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Abstract: Our study discusses the optimal filtration problem for the states of the linear system of polynomials
with the polynomial cross noise over the comments with an arbitrary, not necessarily invertible, the observation
matrix 1is treated proceeding from the general term for stochastic variation. For this case, we use, the Tto
differentials of the best estimate of the variance and the error corresponding to the filtering problem indicated
are drift first. Derived from this 1s a transformation of the observation equation to reduce the original problem
of an invertible observable matrix. The procedure for obtaining a closed system of filter equations for a linear
polynomial any state with the cross-noise polynomial over observations is then established, yields that closed
the explicit form of equations mn particular filtering boxes of linear equations and bilinear status. As an example,
the performance of the optimum filter of the optimal filter for a quadratic state with an independent state noise
and a conventional extended Kalman-Bucy filter is presented as an analysis of the results obtained in Matlab.
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INTRODUCTION

In the last decade, the developments in the digital
signal processing part has taken a great impulse
(Montiel et al., 2017, Serrezvela et al., 2017; Kallianpur,
2013) due to the advances of information technologies
that allow computational developments much faster and
efficient. We have seen sigmficant contributions in the
field of robotics, control engineering and digital
signal processing based on new theoretical proposals
(Serrezuela et al., 2016a,b; Grewal, 2011, Oksendal, 2013).
We then express the mathematical development of the
filtering optimal for states incompletely measurable
polynomials with cross-noise.

Be (Q, F, P) a complete probability space with a
farmly of g-alebra F,, t>0 Growing and continuous on the
right, and be (N1(t), F t=0)y (N,(t), F, t=0) two
independent centralized Poisson processes. The random
process Ft-measurable (x(t), y(t)) is described by a
nonlimear stochastic differential equation with a term
(Kushner, 2012; Hazewinkel and Williams, 2012).

Polynomial drift for system state:

dx(t) = £(x, t) dt+b(t) dN, (t), x(0) = X0 1)

And a
observational process:

linear differential equation for the

dy(t) = (A (DFADX()d+BAN, (1) (2)

Here, x(t) €R" Tt is the state vector and y(t) € R™ is
the linear observation vector of which follows that m<n.
The initial condition 1s a Poisson vector such that x0,
N,(t)eR", v N, (f)eR" are independent of each other. The
observation matrix A (H)eR™* it is not necessarily
invertible, it is not even required to be a square matrix. Tt
is assumed that B (£)B (t) is a positive definite matrix and
therefore, m<q. All coefficients in Eq. 1 and 2 are
determimistic functions of appropriate dimensions
(Kushner, 2012; Rojas et al., 2016).

The nonlinear function f (x, t) will be considered a
polynomial function of n variables, Where the
components of the state vector x (t) € R", are coefficients
that depend on tume since, x (t) € R" is a vector, a special
definition is required for the polynomial in the case where
n>1. In accordance with (Montiel et al, 2017), a
polynomual of degree p of a vector x (t) € R 18 considered
of the p-linear form of n components of x (t) and can be

expressed as follows:
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f(x,t) = a,(t)+a, (t)+a, (Hxx"+ (3)
2o tap(x, ..., ptimes,...,x

where ay(t) is a vector of dimension n, a, is a matrix of
dimension nxn, a, is a 3D dimension tensor nxn>n, a, 1s a
(pt1) D dimension tensor nx, ..., (p+1) times, ..., X n, yxx,
.., ptmes, ..., *x 18 a pD dimension tensor nx, ..., p times,
..., *n which is obtained by multiplying the vector x (t), p
times by itself. Such a polynomial can also be expressed
in the form of the following summation:

fk(x, 1) = a, kit)+ Tk (x, (D) Ta, k, (Dx, (D, (0)+
et o a KL L ip(OII), X (DK, §,
i,=1

1o ol = Los 1
The problem of estimation is to find the optimal
estimate x (t) of the state of the system x (t), based on the
observation process Y (t) = {y (s), t0<s<t}, minimize the
second Buclidean standard:

I = E[ (x(H=x() (x(t - x(tHE |

For each t. Here, E [z (t)|F represents the expected
conditicnal value of a stochastic process z (t) = (x (t)-x (t)"
(x (t)-x (t))with respect to g-alebra F', generated by the
observation process Y(t) mn the time interval [t,, t]. How do
you know (Krishnan, 2013; Rodriguez and Carvajal, 201 5).
This optimal estimate 1s given by the conditional expected
value:

X(H=m(=Ex)|E")

Of the system state x(t) with respect to the
o-alebra F, Generated by the observation process Y(t) in
the time interval [t t]. As usual, the matrix function:

P(t) =E[ (x(t)-m(t){x(t)}-m(t)" [E |

Is the estimation of the variance of the estimation
error. The proposed solution to this optimal filtering
problem is based on the formulas of the Tto
differentials of the conditional expected value
E(x(t)|F%,) and its variance P(t) (Havlicek et al, 2011,
Serrezuela and Zarta, 2017) and will be developed in
the following section.

MATERIALS AND AMETHODS

Optimal filter design: The optimum filtering equations
will be obtained using the differential formula Ito of the

conditional expected value mt =E(x(t)|F,). In the case
of the term linear dnft A (D+A(Dx(t) m the observation
equation (Hu ef al, 2012; Kustensen, 2010):

dm(t) = E(f(x,t)| ED)At+E(x()[ A (4)
(t(x(0)-m{)]" | B (BB (1)
“{dy(H-(A, (D+ADm(L)

where, f (x, t) 13 the term polynomial drift in the state
equation. The Eq. 4 should be complemented by the mitial
condition m(t,)=E(x(t, |Fy) trying to form a closed
system of filtering equations, the Eq. 4 could be
complemented with the equation for the variance of the
error P (1). For this, the formula for the differential Tto of
the variance can be used E((x(t)-m(t)(x(t)-m(t)" | Ff
in the case of the term linear drift A,(t)+A () x () in the
observation Eq. 2:

dP(t) = E({(x()-m(tH{x(t)-m(t)" | E" dP(t) =
(B((x(t)-m(EN(F (x, ) | FOTEf(x, t) (x(1)-
m(t)") | E+btbT (O-(E(x(t)(x(t)-m(t))"
FEOAT (BB ()T AMDE(()-

m{tx’ () [E' )t

Using the formula of vamance P(t) = E ((x)(t)-
m(OxT(t))|F¥,. The latter equation can be represented as:

dP(t) = E((x(-m(t)(x(t)}-m(t))" | E dP(t) = (B((x(t)-
m{O)(£(x, )" | EH+EE . Ox(O-m) )| F )+
b{tbT(1)-PHAT((B(HBT (1) A(DP(1)dt
(5)
Equaion 5 must be complemented with the mitial
condition:

P(t,) = E[(X(t;))-mt, )X {t, -mit, )" | B

Equation 4 and 5 for the optimal estimates m (t) v P(t)
respectively, they don’t form a closed system of
filtering equations for the nonlinear state (Eq. 1) On
linear observations (Eg. 2). This means that the
system (Eq. 4and 3): B(fx, 0 |FOyE((0)-mE)"(x, ©) |F7)
which aren’t yet expressed as functions of the system
variables m(t) and P(t).

Asitis shown by Hu et af. (2012) and Stengel (2012)
in the case of Gaussian white noise in the state y
observational equations, it is possible to obtain a closed
system of the equations of filtered for the state of the
system Eq. 1 with the term polynomial drft over
observations linear. In the case that 1s being considered,
of white cross-noise, the following transformation.
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First, note that it can always be assumed that matrix
A 1s of full rank and equal to m, representing the
dimension of linearly mdependent observations y(t) € R™
if not the lnearly dependent rows of matrix A
corresponding to linearly dependent excess observations
should be eliminated. Once this 1s done, the number of
Poisson processes in the observation equations can be
reduced to m. The dimension of linearly independent
observations. Addmng and re-enumerating Poisson
processes in each observation Eq. 2.

Therefore, it can always be assumed that the matrix B
is a square matrix of dimension mx=m such that B(t) B'(t) is
a definite positive matrix. Then, the new matrices

A)yB(t) are definedas follows: the matrix A(t)e R™
is obtained from the matrix A (t € R™) adding n-m linearly
independent rows such that the resulting matrix A (t) be
mvertible. The matrix B(t)e R™" is obtained from the
matrix B(t) ¢ 2™ placmg B () nthe upper left corner of B(t)
defining the others n-m entries of the main diagonal of
B(t) equal to infinity and zeroing all other inputs of B(t)
outside the main diagonal and submatrix B(t). In other
words, B(t = diag[B(0), Pl ] where B =« and I o
1s the 1dentity matrix of dimension (n-m)x(n-m). Then, the
new observation equation is given by:

yit) = (A, (DAt BHAN (1) (6)

where, 7(t) e R™, A (1)=[A[(t),0n-m]T € Rn,y0n-m i3
a vector of n-m zeros the key point of the transformation
was that the new process of observation y(t) 1s physically
equivalent to the old process ¥(t) the last ones n-m the
dummy components of y (t), the corresponding the ¥{t)

coincides with y(t). In addition, the observation matrix
A(t) 18 invertible and the matrix (B(t)BT (tpte R ™™

exists and 18 equal to the square matrix of dimension nxm,
which 1s formed by occupying the upper left comer with
the submatrix (B () B)T ()" € R™" and all other entries are
zeros. In terms of the new observation Eq. 6, the filtering
Eq. 4 and 5 take the form:

dm(t) = E(f(x,t)| E'dt+P(D) AT (t)(B(t) (7
BY (6™ (dy(t)-(A () +A()m(t))dt)

dP(t) = (E((x(t-m(D)fix, t) |[E HE(f(x 1) (8)
(x(O-m(t)") | E +bt)b Tt)-POAT (L)
(B(t)BT(t))" A(t)P(t))dt

With the mitial conditions:

m(t0) = E(x(t0) |F" ) yP(t0) = E[(x(10)-
m{t0)x(t0)-m(t0)" | "

Since, the new matrix Aty is invertible for any t>t0,
the random variable x (t)-m (t) is conditionally Poisson
with respect to the new process of observation y (t) and
therefore, with respect to the original observation
process y (t) for any t=t0 (Serrezud et al.,; Crisan et al.,
2013). Therefore, the following considerations apply to
the equations of filtered Eq. 4 and 5. Tf the function f (x, t)
is a polynomial function of the state x with coefficients
that depend on the time t, then the expressions for the
terms E(f(x, t)|F", in Eq. 7 and (B((x(t)-m(D)X{T(x, ) |F o in
Eq. 8 would include only the polynomial terms of x. Then,
these polynomial terms can be represented as functions
of m(t) and P(t) using the following property of a
Poisson random variable x (t)-m(t). all moments of a
Poisson random variable can be represented as functions
of the variance P(t).

For example: ml = E [(x (t)-m ()] ¥ t)]=0,m,=E[(x
(O-m () Y (OIP, my=E[&x )-m ()| Y (O] =P, m=E[(x
{(t-m (1)) Y (t)] = 3P™+P etc. After representing all the
polynomial terms in Eq. 7 and &, it is possible to obtain a
closed form of the filtering equations, which is generated
by expressing E(f{x,t)| F oyE((x(t-m(INfT(x, t))|F",) as
functions of m(t) and P(t).

Finaly, in view of the definition of the matrices
AW yE() and the new observational process ¥{t) the
filtering Eq. 7and s8 can be rewritten in terms of the
original observation Eq. 2 usin y(t), A (t), vB (t). In Fig.1
we can see the block diaram of the Kalman-Bucy filter
implemented in MATLAB.

dm(t) = E(f(x, 1) | Edt+POATEBEBT(E) e (9)
(dy(t)-(A, (t)+AIm(t)dt)

dP(t) = (E(C-m(t)(F i, D) [E )+
E(f(x, D0t-m(t)" | E)+b(tbT (t)- 10)
POAT(OBOB (1) ADP(E)dt

With the mitial conditions:

Gassian

D, v
u

Random system

y D
Kalman-Bucy X,
filter

9 &

Kalman-Bucy filter n

Fig. 1. Kalman-Bucy filter implemented in MATLAB
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mt,) = E(x(t,)| FY) yP(t, ) = E[(x(t,)-
mit, ))(x(t -mt, NT|E']

In addition, the closed form of the filtering Eq. 9 and
10 will be obtained for a third order function f(x,t) in
Eq. 1 as follows: Note, however, that the application of
the same procedure will result n the design of a closed
system of the filtering equations for any polynomial
function f (x, t) in (Eq. 1).

Optimal filter for a third order polynomial state: Be:
f(x, t) = a,()+a,{)x+a,(Dxx" +a,(OHxxx"  (11)

A third order polynomial function where x is a
vector of dimensionn, a,(t) is avector of dimension
n,a (t) 1s an amray of dimension nxn, a(t) 15 a 3D
tensor of dimension nxnxn, a,(t) is a 4D dimension
tensor nxnxn*n.

In this case, the representation for E(fix,
£)| F oy E((x()-m(0) )} f(x, £)7|F as functions of m(t) y P(t)
18 derived as follows:

E(f(x, )| E') =a,(t) + a, (H)m(t)+
a,(Om(Om" (O+a, (OP(O+Ha,(Om(OP()+  (12)
a, (m{Om(Om () +a, (HP{1)*1

B(f (x, )(x(t)-m(t) ") | E +E((x(t)-m(t))
(Flx, )" |F7) =a, (P(H+P(ha; (1)+2a,(t)
m(t)P(t)+a, ()P(L) *1+(a, () 2Zm(t)P(t)+P(t)
¥+, (O[(p() * (1* 17 )+3P(HP(O+3m(tm’
(OPHF3MHP())* 17 ]+, (D[P * (1*17 )+
APCOPCO+H3mtm” (DPH+3(m(OPE)* 17 )"

(13)

Here, vector 1 represents a vector of dumension n with
all 1ts components equal to 1 and vector a; P (1)*1 ¢ R*
and the matrices a, P (£)*1 *1"e R™ and a, () m () P (1)
*1Tc R™ are defined as:

a,(DP(D*1), =Y a,,, (DP, (D1.i=L..,n

1.k 1

a,(OP(D*1%17), = Y, (P, (DL 14,5 =L....n,

Lkl

a,(HmOPO*1*17), = ¥ a,, m, (OP, (01, 1.j=L...n

ikl

Substituting the expression Eq. 12 into Egq 9
and the expression Eq 13 into Eq. 10, we obtain

the following filtering equations for the optimal

estimate m(t) and the variance of error P(t):

dm(t) = (a, (t)+a, (Om(t)+a, (Hm(tm’ (t)+
a,(t)P(t)+3a, (t)m(t)P(t)+a, ()m(tHm(t)
m" (t)+a, (Op(H) *1+POAT(DHBHBT )™
[dy(t)-(A, (D)+ADm())dt]

(14)

m(t,) = E(x(t,) | EV)), dP(t) = a, (Pt -

P(t)a; (1)+2a, (Om ()Pt +a, (DHP(D* 1+

a, (D(2m(OPO+PO* 1) +a, (D[(P(L)

#1(1* 1T )+3P(H)PH)+3m(t)m’ () P(t)+
3mHP)* 1 THa,M[Po*11*1 )+ (1)
APOPOH3mOm  (OPO+3mtP)

T +OLT-PIOAT(OBOBT (O AD)

P(t)dt. P(t0) = E((x(t, »-m{t, ){x(t, )-

m(t, ) [E7)

By means of the previous derivation, the following result
will be tested.

Theorem: The optimum filter of finite dimension for the
third order state (Eq. 1), where the polynomial function £
(%, t) of the third order defined by (Eq. 11), on incomplete
linear observations (Eq. 2) is given by Eq. 14 for the
estimated optimum m(t) = E(x(t)|F") and Eq. (3.15)for
the estimated error variance P(t) = E[(x(t)-m(t)(x(t)-
m(t)[FY]

Thus, based on the unclosed general system of
filtering Eq. 7 and 8, it is proved that the closed system of
the filtering equations can be obtained for any polynomial
state (Eqg. 1) over incomplete linear observations (Eq. 2).
Therefore, the specific form (Eq. 14 and 15) of the closed
system of the filtering equations corresponding to a third
order state 1s derived. In the next section, we will venify
the performance of the optimal filter designed for a
third order state over incomplete linear observations
against a conventional quadratic average filter for
stochastic polynomial systems with Gaussian noises,
obtained.

RESULTS AND DISCUSSION

Analysis and results: In this section we present an
example of optunal filter design for a third-order
two-dimensional state and for linear scalar observations
and compare 1t with a conventional mean-square filter for
stochastic polynomial systems with Gaussian noises. Be
x(t) a two-dimensional real state satisfying the next
third-order system:
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XU =x, (1), x,(0) =x,,, X, ()= (16)
O.1x By, (1), %,(0) = %,

And y(t) the scalar observation process given by the
following linear equation:

y(t) = X1(t)+‘uuz (t) a7

where W, are white cross-noises which are the
derivatives of two independent Poisson standard
processes (Kushner, 2012, Hazewmkel and Williams, 2012;
Krishnan, 2013)). Equation. 16 and 17 present the
conventional form of Eq. 1, 2 which are in fact used in
practice (Montiel et al., 2017; Serrezuela and Chavarro,
2016).

The filtering system 16 and 17 mcludes two
components of the state x (t) = [x, (t), x; (£)]" € R* and only
one channel of observation v (t) € R, measuring the
State component x, (t) Therefore,
matrix A =[10] € R*¥ and is non-invertible. Mereover,
the nonlinear component of the state x, (t).

Tt is not measurable. The problem is to find the

the observation

optimum estimate for the third-order state Eq. 16, using
mcomplete linear observations (Eq. 17) disturbed with
random, independent disturbances with isolated pulses
modeled as white cross-noises. We will show how to
calculate the coefficients of the polynomial vector Eq. 3
for the system Eq. 16.

Even the coefficients of the matrix a, 18 a matrix of
dimension 2x2, equal to a, = [01]0 0], sthe coefficient of
3D tensor a, consists only of zeros, since, there are no
quadratic or bilinear terms in (Eq. 16) and the coefficient
of the 4D tensor a;. Has only one entry other than zero,
8y, = 0.1 and all other entries are zeros. Hence,
according to (Eq. 14 and 15), this single term other than
zero should enter the Equation for m,, multiplied by
3m,p,+m, +p,,, the Equation for p ,,= p ,; multiplied by
3m, P, 3PP P2 3MLp;, I view of the symmetry of the
variance matrix P and the equation for p,, multiplied by 2
P TP’ A6m,p,,+6m,’p,,. Figure 2 we can observe the
behavior of both current and expected states developed
by the Kalman-Bucy filter, performed for about one
hundred samples.

In Fig. 3 we can observe the behavior of the results
of the position estimation and the speed estimation
results of the system.

As a result, the filtering Eq. 14 and 15 take the
following particular form for the system (Eq. 16
andl17):

m, (t) = m, ()P, (D[y(t)-m, ()] (18)

P, (t)=1.1P,, (£)+0.3m? (1) P, (t)+
0.3m, ()P, ()+0.3P,, (1) P,, (1)-
P, ()5, (DP,, (t) = 1+0.2P,, (1)+
0.6m? ()P, (1)+0.6m, ()P, (t)+
0.6P;, (1)

With the initial condition:
P(0)=E ((x(0)-m(0)){x (0)-m (0))t | Y (0)) =P,

The estimates obtained by solving Eq. 18 and 19
are compared with the estimates that satisfy the
conventional quadratic average filter equations for the
third order state (Eq.
observations (Eq. 17):

16) on incomplete linear

i, (t) = my, (H+F,, (D[y(t)-m,, (t)]
m,, (t) = 0.1m}, ()+0.3m,, (tHm,, ({)+
B, (D[y(t)-m,, (t)]

With the imtial condition m (0) = E (x (0)] v (0)) = my;
P1:11 =ZP,, (t)_PIill () (19)

P, () =B, ()+0.3mg, (1)Py,, (t)+
03B, ()P, (1)-B,, ()P, (1)

P, (t)=140.6m}, ()P, (O
0.6P7, (1)-PZ, (1)

With the initial condition The estimates obtained by
solving Eq. 18 and 19 are compared with the estimates that
satisfy the conventional quadratic average filter equations
for the third order state (Eq. 16) on incomplete linear
observations (Eq. 17).

my, (1) = my, (+PB,,, (O[y(t)-my, (t)] (20)

my, (t) =0.1m .}, {t)+0.3P,_,, (t)m,, (t)+
P,,, (t)[y{t)-m, (t)] P/, (t) = 1+0.6m.,
(t)P,,, (H+0.6P,, (13-P2,, (1)

With the initial condition m (0) =E (x (0) | ¥ (0)) = my;
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Fig. 2: Behavior of both current and expected states developed by the Kalman-Bucy filter
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Fig. 3: Behavior of the results of the position estimation and the speed estimation results by the Kalman-Bucy filter
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Output

No. of samples

Fig. 4: The errors between the components of the reference state x_1 (t) and x_2 (1)

1
50

1
60

No. of samples

Fig. 5: The error between the real state x, (t)

P1:11:2Pk12 (1)

(1)-F;, (1)

P1:12 =Py (t)+0-3m122 ()P, (H+0.3B,, (O B, (O
By (DB (1) P1:12 (t)= 1+0-6m12:2 (OB, (O+
0.6P,, (-}, (1)

ka2
The results of the numerical simulation are obtained by
solving the systems of the filtering Eq. 18-21. The values
obtained from the estimates m, (t), m, (t), my, (t) and m,,
(t)s which satisfy Eq. 18 and 20, respectively, are
compared with the actual values of the state variables x,
(t) and x, (t) in (Eq. 16). The following initial values were
assigned for each of the two filters Eq. 18-21 and the
reference system Eq. 16 and 17, wrapped mn a simulation:

X, =-2.5, %,
-1.38,p,,, = 20

2110

-0.35,m,,
= 0.0

146, x,, =
0=0.06

* P120 ® P22

The realizations of the white cross-noises |, (t) and
I, (t) m Eq 20 were generated using the suggested
Simulink table. The graphs of the errors between the
components of the reference state x, (t) and x, (t) which
satisfy Eq. 16 and the components of the optimal filter
estimate m, (t) and m, (t) satisfying (Eq. 18) are shown in
Fig. 1. The graphs of the errors between the components
of the reference state x, (t) and x, (t) satisfying equations
Eq. 16 and the components of the polynomial filter
estimate in conventional quadratic average m,, (t) and m,,

(t) satisfymng Eq. 20 are shown in Fig. 2. It can be seen that
the estimation error given by the optimum filter reaches
quickly and then keeps its values closed to zero. This
presents a clear advantage of the optimally designed filter.
In contrast, the estimation error given by the polynomial
filter in the conventional quadratic average diverges to
infinity at time, 100 samples have been taken for the
simulation. This leads to the well-justified conclusion that
the conventional quadratic polynomial filter designed for
Gaussian systems is inapplicable for polynomial systems
damaged with white cross-noises in which case the filter
designed in this chapter should be used (Fig. 4 and 5).
Graph of the error between the real state x, (t), which
satisfies (Eq. 16) and the estimated of the optimal filter m,
(t), satisfying (Eq. 18) in the simulation interval [0, 2].

Figure 4 shows the graph of the error between the
real state x; (t), satisfying (Eq. 16) and the optimal filter
estimate m, (t), satisfying (Eq. 18) m the siumulation
interval [0, 2]. Note that the variance of the optimal filter
error P (t) does not converge to zero as tune tends to the
asymptotic time point, since, the third order polynomial
dynamics 1s stronger than the Ricatti quadratic terms on
the right side of Eq. 19. Thus, it can be concluded
that the obtained optimum filter (Eq. 18 and 19) for a third
order two-dimensional state over incomplete linear
observations provides better than the
conventional filter for Gaussian noise polynomial
systems.

estimates
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CONCLUSION

We can conclude that the optimal filter obtained in
this study for a quadratic state with a quadratic noise
crossed over incomplete linear observations produces
better estimates than the optimal filter for a quadratic state
with a state-independent noise or a conventional
extended Kalman-Bucy filter. Likewise, the simulations
carried out in Matlab software support our claims and
give weight to our theoretical discoveries.

In this way, the various applications that can be
derived in the field of digital signal processing for
the optimum filter for a quadratic state with a

state-independent or cross-noise noise using the
Kalman-Bucy filter are proposed.
RECOMMENDATIONS

A future reserach could be the implementation of
such algorithms in digital signal processing devices such
as: DSP, FPGA or microcontrollers that allow the
verification of what has been expressed mathematically
and what has been the object of the simulation m Matlab.
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