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Abstract: In analysis of time series data, the class of GARCH Models in many studies has proved very valuable
i modeling time series with time varying volatility, especially in financial time series data. The behavior of
financial data sometimes are not only have a high volatility and heterogeneous variances but also have an
asymmetric effect or leverage effect due to the price down (bad news) and the price increase (good news). One
of the models that can cope with the asymmetric effect is Exponential Generalized Autoregressive Conditional
Heteroscedasticity (EGARCH) Model. The aims of this study 1s to find the best EGARCH Model for forecasting
data share of PT. Tambang Batu Bara Bukit Asam Tbk from January 2009-February 2016. The results shown that
the best model are ARIMA (1, 1, 0) Model and EGARCH (1.1) Models. The forecasting results also sound good

and within the 95% confidence interval.
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INTRODUCTION

The commonly used methods of analysis time series
data are Autoregressive (AR) or Moving Average (MA)
models or the combmation of both of them, 1e.,
Autoregressive Moving Average (ARMA) model which
assume that the vamance 18 Homoscedasticity
(homogeneous variance). But for some cases of financial
data, the fluctuations are very fast from time to time such
that the wvariances and error change over time
(heterogeneous). One of the models that can cope with
the problem of heterogeneous variance 1s Autoregressive
Conditional Heteroscedasticity (ARCH) Model which was
introduced by Engle (1982). The model was generalized by
Bollerslev (1986) to overcome the high order on the ARCH
Model and it is well known as Generalized Autoregressive
Conditional  Heteroscedasticity (GARCH)  Model
(Tsay, 2005). The Model ARCH or GARCH assume that
the errors either positive or negative will give the same
effect on volatilities. But the fact is that this assumption
sometimes is vicolated because generally, the time series
data shows asymmetric phenomenon between the
positive and negative error to the volatility (Tsay, 2005).
A method of analysis that can be used to deal with the
asymmetric effect 15 Exponential GARCH (EGARCH)
Model which was introduced by Nelson (1991). This

model will be used to analyze data share of PT Tambang
Batu Bara Bukit Asam Tbk in the period from Tanuary
2009-February 2016. In this study, the application of
EGARCH Model, estimation of its parameters to find the
best model and then use the model for forecasting data.

MATERIALS AND METHODS

Time series modeling: Time series 1s an ordered
sequence of observation. Tt is usually through time,
particularly in terms of some equally space time interval
{(Wei, 2006). Prior to conduct an analysis of tune series
data, the assumption of stationary should be fulfilled by
the data. Stationary is one of the fundamental concepts in
time series analysis (Sampson, 2001). A stationary time
series is one whose statistical properties such as mean,
variance, autocorrelation, ete. are all constant over time.
In time series modeling tools that commonly used to
1dentify model from the data are ACF and PACF (Pankratz,
1991; Wei, 2006). A stationary time series data satisfied
the properties that the mean and variance are constant. To
test the nonstationary, the Augmented Dickey-Fuller test
can be used.

Augmented Dickey-Fuller (ADF) test: Some time series
data tend to be nonstationary, for example, a price series
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data, the nonstationary due to the fact that there is no
fixed level for price. Such a nonstationary series is called
unit-root nonstationary time series (Tsay, 2005). A unit
root is a feature of some stochastic processes that can
cause problems in time series modeling. Let the regression
equation of AR (p) is as follows:

p-1
x, =8+, Xt-1+2 PAX,, e, (1)
1=1

Ax; = %%, 1s the difference sequence of x,. One of the umit
root tests 15 Augmented Dickey Fuller (ADF) test. The
ADF test 1s conducted through the calculation of the
value of T (tau) statistic as follows:

om0 @)
SE 6

The hypothesis is as follows: H; ¢<1 (x ,is
nonstationary) against H;: ¢<1 (x, is stationary). If t©
statistic is <t table, then H, is not rejected and the data
are nonstationary (Tsay, 2005; Maddala and In-Moo Kim,
2004; Ogaki, 1993).

White noise process: The white noise process is used to
diagnostic check a model to test the ARTMA Model and
Exponential GARCH (EGARCH) Model. A process €, is
called a white noise process if the random variable are
uncorrelated and normally distributed with constant mean
E (€,) = 0 and constant variance Var (¢,) = ¢° and y = Cov
(€, €4 = O for k#0. Thus, a stationary white noise process
satisfied. Autocovariance function:

L o k=0
“lo ifk=#0
Autocorrelation function:
(1 ifk=0
P«=10 i k=0

Partial autocorrelation function:

1
Oy = 0

The white noise process can be check by using ljung
box-pierce test with the hypotheses 1s as follows: Hy: p, =
P;= ;= .-, = 0 (There 18 no autocorrelation) H,: dp, # 0,
k=1, 2, ..., K (there is an autocorrelation). The level of
significance ¢ = 5%, the Ljung Box-Pierce test statistic
18!

ifk=0
if k0

Q=TT ¥ 3

Where:

T = Total observation

K = Number of lag tested

P = The estimation of autocorrelation residuals of k
period

The distribution of Q, 18 asymptotically chi-squares
distribution with df K minus number of parameters. So, H,
is rejected if Q=X 4 table with the df K minus number of
parameters (Wei, 2006).

Jarque-bera test: To check the normality of residuals, the
Jarque Bera test can be used. The statistic that is
introduced by Bera and Jarque (1982) provides a formal
assessment of how much the skewness and kurtosis
deviate from the normality assumption. The hypothesis to
be tested is as follows. H,: The residuals are normal
distribution and H;: The residuals are non-normal
distribution. The test 1s as follows:

IB = H%J SZ{%J (K—B)Z} )

Where:

T = Total number of observation
S = Skewness

K = Kurtosis

The TB asymptotically has chi-squares distribution
with 2° of freedom. Reject Hy if TB is >x%,.

Volatility: Tn statistical time series data, the conditional
variance given the past is:

Var (x,[F,)

where, F,, = The available set of mformation at time t-1 1s
not constant over time and the stochastic process of {x}
is conditionally heteroscedastic. The volatility is defined
as:

o, = [Var (x,|E,)]"

change over time (Straumann, 20035). Tsay (2005) states
that volatillity means the conditional standard deviation.
The volatility as a standard deviation has lead a time
series modeling approach based on the properties of the
variance, namely, variance constant and variance not
constant (heteroscedastic). The Autoregressive (AR),
Moving-Average (MA) and Autoregressive Moving
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Average (ARMA) Models are based on the assumption
that the variances are constant while ARCH and GARCH
Models are based on the assumption that the variances
are not constant.

Autoregressive (AR) and Moving Average (MA) Models:
General form of AR (p) Model is as follows:

X, =0+, X, 10, X, T, ., T, X, FE, ()
Where €, white noise. The Eq. 5 can be written as:

@ (B) x, =8+g,
Where:

® (B) =1-¢, B-9, B’-.-¢,BF and B* x, =x,,

The AR (p) time series {x,} is stationary if the roots of
the polyomial:

SP-0, 8710, §7F, L0, =0 (7

are less than one in absolute value. It has been shown
(Montgomery et al., 2008) that for stationary AR (p) the

mean, covariance and variance are as folows
(Montgomery et al., 2008):
b
E(x)=p=——— (8)
' 1-(-0, s
v (k) = Cov (x,, %,,,) )]
L . |s* ifk=0
= ) -1)+
;(p‘ v 0 if k=0 (10)
v(0)=0"

Moving Average (MA) Model with order  is defined by
MA (q) and can be written as follows:

X, =ute 0 g -0, 8 -0, 8 - ...,—Gq By (1)
&,~N (0, 0)
Where:
X, = Variable at time t
c. = Anerror attime t
8, = Regression coefficient
I = 1,23 ..,q

q = The order of MA

Equation 11 can be written by using Backshift (B)
operator as follows:

x, =p+(1-6, B8, B*- -0, B},
=p+(1-Y" 6, B)g, (12)
=pt@ (B)e,
where, ® (B) = 1-X% . Since €,is white noise, the expected
value, variance, autocovariance and autocorrelation are as
follows:
E (Xt) =E (“Jrat'el Et-l'ez Et-2'83 Eigs oo eq Et-q)

=o' (140} +, .., +0)

(13)

Var (x,) = v, (0)
= Var (p+e,0, &,,-0, ¢, ,-0,8,,,..,9, &)

= of (1+0]+0i+..+ 6})

(14)

And autocovariance at lag k 1s:

v, (k) =Cov (x,, X,,,)

e (-6,16, Bt o 16, B ) K =1,2,.. q
0 k>q
(15)
So, the value of autocorrelation at lag k 1s:
¥, (K)
P, k)=~
v, (0)
(-6,46,8,,,+ .,78, . 0 (16)
ik ) =1,23..q
= 1487+, .., 48]
0 k=q

The values of ACF can be used to identify the MA
model and order cut off after lag q (Montgomery et af.,
2008).

Autoregressive Integrated Moving Average (ARIMA)
Model: Let d be a nonnegative integer then {x,} is said to
be an ARIMA process if Y,; = (1-B)" x, is generated from
ARMA process. So, {x,} satisfied the equation:

o*B)x, = (BYIBY x, =T (B &, {£,}~WN (0, 5)
In a compact notation it can be written as:
©(B)VY x, =T (B)e, (17)
Where @ (B), @ (B) are polynomial with the degree p and
g, respectively and V' (1-B)* (Brockwell and Davis, 2002;

Pankratz, 1983). In selecting a best model, the Akaike
Information Criterion (ATC) is used.
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Autoregressive Conditional Heteroscedastic (ARCH)
Model: The basic idea of the least squares model assumes
that the expected value of all of the squares error terms 1s
the same at any given point. This assumption is called
homoscedasticity (Engle, 2001). The ARCH/GARCH
models are bult based on the assumption that the
variances are not constant overv time. This assumption is
called heteroscedasticity. The ARCH and GARCH Models
treat heteroscedasticity as a variance to be modeled
(Engle, 2001; Bollerslev,1986). Engle (1982) introduced
a Model time varying conditional variance with
Autoregressive Conditional Heteroscedasticity (ARCH)
model using lagged disturbances. ARCH is a function of
autoregression which assume that the vanance is not
constant over time and also affected by the past data. The
idea behind this model is to see the relationship between
the random variable and the previous random variable.
The basic idea of ARCH Model 1s the time series data x, is
serially uncorrelated but dependent, the dependence of x,
can be written as a simple quadratic function (Tsay, 2001).
The ARCH Model 1s built as follows, Let x,. X, .... X1 be the
sequence of random data and F be the set of random data
up to time t, then ARCH Model with degree ¢ with respect
to % 18! XJF,~N (0, ¢,) where F,, is the information set
available at time t-1. Conditional variance of the residual
€, which is 0%, can be written as:

O; =tk el th, B AR €,

where the variance residual depend on the-q squares
of residual and is called Autoregressive Conditional
Heteroscedasticity (ARCH). The ARCH Model can be
written as:

Xt = 8+2f: 1¢1 Xt-1-2f1: 181 Et-1+8t
g,~N (0, c")

2 2
O, =tk & A, €, A

(18)

x, 18 the equation of conditional mean (Brooks, 2014: Tsay,
2005).

Lagrange Multiplier (LM) test: Engle (1982) stated that
the time series data beside has a problem with
autocorrelation  also  has a  problem  with
heteroscedasticity. Weiss (1984) has shown the
importance of detecting the present of ARCH effect in
time series data. He showed that ignoring the presence of
heteroscedasticity not only cause the estimation of
parameters to be inefficient but it also could result in an
over parameterized ARMA Model. The test that can be
used to detect the heteroscedasticity or ARCH effect 1s
ARCH-Lagrange Multiplier (ARCH-L.M) (Engle, 1982;
Tsay, 2005). The steps are as follows. Define the linear
regression as follows x, = p+d, xth xh L+ x5t
Squares the residual and regress on the variance t to test

the order of ¢ ARCH o/ = 4,44, €.°H4, €7 .. tA €.
where is residual. Find the R? from this residual. The test
Statistic is:

LM = TR’ (19)
.o 2
RZ = 2i=1(xi'® (20)
> &
Where:
T = Total number of observation
R* = R-square
x’(q) = Distribution

The null and alternative hypothesis is: 7, = A, = &, = .,
=A,=0H;A#0Dord,#0or..ori, #0(Brooks, 2014).
Although, the Lagrange multiplier is helpful in detecting
ARCH effect but it 1s still difficult in practice to determine
the order of the process. One method to determine the
order of the model 1s to fit several competing models and
then compare the AIC (Akaike Information Criterion)
values for these competing models.

Generalized ARCH (GARCH) Model: GARCH Model
{Generalized Autoregresive Conditional Heteroscedastic)
Model 1s a generalized of ARCH. This model 1s built to
avoid the order of ARCH Model which is to high.
Terasgvita (2009) and Lindner (2009) have pointed out that
the GARCH Model is a special case of ARCH (). GARCH
Model 18 not only to see the relationship among some
residual but also depend on some past residuals. GARCH
was mntroduced by Bollerslev (1986). GARCH Model with
order p and q is defined:
%[E,~N (0, 67) 21
GARCH Model was developed by Bollerslev (1986).
GARCH Model allows the conditional variance depend on

the conditional variance of the previous lag. So that, the
equation of conditional variance become

Gf :U‘H_Eipﬂkl Etz'1-"_2‘::1:161' Gi'j (22)

Where the present values of the conditional variance
was parameterized and depend on the-q lag from the
squares residual and the-p lag of the conditional variance
1s written as GARCH (p,q). So, GARCH Model if its time
varying conditional variance 13 heteroscedastic with both
autoregression and moving average (Peijie, 2009). GARCH
Model can be written as:

Xy = 8+2f:1¢i XH_Z?:lei EritE,
g,~N (0, 6%)

2 _ 1 2 P 2
Oy *WZizlli Et—1+2]=16j Oyj

(23)
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Where x, is the
(Bollerslev, 1986).

equation of conditional mean

Asymmetric effects: The condition error which is <0 or
the asset price decrease is called bad news and the
condition of error which is larger than zero or the asset
price increase is called good news. Whenever good news
and bad news have an impact which is non-symmetrical
toward volatility or volatility tends to respond
asymmetrically to positive and negative asset return, this
condition is called leverage effect (Chen et al., 2005;
Straumann, 2005). To use EGARCH Model it is assume
that the residuals have to have asymmetric effects. In
order to examine the presence of asymmetric effects
(volatility-return correlation) in the data share of PT.
Tambang Batu Bara Bukit Asam Tbl, we first analyze the
dynamics of stock returns volatility. To this end, we
apply the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) Model. In the volatility
modeling process using GARCH Models, the first moment
(mean) and second moment (variance) of the series are
estimated simultaneously. A GARCH Model for stock
returns assuming that the distribution of the return series
for period t, conditional on all previous returns. Engle and
Ng (1993) proposed three diagnostic tests for checking
the asymmetric effects, the sign bias test, the negative
size bias test and the positive size bias test. These tests
are used to evaluate whether we need asymmetric model
or GARCH Model is fitted for the data. To detect
asymmetric volatility in the stock return series, Engle and
Ng (1993) proposed a set of tests, known as sign and bias
tests. These tests should be used to investigate whether
an asymmetric GARCH Model is required for stock return
series. In volatility modeling of the stock return series, the
diagnostic Engle-Ng tests are used to detect
misspecifications related to asymmetric effects based on
the residuals of a GARCH Model fitted to the stock return
series. The underlying idea is that if the volatility process
is correctly specified then the squared standardized
residuals should not be predictable on the basis of
observed variables. These tests can be individually
computed from the following equations. Sign bias t-test:

el = j,+j, S te,
Positive size bias t-test:
& = .S e, e,
Negative size bias t-test:

étz = Joth (1-5,)e,, e,

Joint test for the three effects:

étz = ju+j1S;71+j2 S;—1 eH+ j3 (1'8;71) et—1+et

Where €, error term under the null hypothesis 15 5 | is
dummy variable which takes the value of 1 if €., and 0
otherwise. @, is a parameter of sign bias (effect positive or
negative), @, 1s parameter of size bias (the largest of
negative effects), @, 1s parameter of size bias (the largest
positive effects). The null hypothesis of no asymmetric
effect is as follows, Hy: @, = @, = @, = 0 and is tested by
using Lagrange Multiplier Test (LM Test). The LM test 1s
asymptotically follow a x* distribution with 3° of freedom
(df =3).

Exponential GARCH (EGARCH) Model: EGARCH Model
was introduced by Nelson (1991). EGARCH Model 1s
defined as follows:

In (o) = o+f In (o0 )+ BT {E“\/ﬂ (24)
Jor, [ ¥

o, o,

Where w, P, ¢ are A parameters to be estimated, (0,
is Exponential GARCH Model, w is parameter from ARCH
Model, P is the effect of positive issues with respect to
the current variances. ¢ is the effect of volatility of the
past period which has effect on the current variance and
A is parameter from GARCH Model In the Eq. 24
conditional variance used natural logarithm. So, the
conditional variance is nonnegative (Brooks, 2014).

The estimation of parameter of EGARCH Model: Given
e~N (0, 6y and €, €, ..., € ;are n random sample of
Identically Independent Distribution (IID) from f (€, 8)
with 6 = 0, 6. By using the density function above, we
can defme the likelihood function:

L{(B)="f(g;0f (g,,0)...F (e ;0) (25)

L ® =[]f €0

-

g’ ot (26)

1

L(B):H

-t

2N G

L& =02rna)?exp {_202 Et_lsﬂ

t

By applying log to both sides, we have:

2 1 o
InL{0)=In{2nc;)* exp {—2 5 Etzlsf—
i (27)
2
n n n e
=-—1In2rn-=—In G- :
2 2 ' Ef=12<:rf
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According to Bollerslev (1986) the iteration method
Bemdt-Hall-Hall-Hausman (BHHH) can be used to
estimate the parameters of EGARCH (p, q) Model. The
iteration Bermndt-Hall-Hall-Hausman (BHHH) method.

Bernt-Hall-Hall-Hausman (BHHH): This method used
axploited algorithm iteration of scoring. Part of the
exploited is the P, from the method of scoring namely:

P = {E (azLen ﬂ (28)
30 96
a’ (L4L,+, .. +L”)\e i
00 oo’ :
7 N 0 Lt i
o [ oo | _{E{Zt 130 00 ﬂ

_ N
- z"HE[ae o

v
Il

1
s

| J_’_}{NEG& o]
[v4fgze]

Finally, we have:

(e ] 350 ]
(29)

The general form of BHHH iteration by using
algorithm iteration 1s as follows:

-1
6,,=6,+- 3" 0L 9Lyg 11 [9L:g | (30)
mroo =1 a0 30 0 "

RESULTS AND DISCUSSION

Tdentification: Before we analyze data, first of all we will
check the stationary data. The data are stationary if there
15 no drastic change in the data. Test for stationary data
are conducted by looking at the plot of the data weekly
share price of PT. Tambang Batu Bara Bukit Asam in the
periods of January 2009-February 2016 and given in
Fig. 1 and the result of Augmented Dickey Fuller test
given in Table 1 from the data. Figure 1 shows that the
movement of the graph of share price data PT Tambeng
Batu Bara Bukit Asam Thbk is not stationary. The trend
shows that the data increase and decrease sharply such
that the mean of the data are not stationary. Test
Augmented Dickey Fuller (ADF), the null and alternative
hypotheses:

20000

15000

Large stock

10000

5000

0 100 200 300
Weeks

Fig. 1. Plot data share price of PTBA in the period
Jamary 2009-February 2016

6000

4000

Values

2000

-2000

-4000
1] 100 200 300
Periods

Fig. 2: The graph share price of PTBA in the period
Jamary 2009-February 2016 after differencing

Table 1: The output of ADF test for the data share price of PTBA
Augmented Dickey-Fuller test

Variables Values
Test results parameter:

Lag order 0
Statistic:

Dickey-Fuller -0.5444
p-value 0.4428

H;: ¢ = O (Thereis a unit root or data nonstationary)
Hy: ¢<0 (no unit root or data stationary) Reject H; if
p-value <0.05

From Table 1 it found that the p-value (0.4428)=0.05),
so that, there 13 not enough evidence to reject Ho. This
means that the data share price of PTBA has a unit root
which implies that the data are nonstationary. So, we need
to conduct a difference or transform the data to make them
stationary. The method of transformation that we will use
is Difference Stationary Processes (DSP). By using this
DSP, the data are transformed by differencing the-k lag by
th-(k-1) lag. We got the graph as follows. The result of
ADF test after differencing is given below. Table 2 shows
that the p-value (0.01<0.05) and we reject Ho. This means
that the share price data of PTBA has no umt root which
implies that the data are stationary (Fig. 2).

ARIMA Model estimation: After the transformation and
the data are stationary then we can identify the order and
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Table 2: The result of ADF test after differencing augmented Dickey-Fuller
test

Variables Values
Test results par ameter:

Lag Order 0
Statistic:

Dickey-Fuller -22.32418
p-value 0.01

Table 3: Result of model estimation and the best model share price of
PTBA based on the value of AIC

Variables Values
ARIMA (2,1,2) with drift 5952.546
ARIMA (0,1,0) with drift 5954.504
ARIMA (1,1,0) with drift 5948.575
ARIMA (0,1,1) with drift 5949.222
ARIMA (0,1,0) 5952.519
ARIMA (2,1,0) with drift 5949.041
ARIMA (1,1,1) with drift 5949.677
ARIMA (2,1,1) with drift 5951.604
ARIMA (1,1,0) 5946.587
ARIMA (2,1,0) 5947.955
ARIMA (1,1,1) 5947.689
ARIMA (2.1.1) 5949.619
Best model: ARTMA (1,1,0)

Table 4: The estimation of parameter ARTMA (1.1.0) Model

Coefficient Estimation t-value p-value
AR (D) -0.1495 -2.9086 0.0038

estimate ARIMA Model. Below are the results of the best
model estimation by using software R 3.2.3 ,Table 3 show
that the best model based on the smallest value of AIC 1s
ARIMA (1, 1, 0) where the AIC value is 5946.587. The
mean model presented in the following Table 4. The mean
Model can be written as follows:

X, =-0.149 %, +€,
Where:
%, = Differencing data share price of PTBA at the-(t-k)

€, = the-tresidual
k = 01,2 ..,n

The Evaluation ARTMA Model: At the stage of model
evaluation, we will see whether the residuals of the
ARIMA  Model are white noise and normally
distributed.

‘White noise test: To see whether the residuals are white
noise, we will conduct a residual test by using Tjung-Box
test. The results of the Ljung-Box test are given
below. Figure 3, shows that the graph of p-value for
Ljung-Box statistic are above (.05 this means that the
residuals has no correlation and we can say that the
residuals of ARIMA (1.1,0) Model are white noise.

Normality test: Figure 4 shows that the distribution of the
residuals 1s not on the straight line, so the residual of the
ARIMA (1, 1, 0) Model not normally distributed. Besides
using Normal QQ Plot, we can use normality test,
Jarque-Bera test as given in Eq. 4 and the result of the test
is given in Table 5.

Table 5: The results of Jacque-bera test for ARTMA (1.1,0)

Variables Values
Jarque-bera normalality test; test results

Statistic X-squared 47.5729
p-value 4.674e-11

Table 6: Test ARCH lagrange multiplier for ARTMA (1,1, 0)

Variables Values
Chi-squared 35.729
df 12
p-value 0.0003581
ARCH LM-test (Null hypothesis: no ARCH effects) data: diff-t

Table 7: The estimation results GARCH (1.1) model

Pararmeters Coefficient SE p-value
& -18.398891 32.81.000 0.574955
by -0.119539 0.053655 0.025886
ap 562.632783 6987.3.0000 0.935822
Ay 0.031798 0.021548 0.140019
B, 0.966044 0.030264 0.000000

Since, the p-value {(4.674e™ or 0.0000780637<0.03),
H, is rejected, so that, the residuals not normally
distributed.

Lagrange Multiplier (LM) test: Data time series besides
have a problems with autocorrelation, also has problem
with heteroscedasticity. A test that can detect of ARCH
effects is the ARCH Lagrange Multiplier test, the null and
alternative hypothesis is as follows:

0= A = ... = A= 0 (No ARCH effects)

H,
Hy:Ay# A # ..., # Ap # 0 (has ARCH effects)

DA
DA

Reject H, if the p-value<0.05. Table 6 shows that the
p-value (0.0003581<0.05), so, we can conclude that the
model ARIMA (1, 1, 0) has ARCH effects. Thus, the
modeling by using model ARCH/GARCH 1s
recommended.

Model GARCH: A model that we chose from the
estimation of mean function and variance function
simultaneously with the model GARCH is AR(1)- GARCH
(1,1). The estimation results can be seen in the Table 1.
Based on the results in Table 7, GARCH (1,1) Model can
be written as follows:

X, = -18.398891-0.119539 x,  +&,

And:
o = 562.632783+0.031798 x,,+0.966044 o, *

where x, 1s equation of conditional mean.

The test for asymmetric effects: The condition where an
error is <0 or the asset price go down is called bad news
and the condition of the error is greater than zero or the
asset price is go up is called good news. When a good
news and bad news give asymmetric effects to volatilities,
thus situation 1s called leverage effect. Below 1s the results
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of the value of sign bias test data weekly share price ~ Table8: Theresults of sign bias test
PTBA. The values of sign bias test and negative sign bias :’Tar;ables Val;‘es_
. T -value prob sig
test are <0.0§ (e) this shows .th.at the test. is 51gr.11f1(.:a.nt at Sian bias 2 624 0,009065%#*
o = 5% , while the values of jomnt effect 1s not significant Negative sign bias 2,017 0.044443+%
at ¢ = 5% but significant at ¢ = 10% or 0,1. From the Positive sign bias 1.208 0.227892
Joint effect 7.563 0.055973+

above results we can conclude that the data weekly share
price of PTBA have asymmetric effects. To overcome the
asymmetric effects we can use EGARCH Model. The
asymmetric of data can be seen from the plot of news
umpact curve below (Table 8 and 9).

EGARCH Model: To estimate the parameters of the
EGARCH Model we use maximum likelihood. Below are
the results of the estimation of parameters EGARCH (1,1)
Model.

From Table 10, the mean and variance models can
be written as follows:

%, =-11.97936-0.116093 x, +¢,
And:

Table 9: Adjusted pearson goodness-of-fit test

Groups Statistic p-values (g-1)

1 20 45.77 0.000535
2 30 55.06 0.002435
3 40 64.04 0.006961
4 50 72.80 0.015272
Table 10: The results of mean model and variance model

Parameter Coefficient SE p-values
¢} -11.979360 11.377870 0.292403
by -0.116093 0.052343 0.026559
w 2.521682 1.192470 0.034458
Ay 0.007322 0.050178 0.883990
[34 0.809723 0.090358 0.000000
[ 0.237119 0.076937 0.002056
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Table 11: Forecasting data weekly share price of PTBA

95% confidence Tnterval of forecasting

Period Date Real Data Forecast Variance Lower bound Upperbound
374 07-03-2016 6275 5705.336 659.3053 4413.1 6997.574
375 15-03-2016 6575 5702.946 676.4968 3084.77 8321.118
376 21-03-2016 6500 5689.841 690.7427 1717.81 9661.869
377 28-03-2016 6200 5677.981 T02.4955 329.062 11026.9
450000\ / model conditional mean 1s ARIMA (1,1.0) and the best
N\ / model conditional variance 1s EGARCH (1,1). Model
N o / -
& 350000 \\ / / conditional mean, ARTMA (1,1,0)
n e
250000 \‘\k_/ x, =-11.97936-0.116093 x,_+€,

T T T
-2000 -1000 0 1000 2000
T

Fig. 5: News impact curve data PTBA
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Fig. 6: a, b) The graph of forecasting data weekly share
price of PTBA

In (6°) = 2.521682+0.809723 In (o7, )+

0.237119 —==+0.007322 |St 1‘ ‘]7
\/q_

Fore casting: Below are the results of forecasting data
share price of PTBA for 4 periods. The graph of the
forecasting 1s given Fig. 5.

Table 11 and Fig. 6 show the results of forecasting
data weekly share price of PTBA for 4 periods. From Table
10 the values of forecasting are very close to the real
values. All the values of forecasting are within the 95%
confidence interval. Thus, the EGARCH (1,1) Model is a
good model for forecasting the weekly data share price of
PTBA for some periods mn the future.

CONCLUSION

Based on the analysis data, the best model to analyze
data weekly share price of PTBA 1s Exponential GARCH
(EGARCH (1,1)). The application of EGARCH Model for
forecasting data weekly share price of PTBA, the best

Model conditional variance: EGARCH (1,1)

In (o7 ) = 2.521682+0.809723 In (?, )+
0.237119 JL+0 007322{ 8 ‘/_l
G

t-1

The forecasting values for four periods are found
very close to the real data and all the forecasting values
are within the 95% confidence interval. Thus, this model
is very appropriate for the data weekly share price of
PTBA.
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