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Abstract: Two kind of pipeline models are considered, the first is based on Reynolds-Averaged Navier-Stokes
(RANS) equations and the second is a transfer function based model obtained from the first one model
linearization. The two models were implemented taking into account a real pipeline network parameters and
models responses were compared with real data. A well-fitting data between real process and model response

was observed in both cases.
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INTRODUCTION

Transporting oil products through pipelines has been
a common method to take these products to its final place
for the last decades. Provided it 13 widely used, the final
cost of the transported fluid 15 strongly dependent on
how effective this transportation process has been carried
out. Consequently, optimizing scheduling activities and
process conditions, has been a main concern of study for
at least 30 years. Pipelines can be constructed to
accomplish a simple task such as taking one type of
product from one source to one destination. On the other
hand, complexity level can be higher where pipelines with
multiple destinations can be mentioned and finally the
more realistic pipelines systems that are totally capable of
handling several destinations and multiple fluids, these
are mainly used n refineries transporting fluids such as
kerosene, naphtha and gas o1l (Herran et al., 2010).

Pipeline configuration depends on topography,
production and consumption rate, season production and
region requirements. There can be several configurations
of a transport pipeline, as function of distance between
stations for storage, distribution or pumping; depending
on these parameters, several models can be developed
(Herran et al., 2010, Neuroth ef al., 2000, Zhu et aif., 2001,
Matko et al., 2000, Lurie, 2008, Blazic et al, 2004,
Timenez et al, 2017). At current study, two models are
considered (Matko et al., 2000; Blazic et al., 2004) the first
15 based on Reynolds-Averaged Navier-Stokes (RANS)
equations and the second 13 a transfer function based
model obtained of the first one model linearization.

The two models were implemented taking into
account a real pipeline network parameters and models
responses were compared with real data. A well-fitting
data between real process and model response was
observed in both cases.

MATERIALS AND METHODS

Pipeline model: Referring to pipeline goveming
equations, there have been developed several models
(Herran et al., 2010, Matko et al., 2000). Thus, at current
study next set of differential equations (obtained using
continuity, momentum and energy equations) 18 used to
represent the dynamical behavior of the flnd
transportation along the pipeline.

A pipeline of length L, and constant radius R as that
shows in Fig. 1 1s considered. The assumptions made for
mathematical model derivation of the flow through
pipelines are (Blazic et al., 2004):

Fig. 1: Pipeline section diaram
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+  Compressible fluid, resulting in an unsteady flow

+  Viscous flow, viscosity causes shear stresses in a
moving fluid

*  Adiabatic flow, no transfer of energy between fluid
and pipeline will be considered

¢ TIsothermal flow, temperature changes due to pressure
changes and friction effects can be neglected,
consequently, the temperature along the pipeline 1s
considered constant

¢+ One-dimensional flow, pipeline characteristics (as
velocity and pressure) depend only on the z-axis laid
along the pipeline

+  Flow profile hydraulically developed. Which imply
v /oz=0andv,=v_ (1)

First, continuity equation i cylindrical coordinates
is stated (Bird et al., 2002):
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As it is considered to be flowing mainly in one
direction (assumption 5) the continuity equation is then
reduced to the expression:

ap d (2)
O

Considering that total derivative can be expressed as
(Andersorn, 1995):
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Where V = [v, vq v]is the velocity vector and :

Then, for p = p(r, 6, z, t) we have:
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But due to assumption number 5 in our case
p = p(z t) thus:
do_o .. %
& o Caz

By replacing Eq. 3 and 2:

do Wy (4)

dt dz

Where J(pv)/dz = p dv,/Oz+v,dp/dz has been taken
into account mn Eq. 2. Second expression 1s given by the
equation of motion (Bird e al., 2002):
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Newton's law of viscosity (Burd ef al., 2002):
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Bearing in mind assumptions Eq. 5 and 6 the Eq. 6 of
motion 1s then reduced to:

av v, op o,
Lty =% |=-—-—F-pgsina (6)
p( A ] 0z 0z PE

Where g, = g sin « is the gravitational effect along
z-axis (Fig. 1) and it has been taken into account that:

dv av, dv, Vg4 BVZ dv, av,
= —+Vr + = +v 17 = =+
dt o o r 09 dz ot
3 (7
dv, dv, dap ot )
v, +p =-—- -pg sin o
oz dt 0z o0z

It 18 important to mention Eq. 7 1s stated in term of the
change of the normal and shear stresses respect to every
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direction, physically this term (second term in the right
side of ) represents loses of energy due to friction.
However, m order to elimimate derivatives in r-axis, an
empirical approach made by Darcy and Weisbach, Eq. 8
can be used to determine these loses:

zz

o, _ WM
9z P 2d

Where, A represents a dimensionless friction
coefficient and d 1s the pipeline diameter. Then, combimng
Eqg. 8 and 6 using total derivatives, the equation of motion

can be rewritten as:

@-Fl@-&-g sino+ —}M;fllv‘ =0 ©)

dt pdz

Fmally, this set of equations 1s closed by taking mto
account density changes due to pressure changes which
can be stated as seen at Eq. 10:

dp_.dp_, (10)
at ™

Where o is fluid speed of sound. Now, taking as
boundary conditions the pipe line input pressure, P, and
the output flow, Q; and using finite differences, Eq. 4 and
9 can be discretized in n section as follows:

d_p+£—q1+1-q1 - Oid_q.t,_
dt A Az A dt (11)
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Where A 1s the cross-sectional area of the pipe,
q = Av is the flow rate,i =1, 2, ., n, ¢ = g, =
and g., = Quu = Q.. Thus, Eq. 10 and 11 constitute
the first pipeline model to be implemented at current
study.

Alternatively, due complexity to solve the set of
equations composed by Eq. 4, 9 and 10 (actually, to date,
there 18 no general closed-form solution) it has been
proposed several linearized versions of this set
(Matko et al., 2000, Blazic et al., 2004). In order to get a
linearized model the procedure presented in Blazic et al.,
(2004) 1s
derivatives with partial ones in Eq. 9 and 10; multiplying
by Eq. ¢ and p combining Eq. 4 and 10:

followed and it start by replacing total

av &, 13 Av]
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Neglecting the usually small convective derivatives:
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And using q = Av, Eq. 12 can be rewritten as follows:
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Defining the deviation variables around a operation
pomt (7. 4. 7)

Q(z.t) = q(z.t)-q(z) (14)

Lmearizing:
B ap ralgl AR
PR iyl D+—p|c§| Q=0
AR o 2da’ 2dA (15)
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Since, #1/# 18 typically very small (Blazic ef al., 2004)
and doing c=afa'FL = p/AT=gsnasagly]/2ea’ and R = ap[ql/2da’
Eq. 15 can be rewritten as:

1R ompipg- BB o (16)
58 dz ot oz

To get an analytical solution of , Eq. 16 llplace
transform 1s used:

dP(z,s)

(Ls+R)Q(z,3)+TD(z5) = - +LQ(z, 0)
(x) dz (17)
_ _dQ X,8 P(z
CsP(z8) = —u +CsP(z,0)

And since, transfer function defimition mnplies null
stationary initial condition:
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{Ls+R)Q(2,5)TTD(z,5) = _dsz,s)
(18)
csp(zs) =-2Q12s)
dz

Taking derivative with respect to z:

(15 +r)3QUZ8) [ D(x5) _ FP(z5)
dz azz (19)
SdP(z,s) _ a*Q(z,s)
dz dz?
Combining Eq. 18 and 19:
2
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az (20)
2
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Let now to replace total derivatives with partial ones
in Eq. 4 and to linearize:
aD(Z,t) +i dp (z) Q(z,t)+i aD(z,t)
ot A dz A dz 21

.
P LG L, =0
A dz

By taking the Laplace transform:

SD(Z,S)-D(Z,O)-Fi%(Z)Q(Z,S)-F

(22)
q oD dJq
4 (Z’S)-i-i q(Z)D(z,s):O
0z A oz
Assuming null stationary nitial condition:
1 93(2)
— =A
A O 4:
and doing Eq. 22 can be rewritten as:
dD(z,s) N (s+Aq, )AD(Z,S) _ 1dp {(z) o(s) (23)
dz q q
The homogeneous part of has as solution:
D{z s)=D,(s)e™ (24)

Where D, (s) =D (0, s) and k = (s+Aq,) amq It is
possible to show that Eq. 24 can be taken as a solution of
Eq. 23 (Blazic et al., 2004). Now, considering Eq. 23 and 20
can be transformed to:

dzP(z,s)

z

_ sz(z,s)

dZZ

(LstR)CsP(z,8) = -TD, (s)ke™

(25)

(LstR)CsQ(z,5) -CSTD, (s)ke™

Which are known as wave equations and their solutions
are;
TD,(s)k
P(zs)=C,(s)e™+C, (s)e"z-zni(sz)e'kZ
n'-k (26)
v = CSTD(s) |
Q) =C, (s)e =, (s)e=- SRl
n*k
Where n* = (LS+R)Cs. By combining second Eq. 26 and
first Eq. 18 in and by differentiating first Eq. 26 in with
respect to z:

(Ls+R){C3 (s)e=+C, (S)em_%ﬁz(s) em}

(s .

n’ -k

(27)

=nC, (s)e™nC, (s)e™- -TD, (s)e™

Taking into account that:

k| (LStR)Cs  K°
TDD(S)ekX{ n? Jc? _1_n2-k2 =0

The following relations are obtained from Eq. 27:

Cfs) _Ls+R _ [Ls+R _
C3(s)_ n Y Cs =
C(5)

Ls+R
=- T = JIs+RCs =7,

(28)

TD, (s)k (29)

It 1s obtamed:

C,(s) —%{Qn (s)+ ZLPD (5) ¢ L

K

1 TD,

c4(s)_%{gu(s)zpu(s)+m

Using the boundary condition for z=Tp in Eq. 26:
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P(L,.5) =P, (3) = Z¢ | Oy (s)e™ —C,(s)e™ |
TDU k —kL —nL.
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By replacing Eq. 30 and 31 it is obtained:

P (s)=-2,Q, (s)sinh(an )+PU (s)cosh(an)+
TkD, (s)

2 2
n -k

Q, (s)=Q, (s)cosh(nL, )_Zl

K
+TkD7”(S){%cosh(an )-sinh(an)-%e_kL‘) }
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Taking intoe  account — k=(stAq)A/T C=4/a'FL
=pfar=4p[g/2ds’ and n'=(Ls+R)oan/k can be written as
follows:

n_ -‘/(LS+R)CS 7\/(§S+§7L‘ﬁ|/dA)/azﬁs
k (s+AqZ)A/§ (s+AqZ)A/q (33)
g sz+sl|ﬁ|/d
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Since, a>>7/a =v[n/k|<<1and the terns with n/k in can
be neglected. Additionally, considering that:

k _ 1 I

Kk (k) ] 34
Ay

(sraq a2 T

Eq. 32 can be rewritten as follows:

P, (s)=-Z,Q, (s)sinh(an )+Pn (s)cosh(an)+

T_Dn(s) ” .
(SEAT)A[COS}I(HLIO)-B ]QL(S) 7Qu(s)cosh(an)_

(35)
Since, Ag, 1s very small:

. aa
(s+Aq)A s

kL, _ e—[(quZ)Aﬁ]Lp - e—stﬁ —tys

e =e
(36)

Where, t; 1s the dead tume or transport delay, the time
needed for the flud to reach the outlet from the pipeline
inlet. An additional equation which state the density at the
pipeline outlet is obtained by setting z = Lp in Eq. 24as

follows:

kL

D(Lp,s) =D, (s)=D,(s)e" " =D,(s)e™ (37)

Conclusively, the transfer function matrix
representing the pipeline 1s:
i Tv b
cosh(nL,) -7 terh(nL,) —T”(oosh(an)-etU)
PL
Q |=|-Lsimh(nL,)  cosh(nL,) - sinh(nL,)
Zy 2.8
DL -t
0 0 e
k
<,
DO
(38)

Where ¥, =T/A. The linearized non-causal model can
be rewritten in one of the following forms; Representation
10: [P, Qy Do]™[P; Q. D,]:

1
——— 7 tanh{nL
cosh(nL) * (nL)
By Tvy 1_;_‘3405 i b,
Q=] s cosh({nL; ) Q,
D D
S D an(nt, ) Tt (nn, et B0
Zy cosh{nL;) Z;s
|0 0 e |
(39)
Representation 2: [P, Q. D™ [P, Q, D.]:
I 1 Tw 1 ]
7 tah(l)— 1 o
o cosh(nLy ) Z tanh (i) s {cosh(an)-e J o
L o
1 1 Twv
=~ tanh(nL — " o (nL,
N Zy (nl-c) cosh{nL,} Zs (nl) @
DL DU
0 0 e’ B
(40)
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Representation 3: [Q, Q. D,]">[P, PL D,

1 Tv

ZKCOth(HLF) -ZKm .
P

Pﬂ
1 Tv
P =z -Z. coth{nL Lt
DL K sinh(nL) ¥ (nl.) s
L 0 0 e'fus (41)

Representation 4: [P, P, D] [P, PL D.]"

1 1 1
Z—Kcoth(an)-ngmh(an) _

R e e 1
sinh(nL,) Z, sinh(nL,) P,

Q|7 Zes
D D,
7 | ——coth(nL,) I : ! -coth(nL,)e™ !
. Zs| sinh{nL,)
|0 0 e ]
(42)

Representations 1-4 can be approximated to rational
transfer functions matrix by using Taylor series expansion
as follows:

1 1 N
COSh(HLp) cosh(Lp (Ls+R)Cs) “3)
1
(JoLiLCH 14, LIR'C? )™+ VLI RCs
1 Cs
Z—Ktanh(an)= LS+Rtanh(Lp,/(Ls+R)Cs)z
Y LRCHHL,Cs v
6 P
(JrLes 1, iR s i 1iRCs
Z. tanh(nL, )= LS+Rtanh(Lp (LsiR)Cs | ~
3
(45)

JALRLCS H{L,L+ VL R'CJsHL,R

(JoLiLes 1 LiR°C? Js*+ L LiRCs+1

1
Z_COth(an) =

LSC+SR cotll(Lp,/(Ls+R)Cs) =

K
(46)
(JoriLes 1, LiRiCH 5" 1 1iRCs +1
JALRLCS +{L, L+ JCIZR'C)s+L,R
1 _ | Cs 1 ~
Zgsinh(nl, ) VL3R sinh (L, fLs+R)Cs .
1

JALRLCS' +{L L+ J/LIR'Cs+L R

Finally, at current study the linearized model in Eq. 40
was chosen as the second model to be implemented.

RESULTS AND DISCUSSION

Model validation: Tn order to verify the models responses
are correct, their performances were compared against
data of a three section real pipeline transporting LPG
(Fig. 2). For modeling each the pipeline sections first the
set of Eq. 10 and 11 shown at and then Eq. 40 were used.
Pressure in station 1 and flow in Station 4 were fixed as
boundary conditions. Table 1 shows the main parameters
used at currents models.

Figure 3 and 4 show pressure and flow rate model
error obtained with the discretized model, model 1. The
maximum model errors gotten were about 3.8 and 7.1% for
pressure and flow rate in station 4 and 1, respectively.

The transfer function model for each section,
considering parameters in Table 1 had the form:

P, G,(s) G,(s) G,(s)| P
V, =] G, (8) GL(3) GL(s)| V. (48)
D, 0 0 G,(s)| D,

Where for pipeline section 1:

Table 1: Model parameters

Variables Symbol Value Units
Density o 530 kg/m®
Friction coefficient A 0.00965
Fhiid speed of sound a 2490 m/sec
Pipelines lengths Lp, 10326

Lp, 18560 m

Lp: 14980
Pipelines diameter Dp 04968748 m
Pipelines inclinations 03 -1.93*%104

e 3.77*%10° red

o 5.74%103
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Fig. 3: Pressure model error-Model 1, a) Station 2; b)
Station 3 and ¢) Station 4
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Fig. 4: Flow rate model error-Model 1; a) Station 1; b)
Station 2 and ¢) Station 3

-
Guls)= 8.65°+0.25+1
G (S)i_9><105sz—5.5><106s-1.6><105
AN 8.68° +0.28+1
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72 -fi
G (5)- 2.6x107 87 +3.1x10"s

8.68%+0.28+1
Gzz(s):Gn(S)a ij(s)ze-ﬂxmis
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G e
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For pipeline section 2:

@ X:1047,
- Y:20158

Time (min)

Fig. 5. Pressure model error; a) Model 1; b) Station 2 and
¢) Station 3 and Station 4

Table 2: Model errors

Model Max pressure error (%) Maxc flow rate emror (%6)
1 3.8 7.1
2 5.0 81

G (S)_-5.%10552-9.%055-2&105
1 27.95% + 0.8s+1

2
G”(S) 3610 (GH(S)_erljqus)

G, (s) = 1.54107¢% +5.6<107"s
n 27.95% +0.8s+1
G22 (S) — G“ (S), ij (S) :e—1.3><1u“s
-1.9x107%8 -7.4x107
G =
a(s) $242 81072 5+3.4x10°

And for pipeline section 3:

1
G = - @000
a () 18.1s2+0.55+1
G.(s)= -2.8<10%s" 8x10°5-2.3x10°
. 18.1s%+0.55+1

0.1 s
Gyls) = T(Gn(s).e S
8<107s%+4.6x10°
%) = ewrroser
s +0.58+1
G,(5) =G, (s), Gu(s)=e'™"
-5x1078-2.9x10°
G =
5 () §2+2.9x1025+5.5:107

Figure 5 and 6 show pressure and flow rate model
error obtamed with the transfer functions model, model 2.
For flow rate model error calculation, the relation Q = Av
was considered. The maximum model errors gotten were
about 5 and 8.1% for pressure and flow rate in Station 4
and 1, respectively.

2620



J. Eng. Applied Sci., 13 (9): 2614-2621, 2018

Q error (%)

Time (min)

Fig. 6: Flow rate model error; a) Model 2; b) Station 1
and c) Station 2 and Station 3

CONCLUSION

The model error reached with both models. Having
achieved well-fitting data between real process and
models responses, it can be concluded that both model
are describing the real system dynamics in a very accurate
way. In fact as may be expected, Model 1 responses are
more precise Than the obtained with model 2.
Nevertheless, model 2 15 easier to mnplement and less
computational resources consurmer.

On the other hand, since mn the study of hydrocarbon
transport, there have been implemented different control
stratgies in order to optimize the pumping process,
(Neuroth et al, 2000, Zhu et al., 2001) and to reduce
downtime between transports of different substances
(Gopalaknshnan et af., 2013) in control application, author
suggests using model 2 for design (tuning) the control
system and Model 1 to test the performance of the control
system designed.
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