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Abstract: The significance of Relative Cooling Power (RCP) of manganite-based magnetic refrigerant in
Magnetic Refrigeration (MR) technology cannot be over-emphasized. Although, MR system overcomes the
setbacks of conventional gas compression technology with its better performance, low cost and little or no
environmental hazard. However, experimental determination of the refrigerant RCP is subjected to procedures
and routines that are not only challenging but also consume appreciable time and other valuable resources.
This necessitates for a simple and cost effective modeling technique that preserves the experimental precision
and accuracy. Therefore, this research develops Sensitivity-Based Linear Leaming Method (SBLLM) of traiming
two-layer feedforward neural network for estimating RCP of manganite-based materials using ionic radii and
dopants concentration as inputs to the model. The number of epoch and hidden neurons of the network are
optimized using Gravitational Search Algorithm (GSA). The results of the developed GSA-SBLLM Model agree
well with the experimentally measured values. The strength and robustness of the developed GSA-SBLLM
Model melude its ability to mcorporate up to four different dopants and their respective concentrations to
manganite material for magnetic refrigerant RCP estumation. This ability coupled with the precision of its
estimates 1s of significant impact in magnetic refrigeration enhancement without experimental challenges.

Key words: Manganite-based materials, relative cooling power, sensitivity-based linear learning method, ionic
radii, gravitational search algorithm, magnetic refrigeration

INTRODUCTION

The potentials of Magnetic Refrigeration (MR) as
emerging cooling technology in energy consumption and
preventing climate catastrophes around the globe carmnot
be overemphasized (Bruck, 2005, Gschneidner et al,
2005). Besides being an efficient cooling technology, its
low cost and low noise operational features significantly
contribute to its preference over the conventional gas
compression cooling system and make it a better choice

in cooling industry as well as other industries where
refrigeration 15 paramount. Magnetocaloric effect of
manganite-based refrigerant which arises from isothermal
change in entropy or adiabatic change in temperature due
to extemally applied magnetic field 1s the mam factor
responsible for the cooling effect of MR technology
(Messaoui et al., 2017; Taran et al., 2015; Bettaibi et o,
2015; Selmi et al., 2015; Gdailem et al., 2016, Owolabi et ai ,
2016). Magnetocaloric effect occurs due to the presence
of phonon and magnon excitations which are coupled by
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spin-lattice interactions as two energy reservoirs in the
magnetic refrigerant (Szymezak et al., 2010). One of the
significant properties of magnetic refrigerant that
determines its swtability and usefulness for magnetic
refrigeration is the Relative Cooling Power (RCP)
(Zhang et al., 2011). RCP measures the amount or quantity
of heat transferred between hot sinks and cold region in
one ideal thermodynamic refrigeration cycle. Dependence
of RCP of magnetic refrigerant and other magnetic
properties on the structure of manganite-based material
presents the opportunity of tuning the value of RCP to
desired level through doping mechanism (Selmi et al,
2015a-c; Skii et al, 2014). However, experimental
processes in the RCP tuning
appreciable time and other valuable resources. This

involved consume
present research develops two-layer feedforward neural
network model which is trained using Sensitivity-Based
Linear Learning Method (SBLLM) to enhance learning
speed and promote global convergence. The number of
epoch and hidden neurons of the model was optimized
using novel Gravitational Search Algorithm (GSA). The
strengths and capacity of the developed GSA-SBLLM
Model include ability to incorporate up to four different
dopants into parent manganite-based material and
estimates the value of its RCP at various concentration of
the dopants, ability to estimate doping effect of a dopant
on RCP of manganite-based material and ability to give
quick and accurate estimation of RCP of manganite based
materials.

Sensitivity-Based Linear L.earning Method (SBLLM)
15 a techmique of traming two-layer feedforward neural
network which gives characteristic fast learmng speed to
the network (Castillo ez al., 2006). Tt implements linear
training algorithm for each of the layers mvolved in the
network. The basic operational principle of SBLLM is that
it randomly assigns output to the first layer of the network
and subsequently updates the outputs based on
sensitivity formula until convergence is attained. This
technique of traming a network has the following merits,
it saves computational time because it obtains local
sensitivity of the least square errors with respect to the
descriptors and target without extra computational cost,
1t has high leaming speed and non-convergence to local
minimum (Owolabi and Gondal, 2015; Olatunji et @f., 2011,
2014). For the purpose of ensuring a Robust Model and
improving the performance of the proposed method, the
number of epoch and ludden neurons of SBLLM-based
network were optimized using Gravitational Search
Algorithm (GSA). GSA is a novel population based
optimization algorithm that explores and exploits a search
space purposely to converge at global mimmum using
Newtonian principle of gravity (Rashedi et al., 2009).

The Root Mean Square FError (RMSE), Mean
Absolute Error (MAE) and Coefticient of Correlation (CC)
which characterize the estimation accuracy of the
proposed GSA-SBLLM Model for generalization to
unseen data show that the developed model is precise
and has excellent predictive capability. The obtained
RMSE, MAE and CC for testing set of data are 29.69, 28.75
and 95.76%, respectively. The developed GSA-SBLLM
Model was further utilized for estimating the RCP of
various manganite-based materials and the obtained
values agree well with the experimental results.

MATERIALS AND METHODS

Description of the proposed models: The study presents
the mathematical description of the propesed leaming
method. The description of the method used for ensuring
optimum performance of the proposed model is also
presented.

Mathematical formulation of sensitivity based linear
learning method of training neural network: Consider a
one-layer network that can be described by inputs-output
relation presented in Eq. 1:

L
v, =fx Y w,x,, i =L, d=1]|D] (1)
1=0

Where:

I = The set of Inputs

I = The set of outputs

d = The set of data points

|.| = The number of elements in a set

Therefore, it is satisfied that x,, = 1 and w; represents
the ith weighting coefficient for the jth neuron. Moareover,
for the one-layer newral network, the sensitivities of the
cost function Q (Castillo et al., 2006) with respect to the
output and mput data can be obtained as:

2(&1 (ym)_ llllzuwpixiq)
o (V)

(2)

aQ
B, S 9P, q
aypq

oQ .
E = _22L1L1(f11(ym)_2|11|=nwn qu)WJp,Vp, q )

These sensitivity formulas are used for updating the
initial output assigned to the first layer output and
updated until convergence i1s aclieved in two layer
network. Considering a two-layer network as a composite
of separate layers i which |K| represents the number of
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hidden units and |D| denotes the number of data elements
where, x, = 1, 25, = 1, for each data sample deD, the cost
function for both layers is presented in Eq. 4 and further
sunplified m Eq. 5 for a known intermediate output layer z:

Q(z)=Q"(z)+Q"(z) @)

K (ol :
Q(Z):EM( B ) 5

Weat!” (5]

where the superscripts 1 and 2 are referring to the first and
the second layer, respectively. Equation 6 and 7 show the
sensitivity values with respect to the intermediate output
7,4 for two-layer network in accordance to Eq. 2 and 3 as
described by Owolabi ef al. (2017):

) {2
R _ Q7,07 6)
dzy Oz Oy

oA S )

oz, £(z,) -
E‘Jl ( (de) 2 Jr rd)
fork=1..,|Kland z,, =

fork =1 and |[K|. Fmally, the mtermediate output values z
are approximated via. the Taylor series expansion as
illustrated in Eq. &:

d
Q(z+az) = Q(2)+ T TH. ;3 ®)
Where:
az=-p 2 v
vl
p 1s relaxation factor.
Description of gravitational search algorithm:

Gravitational Search Algorithm (GSA) represents a
heunstic optimization algorithm which is based on the law
of motion and the Newton’s law of gravity (Rashedi ef al.,
2009). Exploitation step of the GSA is ensured by the
slow movement of heavy objects which leads to good
solutions. Four parameters which characterize every agent
i GSA algorithm includes position, mertial mass, active
gravitational mass and passive gravitational mass. The

solution of the problem is given by the position of the
mass while a fitness function is used to determine the
gravitational and mertial masses (Owolabi et af., 2016;
Goswami and Chakraborty, 2015; N et al., 2015; Ju and
Hong, 2013; Rezaei and Nezamabadi-pour, 2015;
Shuaib et al, 2015, Beigvand et al, 2016). In each
iteration, the gravitational and mertia masses are adjusted
where each mass determines a single solution. Since, all
masses are attracted by masses which are heavier, the
heaviest mass represents an optimum solution.

In GSA description, the positions of N agents are
randomly mitialized and are represented by pomts in
s-dimensional space as illustrated by Eq. &:

X =(x,..x). =1, N (9)

where x; is the coordinate of the ith agent in the
s-dimension. Then, the evolution of fitness is performed
by computing the worst and the best fitness for each
agent as well as the inertial Mass M, using Eq. 10-13

coupled with fitness function:

b(it) = min,_ fit, (it) (10)

w(it) = max_— fit, (it} (11)

fit, (it)-w(it)

biit }-wi{it) 42

m(it) =

_ myit) 13)

where, the fitness values are given by fit(it), for each
i=L,N  and b(it) represents the best fitness value at
iteration it while w(it) 1s the worst fitness value, since, the
problem addressed here is a minimization problem.

Suppose E(it) denotes the force influencing the ith
agent due to jth agent at dimension s and ith iteration
while E;(it) represents the Euclidian distance between
agents i and j, then the total Force E(it) influencing the
ith agent is computed using Eq. 14 coupled with Eq. 15
and 16 given that G and o are predefined constants and
T 1s the Total number of iterations:

Es(t) = Zjekbest,]éi ES](t) (1 4)

E(it) = G(it)[WJ(xj (it (it))  (15)

By
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G(it) Gnexp(—a:;it] (16)

where, K,., is the set of agents with best fitness values
and biggest mass (the size of the set K., decreases by
one in each iteration and at the end there will be only one
agent) and € is a predefined constant.

Using the assumption contamed in Eq. 17 where M,
M ;.. M, represent the active gravitational Mass, passive
gravitational Mass and mertia Mass, respectively the
acceleration of the agent 1 1s computed using Eq. 18:

M, =M, =M,i=1N (17
a (it) = ; ((iitt)) (18)

The velocities and positions of the agents at the
iteration t+1 are evaluated and updated using Eq. 19 and
20

v’ (it+1) = rand, (xvf (it)+a (it)) (19)
X (it+l) = x; (it)+v) (it+1) (20)

The procedures are repeated until the specified
maximuin iteration is reached.

Development of GSA-SBLLM Model: The description
of the dataset used for developing the proposed
GSA-SBLLM Model is presented mn this study. The
computational methodology adopted while developmng
GSA-SBLLM Model is also detailed in this study.

Dataset description: The dataset used for developing
the proposed GSA-SBLLM Model consists of fifty
experimental values of relative cooling power coupled
with the 1onic radu as well as the concentration of
each element present in desired manganite based
materials. The experimental values of RCP for model
validation are obtained from the literature (Selmi et al.,
2015a-c, Cherif et ai., 2014, Mleiki et al., 2015, Kossi et al.,
2015; Oumezzine et al, 2014, Mahjoub ef af, 2014,

Table 1: Results of the statistical analysis

Ghodhbane et al, 2014; Wang and Tiang, 2013). For
manganite based material with general chemical formula
givenin Eq. 21 where R and A, respectively represent rare
earth cation, alkali metal or alkaline earth cation while C
and D can be any other periodic metals such as transition
metals among others, the 1omic radii of cations in Eq. 21
and ther respective concentrations serve as the
inputs to the proposed GSA-SBLLM Model. The
proposed GSA-SBLLM Model can incorporate up to four
dopants to manganite so as to widen the applicability of
the model while zero value is assigned to the ionic radius
or concentration of a cation that does not present in
manganite based material of interest:

R,__A.C Mn DO, (21)

Ly Y2y 127"z

The descriptors to the proposed model and
experimental RCP are contamed in Table 1. The table also
shows the outcomes of the statistical analysis performed
on the dataset. Among the useful mformation that can be
obtained from mean, range and standard deviation of the
dataset as illustrated in the table 1s the consistency of the
data-points and a measure of how they are far apart.
Correlations between each descriptor and the target are
also presented. The correlation measures the extent of
linear relationship that exists between a descriptor and
target and ranges from 0-1 with O showing absence of
linear relationship while 1 indicates perfect linear
relationship. The results presented in Table 1 are in
percentage where some descriptors are positively
correlated with the RCP wlile others are negatively
correlated. The choice of the proposed model in this work
is to effectively capture the non-linear relationship
between the descriptors and the target, since, they are
weakly connected in terms of linear relationship and linear
modeling technique would perform poorly in this regards.

Computational description of GSA-SBLLM Model: The
following computational procedures and steps were
adopted while developing GSA-SBLLM hybrid intelligent
model for estimating RCP of manganite.

Step 1: Dataset randomization and partitioning: the fifty
data-points available for simulation were randomized and

Variables R Con.R A Con.A C Con.C D Con.D RCP

Mean (J/K) 115.35 0.6754 119.74 0.24 37.02 0.08 38.04 0.04 157.09
Maximum (J/K) 117.20 0.9500 149.00 0.40 149.00 0.45 100.00 0.30 405.72
Minirmum (J/K) 109.80 0.1500 113.00 0.01 0.00 0.00 0.00 0.00 Q72
Standard deviation (J/K) 002.52 0.1400 9.60 0.09 60.24 0.15 45.27 0.06 118.01
Correlation coefficient (%) -65.49 -29.4400 -36.87 5.25 33.82 26.88 48.40 25.21
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separated into training and testing portions in the ratio of
80-20, respectively. This step 1s necessary for ensuring
even distribution of data-points and efficient as well as
reproducible computations. The partitioned data-points
were used for the rest of the modeling task.

Step 2: Tnitialization of GSA agents. The positions
X=(x,..%] of N agents are mitialized Fach agent
encodes the number of epoch and hidden neuron for
training two-layer network using SBLLM.

Step 3: The descriptors in the traimng dataset (1onic radii
and the corresponding concentrations) were fed mto
two-layer feedforward neural network with randomly
assigned intermediate RCP values. The intermediate
outputs (RCP) are updated using sensitivities formulas
coupled with experimental values of RCP in the training
dataset until convergence 1s achieved for each of the
initialized agents, thereby the weights in each of the layer
are learnt and the fitness (root mean square error between
the estimated and experimental RCP) of each of the agent
are computed.

Step 4: Inertial mass of the agents are calculated based on
the fitness and the gravitational pull (Ff(t):z-ﬁm. mp;;(t))
on each of the agents are also evaluated. '

Step 5: The position and velocity of the agents are
updated. The procedures (Step 3 and 4) are repeated until
maximum iteration is reached.

Step 6: The optimum position of the most sluggish
(this encodes the number of epoch and hidden neurons)
agent, learnt weights and the descriptors in the testing
dataset are used m estunating RCP and the obtained
values are compared with the experimental values.

RESULTS AND DISCUSSION

This study presents the results of the developed
GSA-SBLLM Model. The comparison between the results
of the developed model and the experimentally measured
RCP is also presented. The influence of several dopants
on many classes of manganite i1s investigated and
presented in this study.

Influence of optimum GSA parameters on the
performance of GSA-SBLLM Model: Parameters that
influence the performance of GSA include the initial
population of agents and gravitational constant while the
optimum gravitational constant can be controlled by
adjusting the imtial value of gravitational constant and
the parameter alpha that controls the rate of gravitational

No. of agent = 10
----- No. of agent =20
29.904 - = = No. of agent = 50
AN e No. of agent = 70
O \ Alpha =20, G, =100
208541 1 d -
7 !
~ B
£ 2980 - e
= |
wn
= 29.754 !
~ L e
1
29.70 - e
29.65 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Iteration

Fig. 1: Dependence of model performance on the initial
population of the agents

- —G,= 10
29.854 ) -——-G,=100
| R G, = 1000
29.80 S
2 | !
gzws— 1
z '1
e I
29.70 \
29.65 T T T T T T T T T 1
0 10 20 30 40 S50 60 70 80 90 100
Tteration
Fig. 2: Performance sensitivity of the model to

gravitational pull

decay. The exploration capacity of the algorithm becomes
lower for small mitial population of the agents while
complexity and mnadequate exploitation occur m case of
large number of agents assessing the global solution.
Similarly, agents experience strong gravitational pull
which affect both exploration and exploitation ability ata
large value of mitial gravitational constant while the weak
gravitational pull also affect the performance of the
algorithm. Figure 1 shows the influence of mitial
population of agents on the model performance. For 10
and 20 number of agents, weaker exploration was
observed and optimum exploration was obtained at 50
numbers of agents. When the number of agents exceeds
this threshold, inadequate exploitation set in and the
model was trapped in local mimmum. Similarly, the effect
of gravitational pull on the performance of GSA-SBLLM
1s shown in Fig. 2. Above the mitial value of 100,
GSA-SBLLM converged at local minimum. The
optimum values of GSA-SBLLM Model are presented in
Table 2.
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Table 2: Optimum GSA-SBLLM parameters

Table 3: Measures of estimation accuracy of GSA-SBLLM Maodel

Model parameters Optimum values

Performance measure parameter Training dataset Testing dataset

Number of epoch 4468
Hidden neuron 67
Initial population of agents 50
Tnitial value of gravitational constant 100
Alpha 20
Maximum iteration 100
3004
) o
g .
2
= 200+
O
~
=
2
g 100 o o L]
Z .
.
O -
T T T T T T 1
0 50 100 150 200 250 300 350

Experimental RCP (J/K)

Fig. 3: Correlation cross-plot between estimated and
experimentally measured RCP (cc = 95.76%)

Measures of generalization and prediction ability of the
developed GSA-SBLLM Model: The estimation accuracy
of the developed GSA-SBLLM Model was evaluated
using Correlation Coefficient (CC), Root Mean Scquare
Error (RMSE) and Mean Absolute Error (MAE) for both
traiming and testing set of data. The correlation cross-plot
between the estimated RCP and measured values for
testing dataset is presented in Fig. 3.

High degree of correlation was obtained between
RCP estimated using GSA-SBLLM Model and the
experimentally measured values. This translates to
excellent prediction ability of the proposed model. The
values of RMSE and MAE for both traimng and testing
dataset are also presented in Table 3. The model shows
higher improvement as measured through lower RMSE,
lower MAE and higher CC during testing stage. This
shows the excellent predictive strength of the developed
GSA-SBLLM Model. Hence, the model can be used for
determining RCP of various kinds of manganite-based
materials for magnetic refrigeration performance
enthancement.

Doping effect of Praseodymium (Pr) on RCP of
Smg . PrSr MnQO, manganite: Tn order to further
assess the robustness of the developed GSA-SBLLM
Model it 1s deployed for mvestigating the influence of
Praseodymium (Pr) doping on RCP of Smy ,.PrySr s MnO,
manganite and the results of the model are illustrated in
Fig. 4. In tlus mvestigation, only the descriptors were

Correlation coefficient (%0) 84.06 95.76
Root mean square error (JK) 64.31 29.69
Mean absolute error (J/K) 39.65 2875
400 7 ® Experimental RCP
Vv Estimated RCP
300 +
<
g : :
S 200~
Q
o~
100 4
0 T T T
0.2 0.3 0.4

Concentration of Pr(x)

Fig. 4: Effact of Pr-doping on RCP of Sim, ,,Pr>Sr; ,,MnO;

supplied mto the model and the model estimates RCP
of the material using its acquired pattern during the
training phase. Pr-doping slightly raises RCP of
S, 3P Sry 4 MnO; material as shown in Fig. 4. Figure 4
also shows excellent agreement between measured and
estimated values of RCP. Increase in RCP value due to Pr'”
ion substitution for Sm™ can be attributed to MnO,
octahedra distortion created by Pr'* ions as a result of its
higher ionic radius as compared to Sm® ions. This
inereases Mn-O-Mn interaction and widens bandwidth
that promotes parallel alignment of Mn®/Mn" spins to
magnetic field.

Doping effect of Titanium (Ti) on RCP of
LagSry,Nag-Mn, TizO, manganite: The effect of
Titarmum (T1) doping on RCP of La, -3, ,,Na, o;Mn, , Ti,0,
manganite-based material was also investigated and
presented in Fig. 5. The outcomes of the simulation show
that titanium lowers the RCP values of La, ;S ,;Na, ;;Mn,
. LixO; as shown in the Fig. 5. Results of GSA-SBLLM
Model also agree well with the experimentally measured
values (Kossi ef al, 2015). This shows excellent
estimation and generalization capacity of the developed
model. Reduction in the value of RCP due to titanium
substitution can be attributed to the reduction m the
maximum entropy change which is consequent upon
non-magnetic nature of the dopant (Nisha e al,
2013; Phan et al, 2005, 2010). Titamum enhances
super-exchange interaction (Mn'*-0*-Mn'") and lowers
Mn'"* content (which consequently decrease the double
exchange ferromagnetic interactions) as a results of
change in Mn"/Mn'" ratio as well as reduction in the
number of hopping sites (Koubaa et al., 2011).
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Fig. 5: Effect of Ti-doping on RCP of Lay,-Na oMn, Ti,0,
manganite based material
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Doping effect of Strontium (Sr) on RCP of Pry,
Ca, Sr;Mny,, Fe, .0, manganite: After establishing
the excellent estimation and generalization capacity of
GSA-SBLLM Model through validation of its estimates
with the experimentally measured RCP, the developed
GSA-SBLLM was employed for determining the effect of
strontium doping on RCP of Pr, Ca, Sr-Mn . Fe (0 ;
manganite and the results of the siumulation 1s
presented in Fig. 6. The results show that incorporation of

strontium dopants into crystal structure of PryCa .

St My o0 Fep 17:04 lowers its RCP values. The value of
RCP decreases as the concentration of strontium
increases as presented in Fig. 6. This is expected since the
substituted Sr'* ions are of larger ionic radius as compared
to Ca” and consequently creates MnO, cctahedra
distortion.

Doping effect of alkali metals on RCP of
Lay Sry,sXo0Mng Tip;O0; manganite: Influence of
alkali metals substitution on RCP value of La, St ;X 1

500 1

4501

4001

350

RCP (J/K)

300

250

200 T T T T T
Alkali metals

Fig. 7: Effect of alkali metal doping on RCP of Lay; Sty
Kpos Mny, T1y, O; Manganite based material

Mng,Tiy, 25 material using the developed GSA-SBLLM
Model 15 presented mn Fig. 7. The results of modeling and
simulation show that the RCP of the material increases as
the number of ionic radii of the metal increases with
Lithium (L1) having lower RCP while Cesium (Cs) gives
highest RCP value.

CONCLUSION

GSA-SBLLM Model was developed for determining
RCP of doped manganite using iomic radi and the
concentration of the dopants as the descriptors. The
influence of the initial population of agents as well as the
gravitational pull on predictive capacity of the model was
simulated and discussed. The generalization strength of
the proposed GSA-SBLLM Model was assessed using
correlation ceoefficient, mean absolute error and root mean
square error between the model estimates and the
measured values. Low value of root mean square error and
high value of correlation coefficient characterize the
developed GSA-SBLLM Model. The developed model
was implemented in estimating the; doping effect of
praseodymium on Sy 5 Pre 314, MnO; , effect of titamum
on RCP of La, St ;;Nag o Mn, [ T1,0; effect of strontium
on RCP of Pr,,Ca .SryMny,.:.Fe, 0, and influence of
alkali metals on RCP of Lag-Sr,-X Mn L1 0
mangamte-based materials and the estimated RCP values
show excellent agreement with the measured values. With
the aid of the developed model, the RCP of mangamte-
based materials can be easily determmed for enhanced
magnetic system of refrigeration.
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