Tournal of Engineering and Applied Sciences 13 (7): 1888-1906, 2018
ISSN: 1816-949X
© Medwell Journals, 2018

A Phased Two Stages Conceptual Framework for Web Service Composition

Amina Adadi, Mohammed Berrada and Driss Chenouni
Laboratoire I’ Informatique et De Physique Interdisciplinaire (LIPT), Ens De Fes,
Sidi Mohammed Ben Abdellah University, BP 2626 Route Imouzzer Fez, Morocco

Abstract: Web service composition is a key technology for creating value-added services by integrating
available services. Nevertheless, 1t 1s one of the most challenging problems of the last decade m distributed and
dynamic environment. Indeed in order to be more dynamic and less manual, most composition processes tend
to be complex, unreliable and non-optimal. Tnspired by researches in distributed systems, artificial intelligence
and semantic web fields. This study addresses this 1ssue by introducing a phased two-stage based conceptual
framework for performing dynamic and automated web service composition. The key idea behind the proposed
approach 1s to start with an abstract defimtion and to gradually make 1t concrete and executable. This increases
reusability, flexibility and scalability of the composition system and leads to an optimized composition of web
services. Within the framework, special emphasis is put on the composition techniques that have been
designed n order to handle the main 1ssues involved in the composition process.

Key words: Web service composition, semantic web services, multi-agent planning systems, artificial

intelligence planning, self-healing

INTRODUCTION

Web service composition involves combining and
coordinating a set of services with the purpose of
achieving functionalities that cannoct be realized through
existing services. It is widely recognized, at the web-based
ecosystem that in order to be viable and efficient a
composition approach needs to implement dynamic
and automated processes. Unfortunately, the rapid
proliferation of web services makes the conception of
such an approach a real challenge. Indeed while making
composition more dynamic and less manual, issues of
reliability, scalability, adaptability and efficiency rise. To
deal with those 1ssues, a robust and an optimal
architecture 1s required to keep the composition process
relevant.

Many approaches have been proposed to handle
web service composition problem (Moghaddam and
Davis, 2014, Sheng et al, 2014; Lemos et al, 2016;
Jatoth et al, 2017) but most of them deal only with
specific (selection, discovery, planning).
Contrarily, our main contribution is to propose an
architecture to carry a complete, accurate and successful
composition process. The driving idea of our approach 1s
to overcome the maximum amount of issues that are
mvolved throughout composition life-cycle. To do so, we
propose a phased two-stage architecture that tackles the

issues

composition problem in two levels: abstract and concrete,
every level 13 composed by phases that resolve gradually
the overall problem.

The proposed architecture 1s supported by a set of an
wntelligent composition techniques that have been
developed in order to allow a system that implements our
approach to handle dynamically and automatically issues
spawned throughout the composition process. Tt
includes: specifications analysis, planning model,
discovery mechanism evaluation strategy and autonomic
execution techniques. The result forms thereby the
envisioned conceptual framework.

This study investigates on the other hand, the
potential of applying some basic background concepts to
Web service composition context. The proposal put
forward by this research stems from the following
underlymg hypothesis: the synergy between four basic
research areas belonging to semantic and artificial
intelligence research sphere can lead to set up efficiently
the aforementioned conceptual frameworle. We discuss
therefore how to seamlessly and reliably transpose and
interoperate the selected concepts in order to enable the
expected added value.

Literature review: During the last decades, web services
composition has been an active area of research and
development endeavours for application integration and
interoperation.

Corresponding Author: Amina Adadi, Laboratoire D’Informatique et De Physique Interdisciplinaire (LIPI), Ens De Fes,
Sidi Mohammed Ben Abdellah University, BP 2626 Route Imouzzer Fez, Morocco
1888

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

One important feature that distinguishes this area of
research 1s that web service composition 1s a multifaceted
problem. Indeed, the process of creating a composition
schema m order to satisfy a series of goals set by a
requester 1s a really complex and multifaceted problem,
since, one has to deal with many different 1ssues at once.
First of all, it involves searching i an ever-growing global
service repository in order to find matching services that
may contribute to the complete satisfaction of the user’s
requirements. Assuming that these services have been
found, one has to successfully combine them, resolving
any conflicts and inconsistencies between them, since,
they most certainly will be created by different people
using different implementation languages and systems.
Since, inconsistencies may occur at runtime, it may be
necessary to predict such events, so as to ensure that the
system will run correctly. Finally, even after having
overcome these 1ssues, we have to be able to adapt to the
dynamic characteristics of service-based systems with
services going offline, new services becoming online and
existing services changing their characteristics.

Based on service composition literature
(Moghaddam and Davis, 2014; Sheng et al, 2014
Lemos et al., 2016; Tatoth et al, 2017), A number of
approaches have been presented to solve web service
composition problem but most of them focus only on one
aspect of the multifaceted composition process.
Moreover, by surveying and analysis the proposed
approaches in this research area, we notice that
composition could be performed with different methods
and technologies, according to the way the problem 1s
perceived and the aspect on which the approach focuses.

Composition as planning: Composition can be seen as a
planning problem which means decomposing the user
request service into multiple tasks and assembling them
in a plan to satisfy the user request. There are two
planning methods applied to solve the composition
problem: workflow-based methods and artificial
mtelligence planmng methods, the latter class of method
mclude basically: planmng with control algorithms,
planning as satisfiability algorithms, graph-based
planming algorithms, logic-based plamming algorithms and
state-space based planning algorithms (Ghallab et al.,
2016).

Composition as discovering: Discovery is the process
of searching for
non-functional requirement meets user’s needs. By

services where functional and

considering the composition as a discovery problem, one
of the following method could be used (Pakan et al,

2014): syntactic-based method, context-aware method,
peer-to-peer method and
that 1includes agent-based and
solutions.

semantic-based method
ontology based

Composition as selection: The approaches that focus on
the selection of the optimal atomic service to be combined
with other services to perform complex composite service
with the most satisfaction of quality of service values
(Moghaddam and Davis, 2014), mostly use optimization
based methods: Integer Linear Programming, genetic
algorithm, constraint satisfaction and

programming (Moghaddam and Davis, 2014).

stochastic

Composition as execution: Some composition approaches
focus on executing and monitoring the composite service.
This process mvolves binding with participant services
providers, invoking services, passing data between
services and verifying the existence and quality of
services of the composition plan (AlSedrani and Touir,
2016). There are four methods to monitor a dynamic
execution: task-based, goal-based, specification-based
and event-driven (AlSedrani and Touir, 2016).

Another important limitation related to the existent
web service composition approaches, is the lack of the
composition techmques. Since, most of web service
composition works deal with a specific sub-problem of the
composition process, usually the proposed solutions
consist of faithfully using some technologies without any
adaptation. So in order to be solved, the composition
problem 1s projected on some other fields mstead of being
conceive holistically by transposing seamlessly the
technologies belonging to other fields in the web service
world and making theme work synergistically.

To illustrate the remarks put forward in this section,
we present some of the recent significant works that
propose a solutions to the dynamic web service
composition 1ssues:

By Mier (2016), the researchers propose a novel
control-centric approach based on a genetic algorithm to
generate composition workflows mimmizing the number of
services and maximizing the parallel execution of services.
This approach focuses on the web service discovery
process and uses semantic web service and genetic
programming.

Study (Michael and Siva, 2016) proposes an agent
based model that uses the dependency relation algorithm
to identify the web services which can participate in the
composition. Tt focuses on the web service discovery and
execution processes and uses the mtelligent agent
technology.

1889

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

The research presented by Lei (2016) uses an
uncertainty planmng method to deal with the uncertain
planning problem for service composition. It focuses on
web service selecion and planming processes by
managing the uncertain values of the web service QoS
(Quality of Services). This approach 15 based essentially
on artificial intelligence planning algorithms.

A context-aware solution to improve web service
discovery and user-service interaction 1s proposed by
Torre et al. (2016), this approaches supports the
discovery process using a context aware method while
(Chandraselar and TayaShree, 2016) supports the same
process using a clustering method, it claims that it is
necessary to cluster the web services to recogmze the
specific web service and make the service discovery much
more effective. The clustering method proposed by the
work employs web services ontology.

One of the recent mteresting works in the web service
composition fields is describes by Chatzidimitriou and
Koumpis (2008). This study deals with testing web
services execution 1 a dynamic enviromment n order to
detect fault at runtime, it proposes an adaptive random
testing algorithm for testing composite web services. To
support the continuous operation and changes of the
dynamic execution, the proposed system performs
automated reconfigurations for service based applications
at runtime.

The above researches along with the review of
recent literature in the web services composition field
(Moghaddam and Davis, 2014; Pakari et al, 2014,
Sheng et al., 2014, Lemos et al., 2016; Jatoth et al., 2017,
AlSedrani and Touir, 2016) confirm the three remarks
outlined previously, namely: most of the proposed
approaches deal only with specific issues (selection,
discovery, planning) of the composition lifecycle they
adopt a specific technology to implement the composition
process (planmng, semantic web services, agents) and
they do not emphasize the composition techniques used
during the composition process.

In the research, we attempt to overcome all the
sub-problems involved in the web service composition.
Indeed, toward dynamic and automated web service
composition is the subject of our researchers as it has
been argued by Adadi ez al. (2014, 2015a, b) our goal is to
automate the whole composition process by proposing an
end to end composition approach that handles the
composition lifecycle from the reception of the user
request until the return of the desired service to the
requester.

To this aim, we conceived a multi-phase lifecycle
model of service composition and designed a conceptual
framework driven by five composition techniques that

support this lifecycle. Furthermore and to solve the
composition problem four research directions inspired us;
Intelligent agents technology (Yu et al., 2016), Semantic
Web (SW) vision (Laufer, 2015), Autonomic Computing
(AC) paradigm (Abeywickrama and Ovaska, 2017)
and Artificial Tntelligence Planning (ATP) algorithms
(Ghallab et al., 2016). By combining the strengths of all
the above basic domains we believe we can reach an
efficient web service composition system.

According to our perception, designing self-healing,
multi-agent based SWS composition solution using AIP
techniques 1s a relevant trade-off. The multi-agent based
architecture is a step toward dynamic, decentralized and
scalable service composition where using SWS approach
makes the process more automatic. AIP methods allow
building service composition without a manual effort and
self-healing property ensures the reliability of the
composition process.

Figure 1 illustrates the relation between the
background domaims. Agents act on behalf of SWS while
SWS specifications represent the requirements and
capabilities of an agent. Semantic web supports the
interoperation of multiple agents by mean of shared
ontologies. Self-healing behavior 1s implemented by one
of the architecture’s agents which is considered as an
autonomic agent. Self-healing mechanism adapts (fixes)
composition plan produced by AIP methods. Hence,
using AIP techmiques in the context of a multi-agent
architecture forms a multi-agent planning system
(Weerdt and Clement, 2009).

To fully harness and sharpen the strengths of the
four aforementioned fundamental research areas, we
introduced in a previous research (Adadi et al., 2014) a
conceptual architecture for web service composition
populated by a set of intelligent agents and ontologies.
Indeed six types of agents capable of automatically
discover, compose, invoke and monitor WS have been
designed, namely Request Handler Agent (RHA),
discover agent, planner agent, executer agent, evaluator
agent and manager agent. Besides agents the other key
element of the proposed architecture is ontologies. In
order to successfully carry out their assigned tasks,

Self-healing

Semantic web

Sharedg/6ntologies “4

Al pl

>I Multi agent ststem

Multi-agent planing

Fig. 1: Interaction between the four background concepts

1890

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Communication interface

Abstract composition

Request . Planner
handler Discover Evaluator Executer
Selected
service
(> instances
- Abstrac
Candlflate plan
service Concrete|
pool Managers plan
C . i Selecti Execution
onversion g election monitoring
1 Re-planning i Re-evaluation
Concrete composition

User profile Domain
ontology ontology

Service QoS
ontology ontology

Fig. 2: The high level architecture of the proposed approach

intelligent agents access to various information stored in
four repositories; domain ontology contains the domain’s
types, concepts and relations among them. Service
ontology plays the role of a UDDI registry with extended
functionalities to allow storing of service non-functional
attributes (e.g., Quality of Service (QoS)). QOS ontology
specifies shared knowledge and vocabularies about QoS
properties and their relationship with respect to
semantic services. User profile ontology incorporates
concepts and properties used to model the user
preferences. These constituent elements will be recalled
mFig. 2.

Next, we will shed light on the architectural style used
to organize the identified elements in order to achieve the
expected synergy between them.

MATERIALS AND METHODS

The proposed approach

A phased two-stage approach: Convinced as we are that
composition of web services is a complex problem that
mvolves other sub-problems and that modulanty,
scalability and reusability are key factors for the success
of its resolution. We propose to organize the identified
key actors into a phased system based on a two-staged
approach.

According to the proposed approach the
composition process is conceived as a cycle carried out
in four phases, namely analysis, planning, evaluation and
execution. Bach phase 1s responsible for the resolution of
a part of the problem in a continuous and independent
way that guarantees the resolution of the overall problem.
Indeed, a phase can use its own specific methods to
accomplish its role in the composition but its outputs
must necessarily form/feed seamlessly the inputs of the
next phases in a continuous process. We herein define
the responsibilities of each phase.

Analysis phase: We must distinguish between internal
and external specification languages of services. External
languages are used by users to express their needs they
are often natural languages that lack accuracy and
completeness. On the other hand, mternal specifications,
should be formal and precise to ensure the success of
composition process. The shift from the user
specifications to the system specifications is treated in
this phase, it is considered as a perquisite for the rest of
the phases as it defines clearly the goal of the ongoing
composition process m a system understandable
language. In this research, we use OWL-3 as a semantic
language to describe semantically the requested service
as well as published web services.

1891

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Planning phase: Planning is a core sub-process, during
this second phase a composition plan is generated in two
steps namely, discovery and plan construction, in the first
step all candidate services that can potentially lead to
satisfymg the desired functionality are filtered, in the
second step the system composes and consolidates
discovered services in order to build a valid plan.

Evaluation phase: Given a composition plan, an important
challenge for the system 1s to find the “best” composite
service execution plan with respect of user’s
specifications. The evaluation phase deals with this 1ssue.
It evaluates all alternatives solution and returns the best
composite service for execution. As a result we obtain an
execution plan.

Execution phase: Fmally in the execution phase the
system invokes the selected service mstances according
to the execution plan and delivers the result back to the
user. But since, inconsistencies may occur at runtime,
eventual re-planning and re-evaluating operations may be
necessary to ensure that the system run correctly.

The 1dea behind the phased approach 1s to start from
an abstract defimition and make it progressively concrete
and executable. This leads to the second characteristic
of the proposed architectural style: the two-stage
composition.

In order to solve the end to end service composition
problem, we propose a principled two-stage composition
approach. The staged approach is designed keeping in
mind the best knowledge engineering practices of
modularity, conciseness, and scalability. The composition
first proceeds to generate an abstract plan based on web
service classes (abstract composition) which 1s
subsequently concretized into an executable plan by
selecting the appropriate web service instances (concrete
composition). In our two-stage web service composition
approach we differentiate between web service classes
(or types) which are groupings of similar (in terms of
functionalities) web services and the actual web service
mstances that can be mvoked We believe that the
separate representation of web service class defimtions
from instance definitions helps in handling different
requirements and different means to optimize them. This
in turn, allows us to worlk efficiently with large collection
of web services and thus mcreasing the system
scalability.

Practically, the system implements this approach in
terms of two logical modules: abstract composer: that
provides functional composition of service class to create
new functionality that is currently not available, it is
composed by analysis and plannming phases and delivers
an abstract composition plan. Concrete composer: this
module enables the selection of component service
instances based on non-functional requirements that

would then be bound together for deploying the newly
created composite service. It includes evaluation and
execution phases.

As aresult, the proposed system takes an end to end
view that synergistically combines the strengths of the
four basic background concepts into a phased approach
splited into two stages of composition. Figure 2 presents
the main building blocks of the proposed approach from
a conceptual viewpoint.

The overall composition process: As depicted in Fig. 3,
the composition process starts with an abstract
specification and proceeds to a concrete (executable) one,
it 13 imtiated when a user (human or software agent)
interacts with the communication interface requesting a
service in order to answer the request the system must
first understand 1it. To this end, the RHA wuses
specifications processing tools to translate the user
request expressed in informal way into a semantic format
(1) with the respect of domain and QoS ontologies. Based
on this preliminary analysis, the system obtains a
semantic, formal representation of the user goal. In case
where user preferences option 1s enabled the RHA
enriches the sematic request by adding user preferences
retrieved from information stored in user profile ontology.
As a result the request is formalized as a set of functional
requirements and a set of non-functional requirements
(user preferences), the functional part i1s sent to the
discover agent (1.1) and the non-functional part 1s sent to
the evaluator agent (1.2).

Discover agent first checks if any atomic/composite
service in the service ontology repository matches exactly
the requested service. If one or more services are found
they are directly sent to the evaluator by this way the
system can avoid umnecessarily wasted planning effort.
Otherwise the discover agent looks for candidate services
that can potentially participate to construct the new
composite service. The search is based on a matchmaking
algorithm using the service ontology repository and the
domain ontology repository. The discovered services are
sent to the planner agent.

Planner agent coordinates a set of Manager agents
that act on behalf of discovered WS. They work
cooperatively using ATP techniques to co-build an
abstract composition plan which is then sent to the
evaluator. At that moment, the second stage of the
process begins where we deal with concrete mstances of
web services.

In order to select the best composite service,
evaluator agent uses the non-functional part of the
request sent by the RHA and QoS ontology to rank the
concrete composite service alternatives through the use
of QoS technmiques. The lughest ranked plan (closest to
the user’s goal) 1s sent to the executer that takes in charge
the execution of the selected plan, it is also responsible

1892

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Request

Q\ éomaié UEer pro%ile%

L I s
5
=
= .
= (1) Semantic request)
q; construction (L.1) l-?unctlonal
g requirements
~4
-
Domain
=
- . . . ntology
% (2) Checking if the (3) Discovering candidate ontology
2 requested service exists service
(=)
(1.2) Non
functional
% 5 requuirements (4) Genreating abstract
§ é composition plan
= |l =
2
2
<]
&
£
3
o
5 (5) Selecting the best
E] lcomposite service instance]
s
jia]
(7.2) The current
error persists
. after (7.1)
(6) Saving composition monfiZ()nE:,; ill::e":%rirll;(l)site
results
. service (7.3) The current
S error persists
?? after (7.2)
>
o]
End ofthe

Fig. 3: The system’s dynamic

of storing the generated composite service i the
service repository for sharing and possible future reuse in
others requests. Whenever a fault is detected, during the
execution, executer agent tries first to re-execute the plan,
this kind of solution 1s adequate when a web service 1s
temporarily unavailable. Tf the fault persists, it tries
respectively to re-evaluate and/or re-plan starting from the
state of the world after the failure. The results are passed
from the executer agent to the user through the
communication interface.

RESULTS AND DISCUSSION

Composition techniques: A distinctive characteristic of
our approach is that composition occurs in two stages:
abstract and concrete stage. The concrete composition
umnplements the result of the abstract one, it 13 based on

Abstract composition techniques

Specification|| Discovery || Planning || Evaluation [[Autonomic
analysis)| mechanism model strategty execution
[Ontologies]

Concrete composition techniques
Fig. 4: Composition techniques

managing service non-functional parameters and fault
tolerance techniques. The abstract composition aims, on
the other hand, to produce an abstract composition plan,
1t makes use of semantic matchmaking techmques and
ATP algorithms.

As illustrated in Fig. 4 three techniques lead
the abstraction composition namely: specifications
analysis, discovery mechanmism and planming model. The

1893

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Populate
Reasoning module])
Ontology Generate| Semantic
guided > ML \ 1;:51: request
interface {Communication module
Request handler agent

| Query

.

QoS
ontology

Fig. 5: Request handler agent architecture

evaluation strategy and the autonomic execution are the
two techniques that animate the concrete composition. In
this study, we present the five proposed composition
techniques that have been developed in order to
umplement the composition process described.

Abstract composition techniques

Specification analysis: The RHA is responsible of
converting the user request to a semantic one. To do so,
it follows the three-step process shown in the following
figure.

As described in Fig. 5, the RHA structure is
composed by: a rules base mcluding a set of rules
used by the reasoning module to do the necessary
transformations n order to obtain the OWL-S file that
contains the semantic description of the request n terms
of Input, Cutput, Preconditions and Effects (IOPE).

The reasoning module forms the agent’s brain, it
allows thus latter to reason using the rules base and the
domain and user profile ontologies in order to construct
the semantic request.

Finally, the communication module is a module that
every agent within our architecture have it allows an
agent to exchange messages with the other agents
mvolved in the composition cycle.

This structure allows the RHA to convert the user’s
request mto a sematic one 1n three steps: XML file
generation, preferences and metric data conversion and
autocompleting of the semantic request.

XML file generation: In this research, we are not dealing
with the natural language processing, thus, to express
his/her needs, the user picks terms from a list provided by
the communication interface these terms are populated
based on the domain and the QoS ontologies this 15 why

Domain
ontology

User

profile
ontology

1t 18 considered as an “Ontology-Guided Interface™. This
interface is also characterized by its dynamic incremental
terms proposal based on the hierarchy and the relations
defined in the ontologies.

The request description must include both the
functional and non-function requirements. The former
describes the functional characteristics of the demanded
service such as name, textual description, inputs and
outputs. The latter mamly focuses on the customer’s
preferences. In the research, the user doesn’t have to give
the value of each desired preference but he should get the
means to specify that a preference attribute is more
important than another one. Indeed, he gives a weight for
each preference attribute. Weights range from 1-5 where
higher weights represent greater importance.

Once the requirements are filled and the request 1s
submitted, a XML file containing details about the
information entered through the ontology guided
interface 1s automatically generated.

Preferences and metric data conversion: The structure of
the generated XML file looks like the following algorithm:
The RHA browses the file and converts it using the rules
stored in the rules base. We state below the two main
rules used in the conversion:

<!-- User’s request description--=
<request>
<!-- request id -
<ID> xxx </ID>
<description= texte </description=
<!-- User’s request fiunctional requirernent --=
<Params=
<Params>
<typexinl-<type=
<value=vl<value>
</Param>
<Param>

1894

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

<typerout]l </typex
</Param>
</Param>
<!-- User’s preferences -->
<preferences>
<preference>
<typex Prl</type>
<! - A value between 1 and 5-->
<weight> 2</weight>
</preference>
</preference>
<frequest>

Rule 1: For each tag <preference>, the sub-tag <type>
defines the type of the preference: Pr; and the sub-tag
<weight> defines the associated weight w;, add then to
the list PRF that stores the preferences, the item: <Pr,
W=,
By applying rule 1, we obtain the list of preferences
and their weights, this list is then encapsulated into a
message and sent directly to the evaluator if no automatic
preferences are proposed.

Rule 2: The <param™> tags with a <value> sub-tag defmes
the request’s input while the empty <param> tags
(without a sub-tag <value>) represent the request’s
output.

Knowing that the structure of the target semantic
query (functional) 13 defined as: R = {R.in, R.out, R pre,
R effe} where R.in R.out, R pre and R effe are respectively
the semantic set of inputs, outputs, preconditions and
effects. This rule helps the agent to define the metric part
(input and outputs) of the semantic request.

Autocompleting of the semantic request: Now that the
preferences list 1s mitiated and the mputs and the outputs
of the request are defined, the RHA completes
automatically the description of the semantic request
based on the domain ontology, by ntegrating the
necessary conditions and the possible effects associated
to the concepts that represent the predefined mputs and
outputs. The user profile ontology 15 used thereafter to
refine adjust (adapt) the resulting preconditions and
effects. The stored elements in this ontology contribute
also to the automatic enrichment of user preferences.

As defined, the three steps process allows the RHA
to convert the XML file representing the user’s request
mto a semantic one. This request that represents the
starting point of the composition process is encapsulated
in a message and sent to the discover while the list of
preferences is sent directly to the evaluator.

Discovery mechanism: Discovering is a critical step in the
proposed web services composition process. Instead of
letting the planner totally unguided with a list of all
available services registered to the system in the
discovery phase the discover tries to reduce as much as
possible the search space of services that need to be

explored to generate the composition plan. This is
considered as a second search space optimization as the
first one is already guaranteed by the use of the two stage
approach where only services type (that have different
IOPEs) are treated at the first composition stage.

For this purpose, we propose a techmque to
determinate candidate services that can participate to
achieve the desired functionalities based on semantic
characteristics: Tnputs, Outputs, Pre-conditions and
Effects (IOPEs). The discovery mechamsm is based on a
matchmaking algorithm that takes as mput a request
(semantic request) as well as a service registry and retums
as output a list of matched services types.

To ease the reading and the understanding of the
proposed algorithm, we present first some formalisms
used by the discovery mechanism.

Formalisms and considerations:

o Let S = {s, ..., s,} denotes the set of abstract
services which are available (registered to our
system)

» Each service s,cS 1s a triple: s, = {s,.1n, 5.0ut, s.pre,
s,.effet, where s.in, s.out, s.pre and s,.effe are
respectively the semantic set of inputs, outputs,
preconditions and effects of a s, service

* Requested service (R) is semantically described by a
triple: R = {R.in, R.out, R.pre, R.effe} where R.in,
R.out, R.pre and R.effe are respectively the semantic
set of inputs, outputs, preconditions and effects of
the semantic request

We note that, since, the discovery mechanism is
supposed to be as automatic as possible, we use semantic
based smmilarity to filter relevant services, thus we
distinguish four levels of semantic similarities between
two concepts C, and C, based on their relationship
defined in the domain ontology:

s Exact(C,, C,) if C, and C, have the same classes or C,
is a direct sub-class of C,

¢ Plug In(C,, C,): 5i C, subsume C,

s Subsume(C,, C,):5i C, subsume C,

¢ Disjoint(C,, C,): no relation between C, and C, is
defined in the ontology domain

We define then an overloading of “=" operator as
follows:
If Exact (C,C,)
C, =C,| OrPlugln (C,,C,)
Otherwise C, # C,

Therefore, the inclusion operator (=) and the
intersection operator (n) take in consideration the new
“="operator.

1895

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

The proposed matchmaking algorithm: The algorithm 6
15 based on the 1dea that no matter what planning model
we use, the composition plan cen be represented as a
graph, therefore in order to belong to the graph an
abstract service needs to retrieve its mput (preconditions)
parameters from previous nodes and its output (effects)
parameters have to be used as input parameters of
successors nodes. To do this the algorithm constructs
two abstract services communities, the input parameters
of the services belonging to the first one can be retrieved
(directly or indirectly) from the request’s inputs
(preconditions) and the output (effects) parameters of the
services belongmng to the second one are retrieved
(directly or indirectly) from the request’s outputs (effects)
Clearly the intersection of the two commumities belongs
to the plamming graph, since, its services have the
following property: its IOPEs can be retrieved from the
request’s IOPEs as result the candidate services pool 1s
constituted of the abstract services belonging to the
intersection of the previous tree and the successor tree
and its antecedents.

Finally, it is important to mention that besides
filtering candidate services, the proposed algorithms
gives an effective answer to a decisive question: do we
have to do the plamning task? Indeed, before any
relevance computation the algorithm verifies first if any
existent service can satisfy the request if so, the planming
phase 1s skipped and the evaluator 1s directly called. The
algorithm also verifies, at the end that candidate services
pool 1s not empty, the emptiness of this latter means that
the planming 1s not possible.

The proposed matchmaking algorithm:
Algo matchmaking algorithm (R, S)
(1) if 35,8 where:
s..incR.in and
g.precR.pre and
R.out < s,.out and
Reffe c s,.effe
then call_Evaluator (s,); // planming is not necessary
Else
(2) Construct PreviousTree where:
R is the root node
V 58, siePreviousTree if and only if:
s.pre < R.pre or s.in = R.in then child(R) =g
Or Js;ePreviousTree where:
s.prens,.effe =@ Or s. inns;.out #o then child (s) =s;
(3) Construct NextTree where:
R is the root node
W s £8, & £ NextTree it and only it}
s..effen R .effe#s Or s.out = R out then child(R)=s;
Or 3 s’ NextTree where:
s;".effens;’.pre =& Or s.outns;”.in o
then child(s;"=s;’
(4) Construct CandidatePool where:
¥ 58, s CandidatePool if :
g2 (PreviousTree niNextTree)
Or s;ePreviousTree and 3 syeCandidatePool

where child(si) =g

Or s;eNextTree and 3 syeCandidatePool

where child(s) = s;

(3) it CandidatePool is empty // planning is not possible
return failure
else call_Planner (R, CandidatePool);
end if
end if
end algo

We note that in this composition technique, the
priority was given to the and the
completeness of the proposed matchmaking algorithm
which is directly influenced by the presence of the false
negatives. Indeed, the latter threaten the success of the

correctness

planning phase which could fall if potential services have
skipped the filtering and have not been put in the
“candidatpool”. The designed discovery mechanism does
not present these types of risks as the filtering method
used by the matchmaking algorithm considers the
candidate services that satisfy directly or indirectly,
completely or partially the request by reasoning
semantically. The correctness and the completeness of
the proposed matchmaking algorithm are therefore be
guaranteed.

Planning model: The planning task lies at the heart of the
proposed composition process. To accomplish this task
a planning model has been set up n this research we draw
ow inspiration from the proof theory described by
Pellier and Fiorino (2004). The model produces a valid
composition plan based on an assumption-based
planning approach where agents exchange proposals and
counter-proposals in order to co-build a plan. In the
proposed planning model, a planmng problem 1s
composed by a goal to reach and a set of agents that have
to cooperate in order to reach that goal. Each agent has a
knowledge base and a capacity base. This latter is formed
by a set of operators, actions that an agent 1s capable to
perform autonomously in a given environment. A solution
plan resolves a planning problem while a partial plan or a
conjecture resolves a planning problem under certain
assumptions. In what follows, we consider the following
formal defimtion of a conjecture, the pivotal concepts of
the planning model: A conjecture is atuple ¥ = (A, <, I, C)
such as:

o A={a, ..., a,} is aset of actions

s < 1s a set of order constraints on the actions A like
a<a, i.e., a precede a

I is a set of instantiation constraints on variables of
actions A like x =y, x#y or x = cst such as cst ¢ D,
and D, 1s the domai of x

189

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

¢ Cis a set of causal links a —a? such as a, and a; are
two actions of A, the order constramt a,<a; exists in
<, the property p 1s an effect of a, and a precondition
of a and finally the instantiation constraints which
connect variables of a; and of a concerning the
property p are contained in T

We note that:

* An assumption formulated by a conjecture
v = (A, < I, C) 13 defined as a precondition p of an
action a,cA such as for all actions acA; the causal
link £C

¢« A conjecture ¥ = (A, < B, C) is a solution plan to a
planning problem, if ¢ has no assumption

The model’s principle: The key 1dea behind the proposed
planning model relies on the agent’s capability to
elaborate plans under partial knowledge and/or to
produce plans that partially contradict its knowledge. In
other words 1n order to reach a goal such an agent 1s able
to provide a plan which could be executed if certain
conditions were met, so, process does not fail if some
conditions are not asserted in the knowledge base but
rather proposes an assumption-based plan or a conjecture
that becomes new goal for the other agents.

The planning sub-architecture 1s constituted of two
kind of agents, manager agents which simulate the
discovered web services and planner agent which has a
twofold purpose: to monitor the status of all manager’s
interactions and to interact with the other agents involved
in the platform (discover, evaluator). This should not be
understood as a centralized control mechanism that
hampers the decentralized vision of MAS. Instead, our
aim 1s to centralize the global view of the planning
subsystem on one entity in order to ease the
communication task and to enhance the system
modularity. The planner is initiated with the semantic
description of the user goal (requested service). While the
manager 15 imtiated with the semantic description of the
discovered service it simulates (Adadi ef al., 2014).

By using their reasoning capabilities agents interact
through acts of dialogue, the informational content of
those acts is conjectures that refine the current plan. The
planner has an additional component; the proof board, a
public table that stores the different exchanges between
agents. Accordingly, in order to implement the planning
model, we need to design a reasoning algorithm to
determinate dialogue rules that manage agent’s
interactions and to define the structure of the proof board.

Planning tools

Acts of communication: Acts of communication defines
rules of dialogue that must be respected during the
agents’ interaction, since, we are using JADE

(Anonymous, 2017) platform to implement a system
prototype, the dialogue rules concept 1s simulated using
the FIPA performatives, the used set of acts of
communication 1s presented in Table 1.

Proof board: The planner has an additional component,
the proof beard, a table that stores managers” proposals.
From an algorithmic pomt of view, the proof board 1s seen
as a directed graph AND/OR whose AND vertices are
comectures and OR vertices are the assumptions
formulated by the father conjecture vertices, the edges
correspond to the transition operation proposed by the
Managers. An outgoing edge from a vertex 7y is a
refinement that transforms y into a successor . A
refinement 1s a transiion operation that adds
operators to prove an assumption. Therefore, multi-agent
assumption-based planning is a search in the proof board
from an initial conjecture to a node recognized as a
solution plan.

The proof board 13 imtiated by a particular
comjecture that defines the goal. Smce, preconditions are
possibly assumptions, the propositions corresponding to
the goal are represented as preconditions of a
dummy operator a, Similarly, the initial state is
represented as the effects of a dummy action a; The
effects of a; define the union of the agent’s beliefs. We
make the assumption that the agent’s beliefs are
consistent (Fig. 6).

Reasoning algorithm: Defining dialogue rules and proof
board is necessary to structure the communication
between agents but does not specify the mechamsm that
guides the refement of the plan, to answer this ssue, we
introduce a reasoning algorithm (Adadi et al., 2015b) that
describes the manger agents reasoning loop. As shown
by the algorithm in Fig. 9, at each iteration, an agent
chooses a conjecture in the proof board and tries to refine
it by adding causal links based on its capacity base,
thereby advancing the search for a solution plan. The

Table 1: Acts of communication

Acts of

communication Roles

CFP The action of calling for proposals to refine a given
conjecture

Propose Submitting a proposal to refine a given conjecture the

Failure action of telling another agent that refinement of a given
conjecture was attempted but the atternpt failed

Query_if The action of asking manager agents whether or not they can
continue refine the cumrent plan

Confirm The manager informs the planner that it cannot refine the
current plan anymore

Discontinm The manager informs the planner that it can continue refine
the current plan

Tntomm The action of an agent informing that the proof board
contains a solution plan

Cancel The action of the planner ordering managers to stop

planning

1897

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Conjecture C

Assumption h2|

Assumption hl Assumption hl

Refinement,

Refinement] Refinement/OR \Refinement OR\Refinement

Conjecture C3| |Conjecrure C4| |Conjecture C%

Fig. 6: The proof board structure

A
[Conjecture Cl| |Conjecture C2|

reasoning continues until finding a solution plan in the
proof table. If all agents cannot refine the plan anymore
the planming fails.

Algorithm 1: The XML file structure containing the

user’s request
While raisonne = true do
plans—an unresolved conjecture from the proof board // (1)
it plans is ermpty then
submit a failure proposal
raisonne-false
else
select a conjecture me plans
threats—Assumption (m)// Assumption (1) is the set of
assumption formed by
if threats is empty then
submit a success proposal of 1t
raisonne~false; / (3)
else
select an assumption «pethreats
refinements—Refine (ip, m); // by adding causal links
to the conjecture (2)
it refinernents is ermpty then
submit a failure proposal of ¢
else
select a raffinement p as a refinements
submit p as a refinement of
end while

Planning process: After introducing our planning tools,
let’s now put all components together and try to describe
the process through which the solution plan that
describes the order of execution of the discovered
services 18 built. The process 1s explamned through an
automate that defines the agents behaviour throughout
the planmng process (Fig. 7). Imitially, agents are in IDLE
state waiting for a goal to resolve. Upon the receipt of a
call for proposal from the planner, the dialogue is opened
and agents begin to exchange refinements and update the
proof board based on defined dialogue rules. When the
dialog 1s opened, agents go to the planmng state. Where
they keep executing their reasoning loop until a proposal
of failure or success 1s sent. In the first case, the agents
go to the IF state, the planner makes sure then that the
current plan cannot be refined by any manager by asking

Refine

Inform

Success

Confirm

Cancel

Fig. 7: Automate of agent’s behavior

an acknowledgement from all agents. If all mangers
acknowledge that they cannot refine the current plan, the
dialogue 1s closed on failure. Otherwise, the agents go
back to the planning state. In the second case the agents
go directly to the success state, the planner makes sure
that the conjecture existing in the proof board verifies the
solution plan conditions and closes the dialogue on
success,

Concrete composition techniques

Selection strategy: Web service selection is the problem
of selecting the best offer made by a service provider
given a request. In basic form, service selection mvolves
mapping a set of services to a service based on the
evaluation of the non-functional parameters (QoS).
Multitude of service selection techmques and algorithms
are proposed in the literature such as the use of
optimization algorithm (Baldoni et al., 2007) for service
selection, integer linear programming (Talantikite et al.,
2009), broker-based architecture (Dong-Hoon et al.,
2009) and negotiation model for service selection
(Swarnamugi et al, 2010). However, the composition
context brings to the table fundamental
questions.

How can we resolve semantic conflicts that might
exist between providers and consumers understanding of
QOS requirements, especially, the domain specific QoS?
How to estimate the QoS of a composite service from
those of the services bound to it? How to match between
required QoS information and published QoS information
of services?

Those questions have oriented our reflection
towards the conception of an adapted selection
strategy that takes in
considerations.

some

account the above

1898

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

In order to select the proper one from the composite
alternatives that verify the
functionalities, we propose firstly to set up a QoS
ontology for web services and to use QoS extension of
OWL-8 to describe services non-functional parameters,
then to compute the QoS attributes of the composite
service alternatives, for this end we use the aggregation
formulae proposed in Cardoso et al. (2004). Finally, the
algorithm that evaluates comprehensively the alternative
instances takes place to select the best offer.

Therefore, the model 1s based on three fundamental
elements namely: QoS ontology, QoS computation and
selection algorithm.

web service same

QOS ontology: QoS ontology 1s established to overcome
the ontological conflict that may occur between
consumers and providers. QoS ontology defines the QoS
properties their relationships and establishes shared
conceptions between the different stakeholders. The
ontology ensures that providers uses a standard mean to
express their QoS properties and ensures that users use
the right mean to express their QoS preferences and
therefore match that to the QoS mformation of providers.
Our QoS ontology includes generic QoS3 attributes like
response time, availability, price, reputation etc as well as
domain-specific QoS attributes, for example, the accuracy
of translation for a translation web services as long as
these attributes can be quantified and represented by real
numbers.

QoS computation of composite service: The QoS values
of a composite service are determined by the QoS values
of its component services and by the composition
structure (e.g. sequential, parallel, conditional and/or
loops). Here, we focus on the sequential composition
model. Other models may be reduced or transformed to
the sequential model. The QoS vector for a composite
service CS = {s,,... ,8} is defined as Q .= {q(CS),...,
q,.(C3)} where q(CS3) 1s the estumated end-to-end value of
k™ QoS property and can be computed by aggregating the
corresponding values of the component services qp (sj).
In owr model, we consider three types of QoS
aggregation functions: summation, multiplication and
minimum relation. Examples are given in Table 2.

Selection algorithm: The selection algorithm determines
which composite web service altermative CS,, from all
possible alternatives CS = {CS,,..., CS,} 1s selected. For
that purpose, the evaluator constructs Q,, matrix where n
represents the total number of composite web services
alternatives (CS) that have the same functional properties
and m represent the total number of QoS properties:

Table 2: Aggregation formulas of the QoS parameters in the composition

Agoregating type/Example Function
Summation
?ﬁiﬂmﬁe time a(Cs)=1n Y ap(sf)
Reputation
Multiplication
Availability q(CS):min“Fl qp (=£)
Reliability
Minimum
Throughput
4y, 4z Qi
Q= SE 9z SEM (])
Dy Qa2 Qo

Each row m this matrix represents a composite web
service CS while each column represents one of the Qo3
properties g;.

To compensate between different measurement units
between different QoS properties values (q;;), the values
need to be normalized to be in the range 0, 1. We will use
the following equations to normalize them:

qi, J_q;nm s _max | min
— st g -q #0
V1,j = qJ -q.l : : (2)
1 si q;“ax-qj“‘" =0
457 -4, .
max n;m Sl q _q i 0
V1,] = qJ h J : : (3)
1 sioq"™ —qj“i“ =0

where g, ; is the QoS property that we wish to normalize
by minimization using Eq. 2 or maximization using Eq. 3,
for example, response time needs to be normalized by
minimization using Eq. 2 while availability needs to be
normalized by maximization using Eq. 3.

q"™is the q;; that has the maximum value among all
values on column j and g™ is the p;; that has the minimum
value among all values on column j. We note Q° the
resulted normalized matrix.

The key 1dea of the selection algorithm 13 to find the
nearest CS; to the QoS specifications of the user
(preferences). To do so we use euclidean distance to
calculate the distance between the user specified QoS
properties (represented by a w vector that contains the
weights for each QoS property) and the existing QoS
properties for each vector in the matrix then
we choose the CS with the minimum euclidean
distance:

1899

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

QOS(CSI):distance(Q’,W):Zj“;l(vijxw]) 4

Where:

(Q° = The normlized QoS matrix

w, = The weight of the jth QoS property normlized with
1/5,1e, wel0, 1]and w, = 1

Next, the obtained vector is sorted and the composite
service with Thighest wvalue (nearest to the wuser
expectations) 13 sent to the executer. As a result, given a
set of user preferences, the algorithm works as follows:

Step-1: Construct () matrix

Step-2: Normalize Qo8 matrix using Eq. 2 and 3

Step-3: Compute the euclidian distance between each weight vector and the
normalized QoS matrix using formulae 4

Step-4: Find CSi with the minirmm distance

Based 1n this model the evaluator takes the abstract
defimition of the composite web service as an mput and
selects the best composite service instance that satisfies
the user requirement. Practically the evaluator:

*+ Obtains the list of required QoS including user
preferences with the respect of QoS ontology

* Estimates (calculates) the QoS of the composite
service alternatives from those of the component
services bound to it based on the composite service
QoS computation mechanism

» Uses the selection algonthm to evaluate all
alternative services and choose the best cne

Autonomic execution: Autonomic is a basic concept in
the proposed approach, indeed the defined composition
process can be qualified as an autonomic one, since, it
verifies the autonomic computing properties including
self-configuration as the system discovers automatically
the elements that participate m the process and
configures them to meet the goal of the composition and
self-optimization as the evaluation strategy chooses
dynamically the best service instance that maximizes the
quality. Self-healing on the other hand is a behaviour that
allows the system to resist dynamically from runtime
errors and 1t 13 at the execution phase that has been
implemented.

The success the concrete composition plan execution
is the responsibility of the executer, thus in order to
maintain the execution of the composite service as it has
been planned this one has to implement self-healing
techniques which means 1t needs to monitor the service
execution in order to predict problems and take action
before complete service composition failure takes place.
In autonomic computing paradigm this is known as the
MAPE loop (Abeywickrama and Ovaska, 2017) which
consists of four key activities (monitoring, analysis,

Executing module

o0

'
| Communication module
Monitoring module

Fixing module

Fig. 8 Executer agent architecture

planning and execution). However, even though the
mape-loop is used by various applications in self-healing
systems, 1t has its limitations when it comes to web
service composition. One man drawback 1s that when a
service fails to deliver it will then perform analysis and try
to find another plan. However, re-planning might not be
necessary if the service was delayed due to a slow
network. In this case, a re-execution of the current plan
might have solved the problem. Given this, an alternative
self-healing architecture is needed for our web service
composition approach. Next, we present the proposed
self-healing architecture for the executer agent.

Executer agent architecture: The internal architecture of
the executer that encapsulates the self-healing behaviour
15 shown in Fig. 8 The agent 13 composed by three
modules, namely executing module, monitoring module
and fixing module. Tn addition of the communication
module that serves to commumnicate with the other agents.

Executing module: Executes the concrete plan using a
Service process engine.

Monitoring module: 15 fundamental since, m order to
implement a self-healing behaviour, one must first know
if something goes wrong as soon as possible in parallel to
the execution of the composition process, a monitoring
component listens to the events and detects abnormal
ones according to the fault taxonomy that stores possible
errors organized in categories. Since, this is done in
parallel to the execution, almost no impact on performance
1s expected.

Allows the
after

system to continue
erroneous behaviours are

Fixing module:
execution even
discovered. In our research, we foresee three possible

recovery actions:

s Reexecute: simply tries to re-execute the service that
1s causing the problem

1900

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

¢« Re select tries to bind the execution to another
service, capable of providing the same functionality
of the faulty service and acceptable non-functional
qualities

¢ Re plan: consists of re-invoking the planner to
generate a new plan that, once executed correctly,
provides the same fimctionality of the faulty service
and acceptable non-functional qualities

These recovery strategies are applied hierarchically.
If one strategy does not work, a second one can be tried
subsequently.

Executer agent architecture: As shown in Fig. 11, the
mtemnal process of the executer can be described as
follows: during the execution phase the plan 13 monitored
at run-time to ensure that it is executed as expected based
on fault registry. If at any stage during the execution, the
monitoring module detects some unexpected occurrences,
the monitoring module notifies the fixing module and the
recovery actions takes place. There are three ways to
overcome the problem, based on its severity: the first
action to be taken 1s the re-execution of the current plan.
In many cases, failure caused by an unresponsive web
service or service delay due to a slow network can often
be resolved after a few re-executions of the current plan.
However, in the case where re-execution fails, fixing
module checks for changes in the user’s context, since,
the last evaluation. If changes have occurred, it notifies
the evaluator which then generates a new ranked
alternative-services list. If no changes have occurred, the
evaluator retrieves the next alternative composite service
from the selected list and sends it to execution. In both
cases, 1f it 13 the abstract composite service (all its
instances) that causes the problem, the fixing module asks
the planner to develop a partially new or completely new
plan, from the current state to ncorporate the latest
available information.

Application and prototype

Application to e-Governement domain: The ultimate goal
of the research goesbeyondthe introduction of a
conceptual carry dynamically and
automatically the web services composition process. It
mtends also to prove its usefulness to solve real
industrial problems.

Tt is obvious that building composite web services
can save significant time and cost for developing new
applications and enhancing the mteroperability and
collaboration among e-Business partners. However, we
believe that e-Governement domain is where our web
service composition approach can produce the best

framework to

results to solve significant number of real world
Tndeed, specific
features as opposed to traditional e-Business scenarios,
the e-Government domain is a large, heterogeneous,
dynamic and shared information space with various
semantic differences of interpretation. Because of the
challenge it faces i aclieving interoperability, integration
and security, e-Government seems to be an obvious and
promising application field for
compaosition approach.

We are particularly interested in the “one stop shop”
concept (Chatzidimitriou and Koumpis, 2008) that
supports the transition to the citizen-centric vision. In
fact, in order to deliver seamless services to citizens it is
necessary to enable a real interagency cooperation of
government department which allows services and
information sharing while reducing the need for users to
provide redundant information already held by the
authorities. Techmically this requires the shift from
1solated silos i public administration to one mtegrated
government that delivers one-stop e-Government services
(Chatzidimitriou and Koumpis, 2008) to the public
encapsulating the size and complexity of government.
This one-stop user experience will enhance overall user
satisfaction of e-Govemment services.

Technology play a pivotal role in enabling this
envisioned one-stop government as it can brings real
solutions to integration, mteroperability, coordmation and
security 1ssues. In that way, we propose our conceptual
framework as a technical tool to set up a one-stop

issues. e-Government has some

our web service

government portal.
The application of the proposed approach n the e-
governement domain to solve the integration,

interoperability 1ssues 13 guided by the followmng
citizen/government relationship schema (Fig. 9):

A C2G and G2C interactions that mark respectively
the beginming and the end of the admimstrative process
they illustrates a front-office integration.

And a G2G interaction that encapsulates the
mechanism of mtegrating (composing) the different public
admimistration services n order to accomplish the
administrative procedure requested by the citizen. This
interaction illustrates a back-office integration.

In order to effectively implement the above
relationship schema, we mtroduce the concept of “layer”

>
il 74 C2G
) [G2G
S ‘ —
Z B
G2C
Citizen Gov. Gov.

Fig. 9: Citizen/government relationship schema

1901

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

in the proposed architecture illustrated in Fig. 2, thus,
our composition architecture will be organized in four
layers.

Legacy system layer: Contains the legacy applications
available in each of the Public Administrations (PA)
mvolved n the system.

Ontology layer: Ontology is the basic mechanism, we
propose to capture semantic content of e-Government
web services n a manner that ensure nteroperability.
That means that our system should integrates m addition
of the three other ontologies: an e-Govermnment domain
ontology that contains the e-Government domain’s types,
concepts and relations among them.

Composition layer: Using the five enabling composition
techniques this layer play the role of the system’s brain
by providing the required functionalities for a back office
mntegration such as discovery, composition and execution
of services.

Communication layer: The ontological user interface that
manages the interaction between the citizen and the
government. This layer ensures a front office integration
by proposing a single and unique access point to
the e-Governement services that integrates and merges
any other access channel to these services.

As result by implementing the proposed conceptual
framework in an e-Government context, the system will
lead the citizen from his/her problem to the appropriate
service or services by encapsulating the complexity of
public institutions. Indeed with an architecture based
essentially on mtelligent agents and ontologies supported
by a composition techniques toolkit, the middleware
element formed by ontology and composition layers
provides mechanisms to coordinate existing services in
order to provide a new personalized service that is more
comvenent for user’s needs and perceptions. This
contributes to increase efficiency in terms of costs and
productivity by reusing autonomous public
administration services while lkeeping their internal
processes and legacy systems intact.

Prototype: As a research in progress, the introduced
framework has only begun to demonstrate its usefulness.
Indeed, in addition of using the proposed approach to
solve real world problematical 1ssues, it i1s necessary on
the other hand, to implement the different components of
the proposed frameworlk in order to develop real
applications based on the conceptual composition
theories invoked m this research.

By adopting an agile iterative approach, we have
conducted experiments regarding a part of proposed
composition process that focuses on the plarming model
technique and the creation of the domain ontology. The
developed tool allows to produce an abstract composition
planning that defines the order and the contribution of a
set of a semantic described service types giving as input
based on an e-Government domain ontology and a user
request. The prototype mcludes the implementation of
some utilities that ensure the translation from a semantic
to a planning modelling language and vice versa.

In the rest of this study, we will expose the main
deliverablesproduced throughout the prototype, namely:
WebGov: the domain ontology and SW3Composer: the
plarming engine.

e-Government domain ontology: Building an e-Government
domain ontology is an essential prerequisite to implement
the integrated and interoperable government vision that
we defend techmically based on our conceptual
framework.

Even if it 13 generally accepted that the formalism of
new ontology by reusing existing ones involved less time,
effort and cost, 1t 1s not always the best path to take.
Most existing ontologies are hard to reuse, the benefits of
ontology reengineering are then often unclear, since, the
overhead of seeking and wunderstanding existing
ontologies may be even greater than simply building an
ontology from scratch. As we are working on a proof
of concept we chose to design and develop partial
e-Government ontology mstead of reusing existing
e-Government ontologies. Which we believe 1s more
appropriate i our case.

The creation of WebGov, the designed e-govermment
domain ontology was guided by methonlogy (Sawsaa and
Lu, 2012), recognized as the most mature and complete
ontology development methodology.

Besides ontology development methodology, an
ontology development language and ontology
development tool have to be chosen too. We adopted
OWL (Sawsaa and Lu, 2012) as the ontology development
language. OWL was selected because of its
computational quality of consistency m checking and
classification which 15 crucial in developing coherent and
useful ontological models for complex domains like
government domain. In addition, Protege (Sawsaa Lu,
2012) was chosen as implementation tool because it is
supported by methontology and it 1s widely used due to
its platform-mdependent characteristics. The process of
WebGov creation was splited into three main phases:

Specification: Where we acquired domain knowledge
and we identified the scope of coverage knowledge. This
phase was based on domain expert’s mterviews.

1902

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Ciloyen

I
|
1
I
I
I
1
I
!

@Evenement_de_vie

>

@ Entreprise

@ Personnel

Etablissement
public

- i
@ Reglementation [~~~ ® Service_
administrative

.. Administration_

public 2 Service data

T
I
y
1
/

1

.
..Documentﬁadmlm
stratif

Fig. 10: WebGov domain ontology upper-level elements

Conceptualization: in this phase the acquired knowledge
was structured in semi-formal specifications using
mtermediate representations that the domain expert and
ontology developers can understand. This includes
creating glossary of domain terms, building the concept
classification tree and creating concepts dictionary.

Formalization and implementation: Finally, based on the
conceptualization phase, protege formalizes the ontology
by transforming the conceptual model into an
implemented model.

Due to lack of space, the ontology upper-level
elements are shown in Fig. 10. A fragment of the
generated OWT, file is given in Algorthm 4. The ontology
consists of 52 concepts, 18 attributes, 17 relationships
and 140 individuals. A much more detailed ontology
would be needed if the system s to be applied mn
real-world e-Government settings. Actually, the purpose
of the experiment 13 to demonstrate the capability of the
framework to deal with the challenges it may face in this
domain and the techncal feasibility of the approach.

Fragment of OWL description of WebGov ontology
<owl: Object property rdf: about = “http: /local host/gov. Owl # Psse-
par’>

<rdfs: domain rdf: resource =*http: /local host/gov. Owl # citoyen

<rdfs: range rdf: resource = “http: /local host/gov. Owl # Evenement-de-
vie"/>

<!-- http: /local host /gov. Owl # Produit -->

<0Owl: Object property rdf: resource = “http: /local host/ gov. Owl #
product™>

<rdfs: range rdf: resources = resources “http: //local host/ gov. Owl #

[+ ..
2 Collectivites_

territories

Documents-Administratif”/=

<rdfs: domain rdf: resources = “http: Hlocal host/ gov. Owl # service-
Administratif” />

</ owl: object property=

<!--http: Mocal host/gov. Onwl # Evenermnent-de-vie--=>

<owl: Class rdf: about = “http:// local host/ gov. Owl # Evenement-de-
vie"/>

<!-- http: /local host/ gov. Owl # personne -->

<owl: Class rdf: about =*http: /local host/gov. Owl # personne™>

<rdfs: subclassof rdf: resource = “http: //local host/gov. Owl # citoyen™/>
</owl: class

<!-- http: /local host/ gov. Owl # Service-Administratif -->

<owl: Class rdf: about = *http: /local host/gov. Owl # Service-
Administratif”/>

We note that the validation of WebGov was carried
out at three levels: the validation of the business
knowledge representing the informal level of the ontology
was based on the domain expert’s opmion. The
validation of the logical and structural aspects of
ontology such as the logical problems inconsistency,
incompleteness or redundancy was automatically treated
by the development tools used. As regards the validation
of the ontology content, at the formal level, 1e., its
adequacy with the part of the real world that it represents,
it was decided by the designers.

The built e-Government domain ontology will be used
as a semantic shared knowledge representation by our
five composition techniques. Notably, the planning model
technique will use WebGov as a source to build agent’s
knowledge base. More detail about the deliverable related
to thus technique 1s given next.

1903

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

|+ SWS Composer (=) @

avoirCNI

Enter the goal: ' »»
avoirCitoyen

Enter the preconditions: »»
CIN

Enter Mangers name: AN OWL-S File.. | aissanceSenice.xm > CR

Plan ' Cancel

Fig. 11: The intermediate GUI for the planmng engine (SWS composer)

=] o—
1= SWS_Composer
4 3% src
B composer
X owls.xml
The generated OWL-S file
I b AN BAT T T < £:RDF I
A fragment of the generated OWL-S file
Log of the agents* debate
Fig. 12: The planming engine (SWS composer) outputs
Planning model implementation: As part of our proof of agent, using Agent and Behaviors classes offered by
concept, the planning model was implemented using JADE platform and FIPA-ACT, performatives
JADE platform (Anonymous, 2017). This mcludes the {Anonymous, 2017)
unplementation of the planmng tools detailed in section » The reasoning loop algorithm was also implemented
“4.1.3. Planning model”, namely: in Java
* The proof board, using Java data structures In order to mteract directly with the constructed

¢ The MAS formed by Mangers agents and Planner planning engine (SWSCompoeser) an mtermediate GUI was

1904

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

set up, it allows to enter the semantic request in terms of
goal and preconditions and to specify the semantic
description of the component web services involved in
the current composition process (Fig. 11).

By clicking “Plan”, the planning model 1s launched.
It makes use of the previously explained planmng model,
to generate the composition plan and then it uses an
implementation of a “planning to semantic” algorithm to
convert the composition plan to an OWL-3 file that
describes the composite services semantically. Figure 12
shows the planning model outputs, it includes the
semantic description of the generated composition plan
and a log of agents’ debate during the planning process.
Thus latter transcribes the agent’s interactions through a
composition lifecycle, it is useful for verifying the
functioning of the SWS composer engine. Indeed By
applying a use case belonging to e-government
domain detailed by Adadi ef al (2015a, b), on the
current prototype and after analyzing the generated
conversation between the different agents involved in the
composition process, we can confirm that the theatrical
and the practical results are consistent.

CONCLUSION

In this research, we presented an overview of our
phased two stage approach for Web service
composition. We combined different emerging concepts
such as ontologies, autenomic computing and artificial
mtelligence technologies to enable the semantic
reconciliation among heterogeneous web services and to
make composite web service construction dynamic and
automated.

The proposed conceptual framework relies on five
composition techniques: Specification analysis converts
the user’s request into a semantic one. Discovery
mechanism filters irrelevant service types by using a
matchmalking algorithm in order to propose only potential
candidate services for the planning operation. Planning
model allows to construct an abstract composition plan
based on a distributed multi-agent plamming method.
Selection strategy chooses the best service offer based
on non-functional requirements (QoS). Finally, autonomic
execution ensures the reliability of the execution process
by enabling a self-healing behaviour.

Comnsidering the mtroduced techniques, we believe
that our proposal 18 portraying a promising picture
towards solving composition problem in autonomic and
adapted way.

RECOMMENDATIONS

Our future research revolves basically around two
aspects. Firstly, we will continue enhancing the pilot
experiment to include the rest of the framework

components and thus, covering the whole composition
process. Secondly, we plan to experience our solution
with a range of business processes such as e-Commerce,
e-Learning, e-Health and e-Entertainment, to extensively
evaluate its effectiveness.

REFERENCES

Abeywickrama, D.B. and E. Ovaska, 2017. A swvey of
autonomic computing methods m digital service
ecosystems. Serv. Oriented Comput. Appl, 11: 1-31.

Adadi, A, M. Berrada and D. Chenoum, 2014. A multi-
agent planning architecture for semantic web service
composition. Intl. Rev. Comput. Software, 9: 347-354.

Adadi, A., M. Berrada, D. Chenouni and B. Bounabat,
2015b. A semantic web service composition for E-
government services. . Theor. Appl. Inf. Technol,
71: 460-467.

Adadi, A., M. Berrada, D. Chenouni and B. Bounabat,
2015a. Ontology based composition of E-government
services using AT Planning. Proceedings of the 10th
International Conference on Intelligent Systems:
Theories and Applications (SITA15), October 20-21,
2015,1EEE, Rabat, Morocco, ISBN:978-1-5090-0219-1,
pp: 1-8.

Al-Sedrani, A. and A. Touir, 2016. Web service
composition in dynamic environment: A comparative
study. Proceedings of the 4th International
Conference on Database and Data Mining, April 23-
24, 2016, Coral Dubai Deira Hotel, Dubai, UAE., pp:
75-84.

Anonymous, 2017. JTava agent development frameworlk.
Tade Ltd., Lagos, Nigeria. http:/jade.tilab.com/.
Baldoni, M., C. Baroglio, A. Martelli and V. Patti, 2007.
Reasoning about interaction protocols for
customizing web service selection and composition.

I. Logic Algebraic Programming, 70: 53-73.

Cardoso, J., A. Sheth and J. Miller, 2002. Modeling quality
of service for workflows and Web service processes.
Web Semant. Sci. Serv. Agents World Wide Web T,
1: 281-308.

Chandrasekar, M. and K. TayaShree, 2016. Clustering web
services for effective service discovery. Intl. J. Adv.
Res. Comput. Eng. Technol., 5. 2500-2503.

Chatzidimitriou, M. and A. Koumpis, 2008. Marketing
one-stop E-government solutions: The European
One StopGov project IAENG. Intl. I.Comput. Sci., 35:
1-6.

Ghallab, M., D. Nau and P. Traverso, 2016. Automated
Planning and Acting. Cambridge University Press,
Cambridge, UK., ISBN:9781107037274, Pages: 354.

Jatoth, C., G.R. Gangadharan and R. Buyya, 2017.
Computational intelligence based QoS-aware web
service composition: A systematic literature review.
TEEE. Trans. Serv. Comput., 10: 475-492.

1905

J. Eng. Applied Sci., 13 (7): 1888-1906, 2018

Lei, Y., 2016. There can be composite services when you
believe. Intl. J. Serv. Comput., 4: 49-58.

Lemos, A.L., F. Daniel and B. Benatallah, 2016. Web
service composition: A survey of techmques and
tools. ACM Comput. Suwveys, Vol 48
10.1145/2831270

Michael, R.T.F. and P.P. Siva, 2016. Implementation of
agent based web service composition using
dependency relation algorithm. Intl. J. Technol.
Enhancements Emerging Eng. Res., 4: 22-27.

Mier, P.R., 2016. A graph-based framework for optimal
semantic web service composition. Ph.D Thesis,
Universidade de Santiago de Compostela, Santiago
de Compostela, Spain.

Moghaddam, M. and J.G. Davis, 2014. Service Selection in
Web Service Composition: A Comparative Review of
Existing Approaches. In: Web Services Foundations,
Bouguettaya, A., Q. Sheng and F. Daniel (Eds.).
Springer, New York, USA., ISBN:978-1-4614-7517-0,
pp: 321-346.

Pakari, S., E. Kheirkhah and M. Jalali, 2014. Web service
discovery methods and techniques: A review. Intl. J.
Comput. Sci. Eng. Inf. Technol., 4: 1-14.

Pellier. D. and H. Fiormno, 2004. Assumption-based
planning. Proceedings of the 2004 International
Conference on Advances in Intelligence Systems
Theory and Applications, November 25-18, 2004,
Research Center Public Henri Tudor, Luxemburg,
Europe, pp: 1-2.

Sawsaa, A. and T. La, 2012, Building Information Science
ontology (OI3) with methontology and protege. J.
Intemet Technol. Secured Trans., 1: 100-109.

Sheng, Q.7., X. Qiao, A.V. Vasilakos, C. Szabo and
S. Bourne et al., 2014. Web services composition: A
decade’s overview. Inf. Sci., 280: 218-238.

Swarnamugi, M., M. Sathya and P. Dhavachelvan, 2010.
A negotiation model for web service selection.
Proceedings of the 2010 International Conference on
Recent Trends in Soft Computing and Information
Technology (RTSCIT’10), Jamuary 9-10, 2010,
Institute of Science and Technology (AIST), Bhopal,
India, pp: 251-256.

Talantikite, HN., D. Aissani and N. Boudjlida, 2009.
Semantic anmotations for web services discovery and
composition. Comput. Stand. Interfaces, 31:
1108-1117.

Torre, G.L., S. Monteleone, M. Cavallo, V. D’ Amico
and V. Catama, 2016. A context-aware solution to
improve web service discovery and user-service
interaction. Proceedings of the 2016 International
IEEE Conference on Ubiquitous Intelligence and
Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People and Smart
World Congress (UIC/ATC/Scal Com/CBD Com/IoP/
SmartWorld’16), July 18-21, 2016, IEEE, Toulouse,
France, ISBN:978-1-5090-2772-9, pp: 180-187.

Weerdt, M.D. and B. Clement, 2009. Introduction to
planning m multiagent systems. Multiagent Gnid
Syst., 5: 345-355.

Yu, W., G. Wen, G. Chen and I. Cao, 2016. Distributed
Cooperative Control of Multi-Agent Systems. John
Wiley & Sons, Hoboken, New Jersey, USA.,
[SBN:9781119246237, Pages: 264,

190e

	1888-1906 - Copy_Page_01
	1888-1906 - Copy_Page_02
	1888-1906 - Copy_Page_03
	1888-1906 - Copy_Page_04
	1888-1906 - Copy_Page_05
	1888-1906 - Copy_Page_06
	1888-1906 - Copy_Page_07
	1888-1906 - Copy_Page_08
	1888-1906 - Copy_Page_09
	1888-1906 - Copy_Page_10
	1888-1906 - Copy_Page_11
	1888-1906 - Copy_Page_12
	1888-1906 - Copy_Page_13
	1888-1906 - Copy_Page_14
	1888-1906 - Copy_Page_15
	1888-1906 - Copy_Page_16
	1888-1906 - Copy_Page_17
	1888-1906 - Copy_Page_18
	1888-1906 - Copy_Page_19

