimious reading of data from memory and
simultaneous reading and writing of data from memory are
verified with different test cases. All these test cases are
verified using Synopsys VCS simulator.

163

CONCLUSION

This has reduced the hardware generated after
Synthesis and also, the FIFO 1s designed m such a way
that outputs are registered and no combinational glitches
or spikes are encountered. The entire design 1s
implemented using synthesizable verilog RTL code and
verified using Synopsys VCS sunulator.

ACKNOWLEDGEMENTS

I would like to thank the staff of KI. University for
their immense support by providing the necessary tools
and infrastructure for carrying out the research work and
motivation mn writing this study. Without their guidance
and support this study would not have seen the light of
the day.

REFERENCES

Anonymous, 2004. Asynchronous FIFO v6.1. Xilinx,
San Jose, California, USA.
https:fwww x1linx. com/support/documentation/ip_
documentation/asyne FIFO pdf

Anonymous, 2009. Tutorials on System verilog, Verilog,
Open Vera, Verification, OVM, VMM, AXI, OCP.
ASIC Company, Sydney, Australia.
http: /fwww.asicguru.com/

Anonymous, 2018. Asynchronous FIFO in virtex-FPGA’s.
Australian Securities and Investments Commission,
Sydney, Australia.

Bergeron, J., 2003. Writing Testbenches: Functional
Verification of HDL Models. Springer, Berlin,
Germany, ISBN: 9781402074011, Pages: 475.

Bhasker, J., 1998. Verilog HDL Synthesis: A Practical
Primer. Star Galaxy Publishing, Pennsylvania, TJSA.,
ISBN: 9780965039154, Pages: 215.

Cummings, C.E. and P. Alfke, 2003. Simulation and
Synthesis Technmiques for Asynchronous FIFO
Design with Asynchronous Pomter Comparisons. In:
Verilog HDL: A Guide to Digital Design and
Synthesis, Palmtkar, S. (Ed.). Sun Microsystems
Press Publisher, California?, USA., pp: 1-18.

Han, H. and K.8. Stevens, 2009. Clocked and
asynchronous FIFO characterization and comparison.

Proceedings of the 17th IFIP International
Conference on Very Large Scale Integration
(VLSI-SoC’09), October 12-14, 2009, IEEE,

Florianopolis, Brazil, ISBN:978-1-4577-0237-2, pp:
101-108.

Ramesh, G, V.5. Kumar and K.J. Reddy, 2012.
Asynchronous FIFO design with gray code
pointer for hgh speed AMBA AHB compliant
memory controller. IOSR. J. VLSI Sig. Process., 1:
32-37.

	159-163_Page_1
	159-163_Page_2
	159-163_Page_3
	159-163_Page_4
	159-163_Page_5

