Tournal of Engineering and Applied Sciences 13 (9): 2680-2684, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

The Role of Access Control and Device Authentication in the Internet of Things

Ali Shawket Thiab, Abdul Samad Bin Shibghatullah and Zeratul Izzah Mohd. Yusoh
Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka,
Durian Tunggal, Malaysia

Abstract: The new generation of wireless sensor networks that is known as the internet of things enables the
direct comnection of physical objects to the mtemet using microcontrollers. In most cases, these

microcontrollers have very limited computational resources. In this study, we investigate the access control
solution for the TETF standard draft constrained application protocol using the datagram transport layer

security protocol for transport security. We use the centralized approach to save access control information

in the framework. Since, the public key cryptography operations might be computationally too expensive for

constrained devices we build our solution based on symmetric cryptography.

Key words: Internet of things, internet protocol, wireless sensor networks, transmission control protocol,

constrained, Malaysia

INTRODUCTION

The term the Internet of Things (ToT) is commonly
used to name a set of objects (or things) that are directly
comected to the mternet using the Internet Protocol (IP)
stack. That is the main difference of Wireless Sensor
Networks (WSN) of previous generation where nodes
were orgamzed in a local network with special
protocols like ZigBee (Alliance, 2004) or Wireless HART
(Chen et al, 2014). Connection of objects to the global
network in the ToT opens the opportunity for global data
analysis. Typical applications for the IoT are home
automation (e.g., smart home), personal health monitoring
(e.g., measurements of heart rate, pulse or temperature),
building automation (e.g., control heating, electrical and
ventilation systems of the building), industrial automation
(e.g., control of the electrical grids) and smart cities.

Objects in the ToT (the same as in WSN) are
controlled via microcontrollers that are constrained in
computational power, memory space and oftenn in power
consumption. At the same time protocols that are used by
general purpose computers like Transmission Control
Protocol (TCP) and HyperText Transfer Protocol (HTTP)
are too resource consuming to be used on lughly
constrained devices. Moreover, IEEE 802.15.4 (Gutierrez,
2006) radio protocol that is widely used in WSN has a
limited Maximum Transmission Unit (MTU) that does not
meet the MTU required by IP protocol Version 6
(IPV6). These lhmitations lead developers to use a
special protocol stack for the ToT (Montenegro et al.,
2007).

Devices that are comnected to the IoT are lghly
constrained in memory and computational power.
Moreover, 802.15.4 based networks are lossy have low
bandwidth and lugh latency. In this case, maintamning
access control policy information mnside these devices can
be difficult and evaluating access control requests may be
expensive. The situation becomes even worse if the
number of potential clients that have an access to a
device 18 high and these clients are dynamically changing,
hence, control policies cannot be statically preconfigured
innodes. Hence, the access control information should be
managed m some server outside of the device with
mimmum direct commurncation between the server and
device. At the same time, access control for the internet
comnected devices that utilize CoAP protocol can
have 2 levels of granularity.

¢+ Device level access when any agents that have
remote access to the device have full access rights to
1t resources

» Resource level access when each request 1s
supposed to be verified against access control
information

As each node m IoT often perform very specific
function (e.g., remote temperature sensing, control of a
power switch, etc.,) resource level access control is not
always necessary and device level control 1s often
enough. CoAP specification defines the utilization of
DTLS protocol for authentication and secure
communication. So, DTLS can also be used for solving

Corresponding Author: Ali Shawket Thiab, Faculty of Information and Communication Technology,
Universiti Teknikal Malaysia Melaka, Durian Tunggal, Malaysia
2680

J.J. Eng. Applied Sci., 13 (9): 2680-2684, 2018

the device level access control problem. If DTLS
connection can be established then agent is granted full
access to the device resources otherwise access 1s denied
(Eronen and Tschofenig, 2005; Wouters ef al., 2014).

The main goal of this study is to define the access
control frameworl that can be built on top of the DTLS
protecol mumning in PSK mode and evaluate thus
framework of the hardware platform that have limited
computational resources. This research suggests the
lightweight, fast and secures access control protocol that
can be used on constrained devices in the IoT. The
design and evaluation of the access control framework for
constrained devices that is built on top of the industrial
security protocols and recommendations for possible
use cases of the designed access control protocol
(Zhang et al., 2012).

MATERIALS AND METHODS

One possible solution for the problem is described by
(Seitz and Selander, 2013). Researchers of this draft
propose 2 dynamic access control modes for applications
that are based on CoAP and DTL S protocols. Derived
Key (DK) mode 13 based on PSK mode and provides
dynamic access based on symmetric key cryptography.
Authorized public key mode is based on RPK mode and
mvolves asymmetric cryptography computations.

Both suggested modes are designed for device level
access control. Since, the goal of the study is to find a
solution for the problem that requires minimum resources
than derived key mode 1s more promising and will be
described in details and evaluated. In this solution, 3
types of agents are identified.

¢+ Resource Server (RS)
¢ Client (C)
* Trusted Anchor (TA)

The derived key mode resembles the PSK mode with
the difference that keys are not explicitly provided to the
RS. Instead RS and TA share the common secret key
(Kp-TA) that is not known to any third party. The
workflow for DK Mode 1s shown on Fig. 1.

In the imitial step client has to request an access
token from the TA. The access token consists of 2 parts:
a key that will be used between the client and the
RS (Kgs.) that is a binary value of 128 or 256 bits and a
nonce. The access token is supposed to be sent over a
secure channel in spite it is not mentioned in the protocol.
After receiving an access token the client can initialize a
DTLS commection with RS. The commection 1s imtialized in
the PSK mode. The K - key 1s kept n secret and used as

Rexquest key

Kpp oHnonce

DTLS handshake uging PSK =K_RS-C

Fig. 1: Workflow for DK mode

PSK while the nonce 1s sent to the RS mn psk_identity field
of client key exchange message. Upon receiving the
nonce, RS can generate Ky, - from nonce and Kygp, and
successfully complete a handshake.

Protocol draft (Seitz and Selander, 2013) does not
define precise format of the access token. Also,
authorization and authentication of the client by TA is not
1n the scope of the document.

Nonce contains necessary information that RS needs
to authorize the connection: client identifier, identifier of
TA that issued the token, sequence number of nonce per
RS (this sequence number 13 mncremented every time a
new nonce 18 generated for certain RS). As psk identity
field in client key exchange have to be a UTF-8 string then
nonce has to be sent in a string format.

» The constant nonce prefix “DK” which implies to RS
that derived key mode is supposed to be used

¢ TA identifier that is represented in string format or
converted to string format

» Client identifier that is represented in string format or
converted to string format

* Sequence number that is 32 bit integer converted to
string format

Both TA and RS derive the Ky, -key using the nonce
and the Ky, 1, key based on HMAC that utilizes SHA256
hash function (Krawczyk et af., 1997). The key s
calculated using the equation Kpi. = HMAC(Kgg 1,
nonce) where K 1. 18 HMAC secret and nonce is HMAC
data. HMAC produces the 256 bit value that can be
used completely or truncated to the most sigmificant
128 bits.

2681

J.J. Eng. Applied Sci., 13 (9): 2680-2684, 2018

In order to protect the nonce from reuse and
implement a key expiration authors offer a to use sliding
window based on the sequence number. The RS must
maintain the list of minimum 32 (recommended 64) recent
sequence numbers where maximum nmumber is the biggest
sequence number that was used. Each time the RS
receives the nonce it has to validate if this number is
bigger than the minimum number in the list, marked as
unused in sliding window or bigger than maximum number
that was used. So, if the sequence number value is less
than smallest value in the list than the key is considered
to be expired and if the number is marked as used the RS
assumes that this is a replay attack.

If TA needs to revoke the key that was not expired or
terminate existing session it sends a request to RS with
sequence number of a key that is supposed to be revoked.
Upon request RS marks the certain sequence number in
sliding window as used and terminates the active DTLS
session if any.

In order to improve the protocol the nonce could be
redefined in form of binary structure. The total size of the
structure is 37 bytes. The first 3 bytes are the constant
sequence 0x0C, 0x44, Ox4A that identifies the DK mode.
The fowrth byte is the identifier of the trusted anchor.
Next sequence of 12 bytes is a client identifier is followed
by 12 bytes of resource server identifier. Key size defines
the size of the key that is supposed to be used 0 stands
for 128 bits and 1 for 256 bits. The last 8 bytes of the
structure is a sequence number of the key. In order to
verify and evaluate the protocol 3 agents have to be
implemented.

¢ The client is implemented in Java as a desktop
application

¢ The Trusted Anchor (TA) is implemented in Java as
a web service application

¢+ The Resource Server (RS) is implemented in C on a
constrained hardware platform

TA is running on a web server. The client is running
on a desktop computer or a laptop and sends HTTP
requests to the TA over a secure internet cormection. The
client is also connected to the Border Router (BR) over
the serial port utilizing Serial Line Internet Protocol (SLIP).
The RS in its turn, is connected to the BR over 802.15.4
low power radio. The client application is an application
implemented in Java. Tt is designed to execute 3 main
functions:

* Obtain the nonce and the derived key KRS-C from
the TA

* Perform the DTLS handshake with the RS using
granted nonce

* Send the CoAP request over the DTLS record
protocol to RS

The nonce and the derived key are obtained in a
TSON object from the key generation endpoint. In order to
implement the DTLS handshake and the secure CoAP
communication we used scandium open source DTLS
implementation and Californium CoAP implementation.
These frameworks were selected because they provide all
necessary functionality and are easy to integrate.

RESULTS AND DISCUSSION

Evaluation: The implemented resource server part of the
access control framework was evaluated on in terms of
code size, memory Usage, computational time and energy
consumption. Since, the nonce is transmitted in the
psk_identity field of the clientkeyexchange message the
same as for normal PSK mode we assume zero
transmission overhead for the key derivation mode. The
evaluation was performed separately for key derivation
and key revocation requests, since, those parts of the
protocol are low coherent and can be redefined separately
of each other.

In order to evaluate code size and memory usage the
arm-none-eabi-size utility was used. For more detailed
information about RAM and ROM usage, we used the
tool arm-none-eabi-objdump. Both tools are included in
the GNU toolchain for ARM processor utility. To perform
a measurement for a certain functional part of the code
that 13 mn charge of specific functionality, 1t 1s removed
from compilation with the #define C directive and the
value 1s calculated as delta of the application size with and
without the functional part.

The computational time 1s measured with the contiki
energest module. This module is based on the real time
clock and measures usage time of different platform units
separately (CPU time, CPU time in low power mode, radio
listening time and radio transmission time). The real time
clock on CC2538EM platform works on 32.786 kHz
frequency that allows to perform measurements with
resolution 0.03 msec. The energest module accumulates
the number of real time clock ticks in 64 bit unsigned
values, since, its activation. That capacity is more than
enough to measure the computational time of the most of
access control operations. Energy consumption is
calculated from time that is measured with the energest
module according to the equation.

E=U**t
Where:
U = A power supply voltage taken from platform
documentation
I = Anaverage current for the respective module from
processor specification
t = The time value measured with the energest

2682

J.J. Eng. Applied Sci., 13 (9): 2680-2684, 2018

The energy value is calculated for each model and
then summed up to take into account not only energy
used by processor for computation but also potentially
lost radio duty cycles.

In order to evaluate how many requests can be send
by an attacker per second we measured the Round Trip
Time (RTT) between client and server with a ping request.
As a ping request processing time is negligible and the
network consists of two nodes so the route is
deterministic we assume the One Way Delay (OWD) is a
half of RTT. Hence, the number of requests that can be
sent by an attacker during the period of tume 1s the length
of the period divided by OWD.

The measurements were performed with ContikiMAC
radio duty cycle protocol Java client runnming on the PC
was sending either a DTLS handshake requests sequence
or a key revocation request the RS running on the
embedded platform depending on the evaluated function.
Data was collected 30 times for each function. The
collected data were analysed to make a conclusion about
performance of the access control frameworlk and its
resistance for Denial of Service (DoS) and drain battery
attack that are specific for constrained devices

Access control framework evaluation: The total size of
the access control framework is 1708 bytes including
1636 bytes of code, 48 bytes of static nformation
and 24 bytes allocated for global variables. This number
also includes the 16 bytes long RS identifier and 78 bytes
long key KRS-TA. The part of the key revocation
fimectionality 1s 392 bytes in total. The performance of the
framework was measured separately for the key derivation
function and for the key revocation function.
Measurements results are presented in Table 1.

The key derivation with software SHAZ256
computation takes n average 75.47 ticks or 2.30 msec
while the same computation with SHAZ2 hardware
accelerator takes 14.6 ticks or 0.45 msec. The key
revocation with and without SHAZ accelerator takes
73.7 ticks (2.25 msec) and 11.4 ticks (0.35 msec),
respectively.

DTLS evaluation: In order to compare the impact of the
key derivation mode and SHA?2 accelerator on the DTLS
handshake we measured the processing time for each
message send by client. This time is measured starting
from recewving the message and until the reply is sent.
Moreover, the total handshake time starting from the first
ClientHello message and ending with processing of the
last finished message was measured to get an idea
about the maximum number of handshakes that can be
processed by the device within a umt of tume.

Table 1: Performance measuremnents of the key derivation and revocation
Computation

Variables time (msec) Energy (ul)
Key derivation 2.30 62.79
Key derivation with SHA?2 accelerator 0.45 12.29
Key revocation 2.25 61.43
Key revocation with SHA2 accelerator 0.35 9.56

Table 2: Performance measurements

Time (msg) Energy (pI)
Computation Energy with SHA2 with SHA2

Variables time (mgec) (U0 accelerator accelerator
First ClientHello 2.32 63.29 0.72 19.80
ClientHello with cookie 3.55 96.78 1.32 35.99
ClientKeyExchange 0.37 10.16 0.06 1.66
ChangeCipherSpec 17.89 488 .46 330 90.00
Finished 9.96 271.99 2.65 72.40
Total 38.64 1054.96 8.85 241.52

The total size of the tinydtls library (including the
access control framework) 1s 21592 bytes. This code
footprint includes 19368 bytes of program, 140 bytes of
constant data and 2084 bytes allocated for global
variables. Results of performance measurements are
presented i Table 2.

The minimum time for the complete handshake for
SHA256 Software computation is 533.05 msec and
average tiume 1s 775.05 msec. In case the SHA2 hardware
accelerator 1s used the mimimum and average time is
511.65 and 711.11 msec, respectively. The proposed
solution in this study used the proactive WPA/WPAZ to
protect the access link and [Psec security to secure the
data on the mnternet side. A possible future research can
target the availability aspect of the WPA/WPA?2 access
networks. While the 802.111 standard has strong measures
for both confidentiality and data mtegrity but very little
work targeted the defense against DoS attacks. Although,
some mntrusion detection systems or other solutions can
be implemented but an integral sclution that is part of the
Wi-F1 standard should exist.

One way delay: The average RTT value was 362.95 msec.
Hence, the average OWD value is 181.48 msec and
we can assume that attacker can send 8 44 requests per
second.

Analysis of the access control framework code
footprint shows that key derivation and revocation
functions take 7.9% of the total DTLS implementation.
The key denvation function takes 6.0% of total
computational time per handshake. SHA2 hardware
acceleration has a significant impact on the key derivation
and revocation processing time for DTLS handshake
messages. The accelerator speeds up the key derivation
computation 5.11 times and the key revocation
computation 6.43 times. Also, the accelerator speeds up
overall computation time of the handshake 4.37 times.

2683

J.J. Eng. Applied Sci., 13 (9): 2680-2684, 2018

We found out by comparing overall handshake time
with and without SHAZ hardware acceleration, that
optimization of the computational time has almost no
umpact on total handshake time. Hence, the key derivation
has no significant impact on total DTLS handshake
time.

CONCLUSION

The intention of this study was to design and
evaluate the access control protocol that is suitable for
resource constrained devices that connect objects to the
internet of things. We analyzed existing solutions and
based our approach on the TETF draft that is based on the
DTLS protocol in PSK mode. The draft was analyzed and
a few improvements were offered before implementation
and evaluation.

The protocol was implemented and evaluated on
C(C2538 platform that includes the low power ARM Cortex
M core and 802.15.4 radio module. This hardware
configuration is commonly used in ToT applications.
Evaluation results that the access
framework mcreased computational effort of the DTLS
handshake by 6.0%, mcreases the code footprint of the
DTLS implementation by 7.9% and has no effect on the
overall handshake time. We found out by analyzing
computational time that the protocol is not vulnerable to
deny of service or battery drain attack.

Moreover, the DTLS handshake protocol in PSK
mode was evaluated using the CC2538 platform and the
ContikiMAC radio duty cycle protocol. We found out the
computational efforts required for processing handshake
messages and average overall handshake time. We also,
compared results with software and hardware
implementation of the SHA-2 hash function and found out
that the hardware accelerator speeds up message
processing computations in 4.37 times but has no effect
handshake Analysis of attack
vulnerability shows that with a limited number of session
slots that is expected in IoT applications it is easily
possible to make the device unresponsive for about
2 min.

shows control

on overall time.

SUGGESTIONS

According to evaluation results, we offered to add
roles as the functional extension of the protocol.
Moreover, we suggest improving the key derivation

procedure to reduce computational efforts for processing
fake or erroneous nonces and to improve the key
revocation procedure to perform multiple key revocation
in one request. In addition to this, we recommend to
define access control protocol as a DTLS extension in
order to prevent the denial of service attack mentioned
above. The resulting protocol 1s feasible to use m the IoT.
We recommend this approach for application that require
dynamic centralized access allocation, reliable user
authentication and authenticated encryption of data
transmitted in both directions. The typical usage example
can be pay-per-use applications mn the IoT.

REFERENCES

Allance, 7., 2004, ZigBee document 053474r06. Version,
1:1-14.

Chen, D., M. Nixon, S. Han, A K. Mok and ¥X. Zhu, 2014.
Wireless HART and [EEE 802.15 4e. Proceedings of
the 2014 IEEE Intemational Conference on Industrial
technology (ICTIT), February 26- Marchl, 2014, TEEE,
Busan, South Korea, ISBN:978-1-4799-3940-4, pp:
760-765,

Eronen, P. and H. Tschofemg, 2005. Pre-shared key
ciphersuites for transport layer security (TLS).
Network Working Group, 1: 1-15.

Gutierrez, 1., 2006. Wireless Medium Access Control and
Physical Layer Specifications for Low-Rate Wireless
Personal Area Networks. IEEE Press, New York,
USA.,.

Krawczyk, H., R. Canetti and M. Bellare, 1997. HMAC:
Keyed-hashing for message authentication. Network
Working Group, 1: 1-11.

Montenegro, G., N. Kushalnagar, J. Hui and D. Culler,
2007. Transmission of IPv6 packets over IEEE
802.15.4 networks. Network Working Group, 1: 1-30.

Seitz, L. and G. Selander, 2013. Additional security modes
for CoAP. IETF, Fremont, Califorma, USA.

Wouters, P., H. Tschofemg, 1. Gilmore, 3. Weiler and
T. Kivinen, 2014, Using raw public keys in
Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). Internet Eng. Task
Force, 1: 1-18.

Zhang, R, Y. Zhang and K. Ren, 2012. Distributed
privacy-preserving access control in sensor
networks. TEEE. Trans. Parallel Distrib. Syst., 23:
1427-1438.

2684

	2680-2684_Page_1
	2680-2684_Page_2
	2680-2684_Page_3
	2680-2684_Page_4
	2680-2684_Page_5

