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Abstract: The computer vision 13 one of the most important specialties which can contribute on development

of the computing. The estimation of the fundamental matrix remains a necessary tool to obtain and evaluate the

relationships between two different view images. Different methods of segmentation exist to satisfy the

specification of elimination of the false correspondence point. In this study, we propose a method based on

the image segmentation using the super pixel algorithm. After that, we develop a new modification on the

weighting fimction related with the fundamental matrix. Experimental comparisens were conducted through a
simulation between the RANSAC, L.Med, M-estimator and our method in order to estimate the projection error.
Consequently, the proposed method gives a good performance results with a low error of projection compared

to the others robust methods.
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INTRODUCTION

Different estunation methods of fundamental matrix
exist and almost all of them use only matching image
points as data. These methods are distinguished by the
parameterization of the fundamental matrix “F°. The
epipolar geometry plays a very important role in the
computer vision and it can be represented as an ‘F* wlich
is 3»3 and rank-2 singular matrix (Hartley and Zisserman,
2004). Tn the fact the estimation of the fundamental matrix
15 primary in almost all matching and reconstruction
algorithms. We can elaborate the fundamental matrix from
two images captured from different views about one
scene. However, the estimation of the fundamental matrix
15 probably faced on two major problems: incorrect
matching of points and lack of precise pixel coordinates.
Many researcher’s studies have proposed methods of
solving these problems (Luong and Faugeras, 1996
Armangue and Salvi, 2003).

Generally, two broad categories of approaches used
to estimate the ‘F°, linear and non-linear methods. The
results of the previous research of the linear method have
shown two major defects related to the absence of rank
constraint of the fundamental matrix and to the absence of
normalization of the minimization criterion, resulting in

errors n the estimation of the matrix. To defeat this defect,
non-linear methods are proposed to reduce lag and
improve accuracy by mimmizing the distance between the
points and their epipolar lines (Hartley and Zisserman,
2004; Zhang, 1998a, b). The projection error (Bartoli and
Sturm, 2004; Kanatam and Sugaya, 2010). Or the sampson
error (Zhang, 1998; Migita and Shakunaga, 2007). The
robust methods are proposed to reduce the effect of
potential aberrant values and have greater tolerance to
data noise.

The first techmque M-estimator (Torr and Murray,
1997). Leads to a good result in the presence of noise
Gaussian at the selected pomts of the image but it is
limited in its capacity to take outliers into account. Two
other techniques are classified as robust methods and
they are similar, the Random Sampling Consensus method
(RANSAC) (Torr and Murray, 1997). And the method
Least Median Squares (LMeds) (Zhang, 1998). These two
least consist in selecting randomly the set of points used
for the approximation of the fundamental matrix. The
LMeds method calculates for each estimate of ‘F’ the
Euclidean distance between the points and the pipolar
lines and the choice of ‘F’ comesponds to the
minimization of this distance. The RANSAC method for its
part, calculates for each value of ‘F’ the number of points
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that may be appropriate (inliers). The matrix ‘F~ chosen
maximizes this number. Once the aberrant points are
eliminated, the matrix ‘F’ 1s recalculated to obtam a better
estimation. Experiments have shown that the LMeds
technique gives a better result than the RANSAC method
in terms of precision (Armangue and Salvi, 2003).
Although, the M-estimator gives a good performance
compared to the others robust methods m terms of the
projection of point of correspondences.

In this study, we develop a robust and efficient
method which depends on the correspondence of the
characteristics to estimate the fundamental matrix. We
start with the image segmentation by the super pixel
algorithm (Ren and Malik, 2003) then we detect the
descriptors pomts using the SURF (Speeded Up Robust
Features) method (Bay ef al., 2008). After the detection of
the matched features, we calculate directly the
fundamental matrix using the three methods above. The
objective of calculating the ‘F’ consists in determiming
the projection error. The research is projected m the
modification of the weighting function at the level of the
M-estimator method. This new proposition not only
makes 1t possible to estimate the matrix F but also
precisely identify the different aberrant level values from
the set of point correspondences. The simulation result
from the real images shows that our proposed method is
robust than the other methods at the level of projection
erTor.

Epipolar geometry

Relation existing tow different image: The epipolar
geometry defines the set of relations existing between
two different image views of the same scene captured
using a camera. Figure 1 presents a stereoscopic system
composed of two image sensors arranged at positions Ol
and Or m the scene. A pomnt P of space 1s projected,
respectively into p; and P, in both left and right images.
The point P and the two optical centers form a plane p,
called the epipolar plane which intersects the two image
planes according to two straight lines [ e, I, called epipolar
lines. These lines cut the baseline ol and or a constant of
the device if it is assumed that the arrangement of the two
sensors 1s rigid, respectively at two points ¢ and e, called
epipoles. These two pomnts are therefore also constants of
the stereoscopic system.

The relationship between the points (o, o,, P, p,, p)
which 18 expressed from two left and right images to
calculate the fundamental matrix of rank equal to 2
and the points p,, p, Eq. 1:

pT Fp": 4] (1)

where, T: transposed.

Baseline

Fig. 1: Epipolar geometry

Segmentation of the source image: The objective of
image segmentation is to eliminate all points of false
matches by an affine transformation in the uniform
region.

First, we have to separate an image mto different
areas and merge them by paired points n two images. To
perform the segmentation, we choose to use the super
pixel algorithm (Ren and Malil, 2003) which consists in
segmenting the first image to be processed and after this
operation we must find homogeneous regions (gray level,
color, etc.) and well limited between them, then we take
each region of the reference image and look for the
correspondence in Fig. 2.

Establishm ent of correspondence points: Correspondence
is an approach inspired by epipolar geometry and it is
based on the calculation of the criterion of similarity.
The epipolar geometry 1s a basic tool of computer vision
systems not limited only to the of the
corresponding points but also to the reduction of the

search

points in epipolar lines, however, the epipolar geometry
cannot detect the corresponding points if the matched
point 1s located n an incorrect position on the
corresponding epipolar line. To manage this situation, we
add an affine constramnt to assembly the uniform regions
and eliminate the false correspondents on the epipolar
line. This based on arbitrary point
correspondences of scene images. Our method is based
on the use of the descriptor extractor SURF (Speeded Up
Robust Features) which 13 chosen according to a
comparative study between two descriptors, SIFT (Scale
Invariant Feature transform) (Lowe, 2004) and SURF
(Bay et al., 2008). The results of the SURF study give
good results m terms of speed (processing time) and
mumber of detected points. From the points detected by
the SURF method between two images of the same scene.
We can find the accurate fundamental matrix ‘F’ from I,
and I, which connects the corresponding pairs of image
points for each of them {P;} and {P,;}. (P, P, are the
corresponding pixels for the two images).

constraint 18
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Fig. 2: Segmentation using super-pixel
MATERIALS AND METHODS

Fundamental matrix: The estimation of the fundamental
matrix relies on the knowledge of a certamn number of
corresponding pairs of points. This estimation can be
represented as the following equation:

p" Fp =0

where, F 18 a matrix of dimension 3=3 and of rank-2 and
determined from “F’ and zero, the Eq. 1 15 the relationship
which relies the points of the left imagenoted Py, = (uy, vy,
1) and points of the right imagenoted P, = (u,, v,;, 1)". This
equation can be rewritten in the following linear form:

U, =0 ()
With:
f =K, B B, B
Fo B B Fou BT
And:
Uty Uy Ve Uy Yyl vy Ve vy U v ]
U= . . ; . . S0 T

Ug Uy Uy Vig Uy Vg Uy, Vg Vi Vg Ty ¥y 1

Tt can be noted from the decomposition of the Eq. 2
that there are 9 unknown and 7 mdependent parameters.
But 1t 18 still possible to estimate thus matrix from only 7
paurs of points (Zhang, 1998). The major advantage of this
method consists on his simplicity and speed. However,
the quality of the results deteriorates rapidly when a few
points are poorly localized. Moreover, the solution is not
always unique and the result depends on the choice of
the 7 pomts in the set of available matches. This approach
has been improved (Hartley, 1997). This researcher has
proposed also a more robust algorithm called eight
standardized point. This approach greatly improves the
result of the seven point method. In this research, we took
the last algorithm of Hartely (eight standardized point).

Equation 2 is a starting point for most methods of
determimng the fundamental matrix. Which can be solved
for up to a scale factor if N = 8 and if N is greater than that
it will be solved uniquely in a way that minimizes Eq. 2. In
general, to solve for N equations, the Singular Value
Decomposition (SVD) of U 1s taken so that (Hartley and
Zissermar, 2004):

[FU,FS, FV] = SVD (U) (3)
Where:
U= [FU F§ FVT]

The estimated “F” should be a rank-2 matrix in order
to model the epipolar geometry with all the epipolar lines
intersecting i a umque epipole. Although, the rank-2
constraint is not imposed in most of the swrveyed
methods, there 1s a mathematical method winch transforms
a rank-n square matrix to the closest rank-(n-1) matrix.

The ‘F* is decomposed in F = USV” by using singular
value decomposition where, 5 = diag (s;, 8, 8;) the
component with the smallest weight is removed obtaining
S = diag (s, s, 8,) F is recalculated in the following way
(Hartley and Zisserman, 2004):

s, 0 0O
F-U|0 s, 0T 4
0 0 0

Robust methods

We present three robust methods: RANSAC, TL.MedS and
M-estimator. The first method for its part, calculates for
each value of ‘F’ the number of points that may be
suitable (inliers). The matrix ‘F’ chosen is that which
maximizes this number. Once the aberrant pomts are
eliminated, the matrix ‘F’ 1s recalculated to obtain a better
estimate. The LMeds method calculates for each
estimation of ‘F’ the Euclidean distance between the
points and the epipolar lines and the choice of ‘F’
corresponds to the minimization of this distance.
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Although, M-estimatoris the two
preceding methods 1t consists in dividing the detected
points into two sets, iilers and quasi-inliers. The latter
method is based on solving the following expression:

inspired by

min, » w1’ (3

w, is the weighting function. M-estimator considers the
residual of each point on the epipolar line and affects it for
each outlier. Suppose that the 1; 1s the residual of Where
Pu= (W, i, 15 pr = (uy,v, 1) and:

£, £, L
F=\fy f, fy
LET P
f, £, f;
L=y, v, DIf, £, £ (uri,vri,l)T ©)
£, £ 1

I-1 - flluj.l un’ +f1 2ui1 V1r+f13u11 +f21V11uir+
f22V11V1r +f23V11 +f31u1r+f32vlr+f33

Huber et al. (1981) has proposed the following expression
for w;:

1 rles
W, = W, (p;,pf) = i— s£[r|<3s (7
0 3s <|ri‘

According by Zhang (1998) the robust standard
deviation o can be expressed as o = 1.48 (1+5 median
(1;)/n-q. Where n, the number of points detected by the
method SURF at each image.

And (1+5/n-q) finite sample correction factor with the
total mumber of parameters q = 8 in this case. Experiments
have shown that the technique Limed gives better
result than RANSAC method m terms of accuracy
(Armangue and Salvi, 2003). Lmeds and RANSAC are
considered similar, they consist to select randomly the set
of points used for the approximation of the fundamental
matrix. The difference exist between this two methods in
the way use to determmate the chosen ‘F’. LMeds
calculate the ‘F’ from the distance between the points and
the epipolar lines where it seeks to minimize the median.
RANSAC calculate the matrix ‘F’ from the number of
inliers. However, M-estimator leads to a good result in the

presence of a Gaussian noise at the selected points of the
image, the robustness of this method is manifested in the
reduction of aberrant values.

Multilevel weighting function: In the literature
(Zheng et al., 2011) it exists two conditions to minimize
the Eq. 5, one 18 detailed by Hartley and Zisserman (2004)
and another formula will be used to evaluate Sampson
error it should be noted that this error is calculated using
an accurate matrix ‘F”;

_ (p"Fp) (8)
L (Fp, ¥, HFp)?, +(Fp, ¥ +Fp)),*

n
ESampson = E W
1

where, w; is weighting function. (Ep,), T =1, 2 the square
of the jth entry for the vector (Ep,) according to Ligiang
Wang and referring to the documentation (Hartley, 1997),
we choose to use the weighting function which malkes it
possible to calculate the weight of each point, we clarify
that this function aims to improve the precision of the
fimdamental matrix. The weighting function 1s given in Eq.
9 (Wang and Zhang, 2016):

1 r<¢o
o do<o
=w (p.p = 9
w, wl(pl,pl) Sle) 5<r < g0 (9)
L
0 PoO<T
Where:
b = Factor to ensure the boundary of the

inliers and quasi inliers
_median () = Scale of the error

A
0 = Median (r;) scale of the error 0:
Proportional factor whose scope s
0, 1)
¢ and A = Constants Torr (Torr and Murray, 1997)

This new weighting Fg. 9 shows clearly that the
corresponding weight of points should be updated in four
cases. This function carries more functionality than Torr
method (Torr and Murray, 1997). Which deals with three
sets of dense cloud points, inliers, quasi-inliers and
aberrant values. To summarize, this feature can overcome
the dense descriptor point problem and can contribute to
improving accuracy. Before to calculate the fundamental
matrix, we affected the factor ¢ the value 1, after in the
first iteration, we calculate the factor ¢ which equals the
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ratio of the quantities of the inliers and the integer points
which are judged using the mitial fundamental matrix. In
our case study we found 273 inliers in the set of
correspondences of 450 points when the fundamental
matrix was estimated for the first time. Thus from the
second iteration, the limit factor became ¢ = 273/450. We
apply the Torr method to define the value: ¢ = 3
and A = 0.6745, the values of these parameters can be
referred by Torr and Murray (1997). After having assured
the factors, the residue r; can decide the weighting value
w; of each pomnt in each iterative process. If o ¢, is greater
than o ¢, the corresponding point can be used as inlier
and w, 1s equal to 1. If ; 1s <30 and greater than o, the
corresponding point can be considered as a quasi-inlier
and w, is 0.6. If 1, is <30 and greater than o, the
corresponding point 1s an overrun and the weighting w, 1s
calculated by the expression 0.60/r|. However, if 30 is less
than r; the weighting function corresponding to estimate
the fundamental matrix 1s 0.

Normalizating data and calculates fundamental matrix by
three methods: The normalization of the coordinates of
each point correspondence follows the determination of
the weight of each point correspondence. The formula for
standardizing data consists to use a scaling matrix Ts and
a translating T, (Armangue and Salvi, 2003):

T=T T (10)
Where:
LR
© 10 =
Ts=oci0Tt=01-cy
’ 00 1
0 0 1

with ¢, = BZw, x, and ¢, = Zw, y, are transformation
Noting that the of the
correspondence point are designated as, p, = (x;, v, 1)".
And the standardized point is defined as follows:
Then, the corresponding fundamental matrix FT can be

parameters. coordinate

estimated from the normalized points P,.

After normalization of the points detected by the
SURF method, the fundamental matrix 1s calculated using
the followmng three robust method algorithms: RANSAC,
LMed, M-estimator and proposed method. Finally, the
fimdamental matrix ‘F” has to be restored as the followmng
Eq. 11 (Fig. 3):

F=T" FT (11

RANSAC

,l, L, ViU Vi j=1

Choose a set of seven points

Vo v,
" urLJS .73 uﬂ..‘” L7

Seven points method

b 4 E,

Compute median m,

m=1=J1
h 4

o= 14826 (1+5/n-7)y/m,

o

h 4

_ [ 1 t's 2507
wi=
0 1’ 2(250)

v w

L.‘=),.3W1

JT>nombre sets
J<nombre sets

A 4
| o = 1)

Fig. 3: Flow schemes of RANSAC

The process of the new weighting function is
described in the following algorithm:

Algorithm 1; Multilevel weighting for Estimate

fundamental matrix:
Input: a set of point correspondences {p’, p™;
Output: the fundamental matrix F begin:
Step 1: Nitialise the fundamental matrix F, by using eight point method:
Step 2: Estimate fundamental matrix by multilevel weighting algorithm:
1. Repeat
2. If n= lthen
3.F =F,w=11=1,2, ..
4. Find the mumber of inliers by using the matrix Fy
5. Calculate the boundary factor
6. Else
7. If max (max (F-F”) < error then
8. Break
9. Else
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LMedS
l Ugs V5 Up Vi j = 1

Choose a set of seven points

WL aVanly»Vinp

h 4
Seven points method

Fjl=1I+1

Compute median m,

J>nombre sets J<nombre sets

m,;, = min (m;)

My

h 4

G = 14826 (L+5/n-7)/m

Fig. 4: Scheme of LMed

10.F =F’
11. End if
12. End if
13. Calculate the residual of each point ri Eq. 6
14. Estimate the weight of each comresponding the point w;
Eq. 9
15. Normalise the weighted point and estimating the matrix: F
16. Compute the fundamental matrix Eq. 11
17. Until path retrace
18. Retum the fundamental matrix

After calculating the fundamental matrix “F” by
the methods that have already processed, we take
this matrix and we replace it m Eq. 8 m  order
to calculate the sampson error. Then, we add the
Gaussian noise on the two source images and we
compare the noise influencing by the algorithm (Fig. 4
and 5).

M-estimator proposed by Torr

Uy Vs U, Vi k=1F,;
h 4

Computer, =1 and &

=-»l
v

Compute w, — 1with a weight function

W, =pl

W,, Uf=0

U, =W, U
h 4
(Vk—»1 Dk=» 1) =cig (U'T, Uk=r 1

Dk-1= Ay %

h 4 h
fit F, to rank-2
f-f, <€
v LA>E
F

Fig. 5: Flow schame of M-estimators proposed by Torr
RESULTS AND DISCUSSTON

In this study, experiments were carried out on two
real 1mages Fig. 6 and 7 from two different positions by
the same camera. First, we segment the main image (Fig. 8)
by super-pixel method and search the matching points by
region in the second umage. Second, we apply the SURF
method to detect the point of the characteristics (Fig. 9
and 10). Then, we identify the correspondences between
the scene images, Fig. 11 whose purpose 1s to determine
the fundamental matrix and calculate the projection
SAIPSON error.

Fmally, we calculate the mean, the standard deviation
and the Sampson error are calculated as a function of
Gaussian noise with zero aberrant values and constant
aberrant values 10%. Figure 11-14 the results of the
various simulations.

In this study, we present some experiments results of
our methods. We compare the proposed method with
addition of aberrant values and the noise. We can define
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Fig. 7: Right image origmal of 350x400 pixel

Fig. 11: The points of correspondence

a vector (a, b) which signify that the random noise added
to the correspondence points is a Gaussian distribution N

(0, a). We apply two cases studies in our experiments to

g— test the robustness of our proposed method and the
three other methods. The first case consists to vary the

Gaussiannoise from 0-1 (V=0 V=0,1,= 0, 5and V =1)

Fig. 8: Segmentation using super-pixel left image and to fix the aberrant value as 0%. The second case
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consists to use an aberrant value of 10% and vary the
Gaussian nose from 0-1. Figure 12-15 show all cases
studies of our simulation.
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CONCLUSION

In this study,
method based on the modification of weighting function
of M-estimator in order to estimate the fundamental matrix
and to calculate the projection error. Then, we compare
the proposed method with the methods that already
exist in the literature as RANSAC, LMed and traditicnal
M-estimator method. Our method is based on the
segmentation and the distribution of the pairs of the point
detected by the SURF method in different sets which are
mnlier, quasi-inlier and outlier.

We have two added values in this research, first,
delete the descriptors of low contrast and bad
correspondence correlated to the epipolar line. Second,
mcorporate a welghting function to organize the aberrant
values allows to increase the accuracy of the fundamental
matrix and consequently to improve the calculation of the
projection error.

The experimental results on the whole of the
simulation data applied to the real images show that our
proposed method gives a better performance for the
estimation of the fundamental matrix and the caleulation
of the projection error compared to the other methods.

we have presented a robust
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