Tournal of Engineering and Applied Sciences 13 (8): 1974-1979, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

An FPGA Implementation of the Serpent Algorithm using Xilinx System Generator

MF. Al-Gailani
Information Engineering College, Al Nahrain University, Baghdad, Iraq

Abstract: Serpent cipher had been designed as an alternative for the previous encryption standard algorithm,
the data encryption standard. Tt had been chosen within the shortlist by the National Tnstitute of Standard and
Technology which eventually selected Riyndael cipher as an Advanced Encryption Standard. There 1s no doubt
on the security of Serpent, however because of the high number of rounds it has slower implementation speed
compared to the chosen algorithm. All over, it is important to design an efficient hardware implementation for

a well-known algorithm as an option in case the current standard 1s being attacked. This study presents an
FPGA mmplementation of the Serpent algorithm, the design 1s focused on the area rather than throughput thus
iterative looping architecture 1s suggested. It 13 mmplemented on the target device Xilmx Virtex-6
xcOvlx] 95t-3111 156 using ISE design suite 14.7. The design achieved a maximum frequency of 111.757 MHz

providing 0.447 Gbit/sec of throughput.

Key words: FPGA, Serpent cipher, SP-network, throughput, TPS, design

INTRODUCTION

Serpent algorithm has been designed by
Anderson et al. (1998) and Biham ef al (1998). Their
product was a response to the announcement of the US
National Institute of Standards and Technology (NIST)
for developing a new standard called Advanced
Encryption Standard (AES) to replace the DES (FIPS,
2001). DES was developed by the IBM and adopted in
1977 as a standard for non-classified applications
(Standard, 1977). The algorithm was very secure and
efficient, however because of the rapid technological
development its key length and block size become
madequate to achieve the required level of security. NIST
set conditions on applicant’s algorithm such that the new
algonthm should be at least secure as Triple DES and fast
as DES. The block size of the algorithm must be 128 bt as
well the key length in addition the key must supports
192 bit and 256 bit length.

Serpent had been designed based on these
requirements and its non-linear part which 1s the heart of
any algorithm was designed based on using the S-boxes
of DES in a new structure. These substitution boxes were
extensively analyzed and it had been proven that they are
secure against aftacks including both differential
(Biham and Shamir, 1991, 1993) and linear (Matsui, 1993)
cryptanalysis and their related techniques.

In this study, an efficient hardware architecture of
Serpent algorithm is designed and implemented based on
FPGA platform, full details are presented in the following
sections.

Table 1:Multiple architectires implementation of serpent

Architecture CLB slices Throughput (Mbps)
Tterative looping 5511 62
Iterative looping with 7964 444

partial loop unrolling

Full loop unrolling 8103 312

Full pipelined Q004 1029

Table 2: Different serpent architectures implementation

No. of No. of No. of Throughput
Architecture slices LUTs Ffs (Mbps)
Combinational 9999 18756 0 854
Cipher-only 11897 22680 4224 19692
Fully pipelined 14750 24331 16768 17534

Literature review: Elbirt et al. (2001) and Elbirt and Paar
(2000) researchers had considered multiple architectures
of Serpent. Their designs were implemented on Xilinx
XCV1000 FPGA board. The details of inplementation are
shown in Table 1.

Sugier proposed three architectures which were
implemented m Xilinx Spartan-3E XC351600E-5 device.
First architecture 1s called combinational, the second 1s
cipher-only pipelined and the last is fully pipelined
architecture. There resource utilization and throughput
are illustrated in Table 2.

Lazaro et al. (2004), a fully pipelined architecture was
proposed and implemented at Xilinx Virtex-1T X2C2000-6
FPGA device. It has been shown that the device can run
at a throughput of 40 Gb/sec.

Najafi et af. (2004), a higher performance i terms of
speed and area 1s achieved using a partial reconfiguration
1n the implementation. The design 1s fully pipelined from
inside and outside for each round which was implemented

1974

J. Eng. Applied Sci., 13 (8): 1974-1979, 2018

at Virtex XCV1000-6 FPGA device. It achieved a
throughput of 22 Gbps with 7504 slices of an occupied
area.

Damaj et al proposed a parallel reconfigurable
hardware implementations using RC-1000 a static
reconfigurable system from Xilinx Virtex-E FPGA and
MorphoSys dynamic reconfigurable computer. There
suggested design runs at speed of 12.21 Mbps and
occupies an area of 19198 slices

Patterson (2000) has proposed a dynamic
unplementation of Serpent n a Virtex FPGA XCV400-4
using Jbits which provides a run-time modification of the
configuration bitstream. A throughput of 10 Gbits/sec is
achieved through this design, noting that the subkeys are
calculated in software and used as constants in the
proposed design.

MATERIALS AND METHODS

Serpent cipher: Serpent cipher is a 128 bit iterated block
cipher based on SP-network. The cipher starts by initial
permutation followed by 32 rounds and ends up with a
final permutation, the flowchart of the cipher 1s shown in
Fig. 1. The final permutation 1s the mverse of the mitial
permutation. The usage of these two layers have no
security significance, they are used to simplify the
implementation. Each round except the final consists of
key mixing operation, substitution boxes and a liner
transformation. The last round has the same structure,
however an additional key mixing operation 1s used
instead of the linear transformation. In the key mixing
operation, the infermediate data is XORed with the 128 bit
subkey that is generated by the key schedule algorithm.
The 128 bit combination is then passed to the S-boxes
layer. Each round has a different (4x4) S-box which is
duplicated 32 times and implemented in parallel. In the
final stage (liner transformation) the 128 bit (four 32 bit
words) is linearly mixed up with a number of operations
based on rotation (<<<), shift (<<) with different offset
and XOR (@) as shown mn Fig. 2.

As the cipher 1s based on SP-network, the decryption
algorithm 1s not the same as the encryption algorithm in
that an inverse of the S-boxes as well as the inverse linear
transformation (Fig. 3) have to be used instead. In
addition, the subkeys have to be used in reverse
order.

The cipher requires 33 128 bit subkeys, one subkey
for each round and an extra one for the last round, these
are equivalent to 132 32 bit words. A 132 32 bit prekey
words are first generated by applying Eq. 1. Where
the eight 32 bit words w-8, ..., w-1 represent the user
supplied 256 bit key and @ 1s the fractional part of the
golden ratic (f5+1)/2) or 0x9e3779b9 in hexadecimal:

Wi = (Wi @ WIS O Wi-3B wi-1® @) <<<11 (1)

Input
Plaintext (P)

r=0
(Round counter)

B,=1IP (P)
(Initial permutation)

|
[v

et B+ =Bk, Input k,
rounds keys

* v

B+1=LT (B+1) Br+t1 =S (B+1)
Linear transfer S boxes
{k
Yes No
B32 = B3Z $k32
B, =FP(B,)
(Final permutation)

End
Fig. 1: Cipher flowchart

T >0

<<3 f[k
X, o—>® <<l X'
T <<7
X:o—@ »(H<<<22}— X,
x" T
Xjom 3K <<<7| X',

Fig. 2: Forward linear transformation

X,)
<<3

X o T0) C
v

x A S

Fig. 3: Backward linear transformation

After that the generated prekey words are
transformed into subkey words by passing them through
the S-boxes in some predefined order and rearranged the
results by applying the initial permutation.

Algorithm implementation: The cipher is designed and
implemented based on Fields Programmable Gate Amray

1975

J. Eng. Applied Sci., 13 (8): 1974-1979, 2018

CDO— qE:l
Inl
2 »|addr »| d,
In2
ROM
> »| d,
ROM1
»|addr » d
ROM2
» (addr > (d, —>
Outl
ROM3
pladdr »|d,
ROM4
L |addr > d,
ROMS
L [addr »(d,
ROM6
L pddr »|d,
ROM7

Fig. 4 Conceptual structure of an FPGA device (Chu,

2008)
a
3-input ,
bE LUT >
c Mux
Flip-flop
T
—> —ao»q

d >
C loc% |

Fig. 5: The key elements forming a simple programmable
logic block (Maxfield, 2004)

(FPGA) platform. This technology is chosen because of
its high potential and flexibility which delivers the
proposed model within the planmed schedule time and
cost, unlbke non-reconfigurable devices such as
Application-Specific Integrated Circuit (ASIC) which has
less flexibility, more time consuming in the design and
extra cost. FPGA 1s a logic device that contams lots of
configurable logic cells and programmable switches. It is
arranged in two-dimensional array as shown in Fig. 4
(Chu, 2008).

The logic cells are meanly comprised of Look-Up
Tables (LUT) and flip-flops (Fig. 5) (Maxfield, 2004),

Required function ~ Truth table Programmed LUT

a . SRAM cells
& :t‘: abecly ':D

00 0f1)
00 1{0 2
y %
c—[>0~LD 01 0|1)
=(aandb)|c 0 1 111 %
y=() ol E
10 10 =

110]1

11 1]1

Fig. 6: Configuring a LUT (Maxfield, 2004)

look-up tables are configured as distributed RAM, shuft
registers or combinational logic (Fig. 6) (Maxfield, 2004).
The programmable switches are configured to provide
interconnections among the logic elements. In addition,
the device also contains block RAMs, high speed
input/output interface pins and clock management.

The Xilinx Virtex XC6VLX130T-3FF1156C FPGA
board is chosen as a target device. This reconfigurable
device has sufficient hardware resources to implement the
cipher with optimal performance. Tt has 128 K logic cells,
480 DSP48E] slices, 9504 kB block RAM (each store
36 kB), 20 GTX transceiver, 600 user input/output pins
and its Configurable Logic Blocks (CLBs) consist of 20k
slices and 1740 kB distributed RAM.

The hardware design of an algorithm can have
different architectures depending on the application and
availability of resources. Tt can be categorized as iterative
looping, loop unrolling, external pipeline (partial, full),
internal pipeline (partial, full), parallel and hybrid
architectures.

The focus of the proposed design was on the area
rather than throughput thus iterative looping architecture
is considered. For 32 round system, only one round is
designed (umrolled) and the entire process 1s attained by
iterating the data 32 times. Thus, it 1s an efficient approach
for mimimizing the utilized hardware. However, in contrast
the number of clock cyeles 1s increased, it will be in
optimal situations equal to the number of rounds as the
case with the proposed design.

The design can be created using Hardware
Description Language (HDL) such as VHDL or Verilog,
High Level language such as SystemC, Handel-C,
Catapult C, Tmpulse C or high level graphical design entry
such as Xilinx system generator or LabVIEW.

The system 1s designed schematically using Xilinx
system generator. All elements of the round function and
key generation are implemented as a combinational
logic. The imtial and fnal permutation are implemented
by first converting the 16 bit mnputs mto 128 bit using
concat and slice Xilinx blocks, then the outputs are

197¢

J. Eng. Applied Sci., 13 (8): 1974-1979, 2018

IS AR AL L@ war| § &0 p % oo vl

X1: 525.028 ng

Fig. 7: Simulation result

hardwired according to the specified tables (Biham et al.,
1998) and finally the results are converted back to 16 bit
using the same blocks.

The substitution boxes are implemented using
distributed memories. Each ROM is configured by setting
up the depth to 16 and imtialized the mitial value vector
with the S-box values. The cipher uses eight different
S-boxes. Each S-box is used four times every 8-round
which is duplicated 32 times to be implemented in
parallel. As shown in Fig. 7, the selection between the
different S-boxes (ROMs) 1s achieved through the
multiplexer which is controlled by the select line that
15 comnected to a counter that resets every eight
cycles.

In the linear transformation three different operations
are used. First, the circular shift which is implemented
using Xilinx BitBasher, for example to rotates the byte
3 bit to the left the BitBasher 1s configured as a = {b[2&:0],
b[31:297}. Next, the shift operation which 1s realized using
Xilinx Shift block and the XOR operation like the key
mixing operation using Xilinx Bitwise expression.

Performance evaluation: To evaluate the performance of
the design the throughput of the implementations 1s
calculated according to Eq. 2:

Number of percentage bit=clock frequency

Throughput =
Number of clocks cycles per encrypted block

(2)

Where the number of processed bits 15 equal to the
block length which is 128 bit and the number of clock

L4 Redaunch

0000000000

cycles per encryption block is 32 cycles one for each
round. The clock frequency which 15 the maximum
operating frequency m additon to the other
measurements such as the number of utilized hardware
resources and the power consumption of the
implementation are obtained from the Xilinx Integrated
Synthesis Environment (ISE) report files.

In addition to the throughput, a Throughput Per Slice
(TPRS) is also considered which is calculated according to
Eq. 3. This metric gives an mdicator for the hardware
resource cost. For optimum implementation the designer
seeks to raise the throughput in addition to the TPS:

TPS = Throughput / Number of occupiedslices (3)

RESULTS AND DISCUSSION

Serpent algorithm is designed schematically by the
use of the Xilinx system generator which has an extensive
library of variety of block sets that 1s installed mn the
MATLAB environment. During the system generator, a
netlist file for the proposed algorithm is generated which
15 then synthesized and simulated through the use of
the Xilinx ISE design suite 14.7 and ModelSim,
respectively. The results of the implementation of the
algorithm are summarized in Table 3.

The design is focused on the applications that
require limited resources, thus the emphasis was on the
amount of resources occupied by the design rather
than the throughput. Accordingly, iterative looping
architecture 13 designed and implemented, otherwise

1977

J. Eng. Applied Sci., 13 (8): 1974-1979, 2018

Table 3:Implementation results summary

Target device xc6vix130t-381156
Device utilization summary

Slice logic utilization Used

No. of slice Registers 392

No. of slice LUTs 1,552

No. of occupied slices 512

No. of bonded IOBs 513

Maximum frequency 111.757 MHz
Throughput 0.447 Gbps

TPS 0.873 Mbps/Slice
Supply power (W)

Dynarnic 0.657

Quiescent 3.089

Total 3.746
otherarchitectures such as loop unrolling can be

suggested. For the purpose of obtaimng rapid and
efficient implementation as well as obtaining satisfactory
results all inputs and intermediate data are processed
simultaneously in parallel at the same time, achieving an
optimal implementation of one clock cycle per round. The
design has efficient results compared to a similar
architecture regarding logic area, throughput and power
consumption. However, for a fair comparison between the
obtained results and the others, all designs that compare
must have the same architecture and carried out in the
same device (family and type) as different devices
produce different timing which in turn vary based on the
availability of logics and routing resources.

The design is simulated using ModelSim simulator,
where the wave window 1s displaced within the ModelSim
Graphical User Interface (GUI) main window and
hexadecimal radix 1s applied to the selected signals which
are the mputs including the plaintext and the key and the
output the ciphertext. Part of the simulation waveforms
result of the design is shown in Fig. 7.

CONCLUSION

In this study, a parallel iterative looping architecture
of Serpent algorithm (AES candidate) 1s successfully
designed and implemented on a configurable hardware
device Virtex-6 FPGA from Xilinx and ISE 14.7. The
encryption runs with a speed of 0.447 Gbit/sec and
occupying an area of 512 slices out of 31200 (1%) with 32
execution cycles, one clock cycle per round. The total
power consumption of the design was 3.746 W. The
performance results of the implementation of the
proposed design is considered efficient when
evaluating the amount of resource utihization and
the obtained throughput compared to other related

works.

REFERENCES

Anderson, R., E. Biham and I.. Knudsen, 1998. Serpent: A
proposal for the advanced encryption standard first
Advanced Encryption Standard (AES) Conference.
National Institute of Standards and Technology,
Ventura, California.

Biham, E. and A. 1991. Differential
cryptanalysis of DES-like cryptosystems. J. Cryptol.,
4:3-72,

Biham, E. and A. Shamir, 1993. Differential Ryptanalysis of
the Full 16-Round DES. Tn: Differential Cryptanalysis
of the Data Encryption Standard, Biham, E. and A.
Shamir (Eds.). Springer, New York, USA.,
ISBN:978-1-4613-9316-0, pp: 79-88.

Biham, E., R. Anderson and L. Knudsen, 1998. Serpent: A
New Block Cipher Proposal. In: Fast Software

Shamir,

Encryption, Vaudenay, S. (Ed.). Springer, Berlin,
Germany, pp: 222-238.

Chu, P.P., 2008. FPGA Prototyping by VHDL Examples:
Xilinx Spartan-3 Version John Wiley & Soms,
Hoboken, New Jersey, TJSA.

Elbart, AJ. and €. Paar, 2000, An FPGA
implementation and performance evaluation of the
serpent block cipher. Proceedings of the 2000
ACM/SIGDA 8th International Symposium on Field
Programmable Gate Arrays, February 10-11, 2000,
ACM, New York, USA., ISBN:1-58113-193-3, pp:
33-40.

Elbut, AT, W. Yip, B. Chetwynd and C. Paar, 2001.
An FPGA-based performance evaluation of the
AES block cipher candidate algorithm finalists.
[EEE Trans. Very Large Scale Integr. Syst, 9:
545-557.

FIPS, P., 2001. Federal information processing standards
publication: Advanced Encryption Standard (AES).
National Tnstitute of Standards and Technology,
Gaithersburg, Maryland.

Lazaro, I, A. Astarloa,] Aras, U Bidarte and
C. Cuadrado, 2004, High throughput serpent
encryption implementation. Proceedings of the
14th Field
Programmable Logic and Application, August
30-Septemberl, 2004, Springer, Berlin, Germany,
pp: 996-1000.

Matsui, M., 1993, Linear Cryptanalysis Method for
DES Cipher. m Eurocrypt 93.
Eurocrypt 1993. Lecture Notes in Computer Science,
Helleseth, T. (Ed.). Springer, Berlin, Germany, pp:
386-397.

]

Intemational Conference on

In: Advances

1978

J. Eng. Applied Sci., 13 (8): 1974-1979, 2018

Mazxfield, C., 2004. The Design Warrior's Guide to FPGAs: Patterson, C., 2000. A Dynamic FPGA Tmplementation of

Devices, Tools and Flows. Newnes Publishers, MA. the Serpent Block Cipher. In: Cryptographic
USA., ISBN: 0750676043, pp: 542. Hardware and Embedded Systems, Koc, C.K. and

Najafi, B., B. Sadeghian, M.3. Zamam and A. Valizadeh, C. Paar (Eds.). Springer, Berlin, Germany, pp: 141-155.
2004. High speed implementation of serpent Standard, D.E., 1977. Federal information processing
algorithm. Proceedings of the 16th International standards publication 46. National Bureau of
Conference on Microelectrenics, December 6-8, 2004, Standards, US Department of Commerce,
IEEE, Tehran, Iran, ISBN:0-7803-8656-6, pp: 718-721. Washington, USA.

1979

	1974-1979 - Copy_Page_1
	1974-1979 - Copy_Page_2
	1974-1979 - Copy_Page_3
	1974-1979 - Copy_Page_4
	1974-1979 - Copy_Page_5
	1974-1979 - Copy_Page_6

