Tournal of Engineering and Applied Sciences 13 (6): 1567-1574, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Forged Android Mobile Apps. Detection System with Server-Side
Signature Verification Method

Jaekyu Lee and Hyung-Woo Lee
Division of Computer Engineering, Hanshin University, 137 Yangsan-dong, Osan,
Gyeong-gi, Republic of Korea

Abstract: Android Apps. developed in Java language 1s vulnerable to repackaging attacks as it 13 easy to
decompile an App. Therefore, obfuscation techniques can be used to make 1t difficult to analyzing the source
of Android Apps. However, repackaging attacks are fundamentally impossible to block. Especially, it has been
confirmed that most Android-based smart phones do not support verification process for the forged
applications. Android 15 compiled into a class from a Java source and then compressed and stored as a Dex file
torun in the Dalvik virtual machine. Then package the Dex file with xml+resource and distribute it as APK file,
Therefore, if you add a module that maliciously acts after decompiling a Java class file in a normal APK file, you
can create a Counterfeit App. In this study, we propose a process to repackage malicious Forged Apps. from
normal APK files and propose a method to detect Forged Apps. Accordingly, the user mstalls and uses a Fake
App. that appears to be functioning normally. In this case, the user 1s easily exposed to attacks such as leakage
of personal information. Therefore, in this study, we have constructed Mobile Apps. identification system that
applies the signature self-verification server monitoring method for Android Apps. and proposed a method of

Judging Android mobile Forgery Apps. by performing the verification process.

Key words: Android, mobile Forged Apps., repackaging, signature self-verification, detection, process

INTRODUCTION

Recently, as the number of smartphone users
increases rapidly, the need for security enhancement
techniques is increasing. Mobile Apps. based on the
Android platform are bemng developed m the Java
language and Malicious and Counterfeit Apps. are
mcreasing due to the de-compilation weakness. Based on
these vulnerabilities, anyone can create a Fake App. by
adding sowrce code that performs malicious actions.
Therefore, there 1s a problem that the Forged mobile App.
is easily distributed and installed through open market
such that the malicious code with high security risk is
hidden inside the Android application.

Recently found Forged mobile Apps. use a more
advanced attack mechanism than traditional attacks, so,
it can gain malicious privileges on Android devices, steal
Google authentication tokens and gamn access to Gmail,
Google Play and other key services. In addition, once the
Gooligan (Anonymous, 2018j) Malicious App. is installed,
malicious code hidden inside the App. is activated based
on modified Fakelnst (Anonymous, 20181), Vdloader
(Anonymous, 2018m) and Trojan horses cooperated with
C&C server. Therefore, privacy data and financial

information in the mobile device are leaked to the
outside attacker (Lee and Lee, 2015a, b; Ham and Lee,
2014).

Therefore, we analyzed the internal structure and
operation mechanism of Forged mobile Apps. and
provides a function to detect those counterfeit Mobile
App. As a solution, we overviewed the signature
generation and verification process of the application
installation and developed a module that can be applied
in real time for the detecton of Fake Apps. Usmng
proposed mechamism, it 18 expected to provide reliable
information protection service and secure mobile usage
environment in Android environment.

Android APK file structure: Android App. 1s written in
Tava. Java source is compiled as class files (class),
converted into Dalvik Executable using “Dx tool”. Android
App. source executes on Dalvik Virtual Machie (DVM),
a register based virtual machine for embedded devices,
un-like Java Virtual Machine (JTVM), a stack based virtual
machine. Executable code of the App. is inside Dalvik
executable (Dex) file. Androidmamfest.xml has important
information like package name, permissions, activities,
services, receivers and content providers. Tcons,

Corresponding Author: Hyung-Woo Lee, Division of Computer Engineering, Hanshin University,
137 Yangsan-dong, Osan, Gyeong-gi, Republic of Korea
1567

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

I'. ! Extract

Android_APK .apk.zip

S

Android_APK .apk

Fig. 1: APK file structure

shortcuts, images, string constants, dimension constants,
etc. which are made available through resources. Classes.
Dex file contains executable code. META INF folder has
developer certificate information. This content is compiled
into a single package Android PacKage (APK). Once the
App. 18 developed, developer self-signs 1t with his/her
own private key and publishes it on official or 3rd party
Android market (Enck et al., 2009; Zaidi et al., 2016).

In order to avoid source code theft or repackaging
Android studio (Anonymous, 2018¢) basically provides
an obfuscation tool. Changing the variable name or class
name to a meaningless name changes the program logic,
making it difficult for the attacker to analyze and interpret
the source code. However, there is a problem that
repackaging can’t be completely prevented. Instead of
getting the complete original source code it does not
prevent you from creating a Forgery App. by adding
sources to your existing operating logic and repackaging
it again. In the end, like the normal App., the basic
behavior can provide similar malicious behavior while
providing similar behavior. Test results showed that most
Apps. were easy to create Malicious Apps. and only a
few Apps. included the ability to verify and block Forged
Apps. themselves. But this 1s not entirely impossible to
create a Forgery App. Some Apps. can be judged to be
safe because they perform the verification process on
their own but if they mclude dependencies on other
Apps. 1if the App. 15 vulnerable to forgery attacks, the
problem arises that a Counterfeit App. can be created.
Most malicious applications run malware as soon as they
run. Even if the execution of the malicious application is
terminated it is likely that the malicious code has already
been mstalled (Fig. 1).

MATERITALS AND MEHTODS
Repackaging for Forged mobile Apps.

Mobile Apps. production method: The process of creating
Counterfeit Apps. on mobile terminals can be divided mto

APK
Android_APK r AndroidMenifest.xml ‘
META-INF (Package name, version,
_' res permissions, components, ... ,)
drawable-hdpi-v4
drawable-mdpi-v4 assets/ META-INF/
drawable-xhdpi-v4 (assatsfile) (signatures)
drawable-xxhdpi-v4
layout
. classes. dex
menti lib/ (libs) (bytecode)
META-INF
res droidMani | r resources.arsc
=} AndroidManifest.xm (resourcesfile) (compiled
classes. dex resources)
resources. arsc L

Native App., Mobile Web App. and hybrid web. Native
Apps. are a way for users to download binary executables
directly to their mobile devices and store and install them
on the terminal. To create a Native App., the developer
creates the source code, creates resources such as umage
and audio, compiles 1t using the SDK for the mobile OS
and creates a binary executable file. Therefore, there 1s a
disadvantage that the native application production
methods are different from each other according to the
mobile OS and the development period and cost are
relatively high. But for Native App. creation, it 1s the most
commonly used method for most Counterfeit App.
development because it has the advantage of using
both low-level API and high-level API provided by mobile
OS.

The mobile web App. production method 1s to
develop a mobile web service based on HTMLS5 using a
rendering engine called WebKit (Anonymous, 2018a)
which 1s mcluded m the browser of the mobile terminal.
Because it is developed as a standard web language
compatible with WebKit it supports multi-platform by
default. However, as described above, unlke the Native
Apps. that run independently with the mobile OS, the
mobile web App. runs only within the mobile web browser
installed in the terminal, so, the scope and function of the
APT that the mobile web App. can access there is a limit.
That is, the Native App. has access to the APT provided
by the user’s mobile device but in the case of the mobile
web App., there i1s a restriction that the Native App.
operates in a limited manner within the browser.

The hybrid production approach mixes Native App.
development with mobile web App. development. The
web part is a way to reside on the server and integrated
into the application code and stored in the local device.
Because 1t uses HTML code hosted on the server, you
can update your App. regardless of the approval
distribution, security regulations, etc., defined in the App.
Store. However, this method has a disadvantage in that

1568

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

when the local device 18 not connected to the network, the
web contents can’t be connected to a specific server and
thus can’t be used.

Production of mobile Forged Apps.: Most malware
developers or malicious attackers analyze the behavior of
the target App. Generally, a Fake App. production target
sets an App. that operates in a Native App. mode or a
hybrid mode. When a hybrid application is created for a
Fake App. it has the advantage of bemg able to use
various functions provided by a mobile device through a
native method while sharing and spreading it on a
multi-platform through a web interface. In addition, the
server hosting method makes it easier to distribute Fake
Apps. containing malicious code to mobile terminals. If a
Fake App. 1s produced through the Native App. method,
since both the low-level API and the high-level API
provided by the user terminal can be used, malicious code
such as obtaining information in the user terminal and
leaking 1t to the outside is inserted. Therefore, it 13 a
widely used method for making Counterfeit Apps.
(Faruki et al., 2015, Rahman et al., 2016; Verma et al.,
2016).

In this study, we made Fake Apps. in a native way.
We implemented a spyware function that includes the
same interface and functions as the existing normal App.
but also extracts important information stored in the
terminal without knowing it. In addition, a function to
operate in the background was added to transmit the
mobile terminal user information to a specific C&C server
specified by the attacker and developed a function of
secretly transmitting the information to the SMS number
designated by the attacker.

Mobile Forged Apps. production process: Tools such as
Signapk jar (Anonymous, 2018k), Apktool (Anonymous,
2018b), dexZjar (Anonymous, 2016) and JTD-GUI
(Anonymous, 2018e) were used to build mobile Forged
Apps. Signapk.jar was used to generate the signature for
the APK file based on the “.pem” certificate. We then used
Apktool to decompile and repackage the APK file. We
extracted the AndroidMamfestxml and smail folder
through the decompile process and made a Fake App. by
modifymg/modifying it. Dex2jar 1s used to analyze APK
file. Tt extracts Dex file from APK file to be analyzed and
converts 1t nto jar format to extract original Java source
code. We also used TD-GUT to analyze the jar format file.
Specifically, the process of creating a mobile Counterfeit
App. is as follows.

Mobile Forged App. creation procedure:
* Create a Malicious App. that redirects to a specific
number when receiving an SMS message

+ Use APKtool to disassemble the App. created in #1
to extract the files that perform core functions

¢+ Select a normal App. to be used for creating
Counterfeit Apps. and download them as an APK file

* Repackage the file by combining the extracted files
from #2 in the normal App. APK file

¢ Perform the signature process for the created
Counterfeit App. distribute it and perform the test
process

Create Malicious Apps. that redirect SMS messages to
a specific number: In the first step of the Forged App.
production process shown above, we created an App.
that uses the receiver function to transfer characters to
another number when the user receives the text. A
recelver 18 an Android compenent that receives status
from a terminal while continuously checking for events.
Usually you use a broadcast receiver to share data
between applications. To read and transfer characters on
Android, you need to include the necessary permissions
in AndoirdManifest. xml. Therefore, we added the
necessary authorization and the code to activate the
receiver as shown in Fig. 2. When the next message is
recelved, the on receive method 1s activated to redefine
the Android receiver to read the message and send it back
to a specific number.

Repackage the Malicious App’s. core code into a Fake
App.: We use APKtool to perform the decompile process
for Malicious Apps. that provide the SMS text
transmission function. As a result, the smail folder is
created and the My Broadcast Receiver.smail file is
copied. Now, we will use APKtool again to disassemble
the normal App. and modify the AndroidManifest.xml file
to add permissions and activate the receiver. The
modification process 1s the same as the previous
Malicious App. creation process. Then, insert the my
broadcast receiver smail file extracted from the malicious
application into the smail folder and then perform the
repackaging process using APKtool. Finally, if we perform
the signing process to distribute the APK, the creation of
the Forged App. is completed. After completing the
fabrication of the Forged App. if you check the internal
structure of the App. Forged with JTD-GUI, you can see
that the source code for malicious action is added to the
normal App. as shown in Fig. 3.

Detection of Forged Mobile Apps.

Mobile Forged Apps. detection and verification process:
Android 1s similar to signing a jar file. In the META-INF
folder, there are three files: MANIFEST . MF, CERT.SF and
CERT RSA. Because APK i1s a kind of compressed file, it
generates a sighature by extracting the hash value of all

1569

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

(uses-permission android:name="android permission.AEAD_SMS'/>
{uses-permission android:name="android permission.NTERNE T*/>
Cuses-permission android:name="android.permission.AECEIVE_SM3"
(uses-permission android:name="android permission. SEND _SMS"/

v/

Wi

(uses-permission android:name="android permission. READ_PHONE_STATE'/>
{receiver android:name="MyBroadcasiReceiver)

(intent-filter

(action android:name="android provider. Telephony.SMS_RECEIVED"/>
{fintent-filter
{/recelver)

public void onReceive(Context context, Intent intent) {

Bundle bundle = intent.getExtras();
String str = °°
if (bundle != null} { //receiver start
Object [] pdus = (Object[Dbundle.get("pdus™):
SmsMessage [] msas
= new SmsMessage[pdus length]:
for (int i = 0 i < msgs.length: i++) {
msasli] = SmsMessage
.createFromPau{(bvie(]) pdus(il)
str += msas[i].getOriginatingAddressO
+ “spyware " +
msas [i] getMessageBodv() toString()
+ W

/fmsg call

}
smsMsgSent("010oocoos”™, str): //send message

Fig. 2: Addition of activation code after setting Android permissions and its receivers

+H-# android. support
-8 bolts
=1 8 com
H & adcolony
H & android. vending.biling
I

:- rovio
unity3d.ads

vungle

javax.inject

f
1
t
+
+
-8 dagaer
-8
net.hockevapp. android

spyware from 010 (N to
010 N : hello~

Fig. 3: Fake App. production result with malicious receiver code and its operation test

the files inside the App. Therefore, it is possible to check

whether the internal file of the App. 1s forged or not
through the generated hash value. The generated hash
value is digitally signed with the private key and
distributed with the public key, so that anyone can check
the mtegrity of the App., thereby preventing it from being
updated with the Forgery App. Verification is done during
mstallation and the Android OS generates the hash value
again and compares it with the existing signed file.
Therefore, the Android platform provides a function to
prevent normal Apps. from being updated with Malicious
Apps. However, it does not provide a function for
determining Fake Apps. through the creation and
verification of Android signatures (Fig. 4).

Android application will not be installed on the
terminal if a signature has not been generated or if the
signature verification process fails. After generating
SHA-1 based hash values for all files in the APK file, the
base6d encoding process is performed. The generated
hash value 1s created with the developer’s private key and
distributed with the public key certificate as shown in the
Fig. 3. You can also verify your signature on your App.

through a verification process. CERT.RSA contains a
public key and a value encrypted with CERT.SF as a
private key. The signature value signed with the private
key with the public key is decrypted and compared with
the CERT.SF file to perform verification. Only the APP.
developer can generate legitimate signature values in
APP. This function provides a function to prevent
the abnormal update of the already mstalled Apps.
(Fig. 5).

Mobile Apps. signature self-verification method: We use
antivirus program to enhance security of mobile device.
And security code is included mobile application for
security enhancement. Therefore, this kind of mechanism
males it easy to control and manage mobile device safely
by performing an application verification processes. As a
more advanced solution an application can send sighature
value of its own applications to the specified verification
server to check whether it is forged or not. A factor that
interferes with the verification process 15 the
disconnection of the network. In order to prevent the
internal logic from changing to the FAKE server mstead

1570

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

(@)

META-INF
files other
than directories

SHA1+Base64 di
aseOT encoding gion+PublicKey Cert.
v
Manifest. MF > Cert.SF » CertRSA
Filename+SHA1
of Manifest. MF

| Verification 4

(b)

Fig. 4: a, b) Android signature generation and verification process

Signature-Vession: 10

Ceezted-By: 1.0 (Android)

4 DM aSiqrPpWevyBionist | MANIFESTAIF SHATDigest Value

Narme: resfdraweble/be_bin caeck materialxml
SHA!-Digest: N4SomILHGI3-z}4 A8PZ3mseL$x8=

Narme: res/draweble-hdpi-v4‘abe ic menu cut mitl alphapng
SHA!-Digest: kIoGauldkwDjsHbQTjiEEVCIG4=

Narme: res/draweble-hdpi-v4‘abe ta indicator ma] alpha.9.pnp

SHAI-Digest: XUUeghiBIli2 Toxewf5sxQEN90e=

Fig. 5: Android signature verification example

CERT.RSAlopenss! asntparsa -/ inform DER ~in CERT1.RSA)

equal

Verification server Open market Play Store

Smartphone App. Verification App.
n'1 .
Public Key (PK*) » Public Key (PK”) Public Key (PK’) [«
Base64(SHA-1(PK)) Base64(SHA-1(PK))
+Package_Name +Package Name
<4— | Self verification =
| x-1
1
Certificate > APK cert Certificate
' |
mmﬁﬁm Result < Decision
Fig. 6: Server based self-verification mechanism
of the wverification server, the verification server decompile an App. Therefore, obfuscation techniques can

remembers whether or not each verification application is
installed and the last verification time (Fig. &).

Android Apps. developed m Java language 1s
vulnerable to repackeging attacks as it 1s easy to

be used to make it difficult to analyzing the source of
Android Apps. However, repackaging attacks are
findamentally impossible to block (Enck et al., 2009,
Zaidi et al., 2016, Rahman ef al., 2016). Especially, it has

1571

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

been confirmed that most Android-based smart phones
do not support verification process for the forged
applications. Android is compiled into a class from a java
source and then compressed and stored as a Dex file to
run in the dalvik virtual machine. Then package the Dex
file with xml+resource and distribute it as APK file
(Shabtai et al ., 2012; Lee and Lee, 2018). Therefore, if we
add a module that maliciously acts after decompiling a
Java class file in a normal APK file, we can create a
Counterfeit App.

As described previously, we propose a process to
repackage malicious Forged Apps. from normal APK files
and propose a method to detect Forged Apps.
Accordingly, the user mstalls and uses a Fake App. that
appears to be functioning normally. In this case, the user
1s easily exposed to attacks such as leakage of personal
information. Therefore, we have constructed Mobile
Apps. identification system that applies the server-side
signature self-verification system for Android Apps. and
proposed a method of judging Android mobile Forgery
Apps. by performing the verification process.

RESULTS AND DISCUSSION

Implementation and experiments

Design and implementation of mobile Forged Apps.
detection system: We used Android studio to create an
MFT App. that will be mstalled on a momtonng terminal to
detect mobile Forged Apps. In addition, a validation
server that provides Forged App. detection was bult
using node js and MySQL. When the verification App.

aAnN2>0I1D
1o lp s o I S——— 2 1
| soirsignservice § Aokce || T
W\
Al a certain time, It It takes the path where || M -
ver n the spocific .apk is 1 My)
ApkCert class installed, performs apk
andsondats gk imemaivaidaton.ond | Tiable s eerl apk
public key Io server retumns the public key.] s -
| Mainacitvity | ! 1[vacione Mt
nAcity 1 g/ _name
gui module, and Send signature value Fa

scquire instalied apk date DATE

st information.

public_key varchar(64)

1
1
Automatically launch |
fake app detection 1
1
1

servica when phone is
booted

hash_apk char(32)

varchar(10)

starts, self-sign service runs in the background. The
service internally wverifies its own sighnature value at
regular intervals and sends the value to the verification
server. You can also invoke the list of mstalled packages
to perform mdividual venfication or verify all at once. The
verification result will return one of three things: trust, risk
or warning. When the signature value of the application
exists in the server and the result of the comparison is the
same, the danger is similarly when the signature value of
the application exists but the comparison result 1s
inconsistent, the warmng indicates that the normal
signature value of the application 1s not present in the
server. When the Fake App. detection method proposed
1n this study 1s applied it 13 confirmed that the detection
function for the Falke App. is provided as shown in the
following (Fig. 7).

Performance measurement of mobile Forged Apps.
detection: In order to perform a detection process for a
Fake App., a process of producing a direct Fake App. was
performed. Generally, we made four types of Apps.
(Angry bird (Anonymous, 2018d), Shinhan Bank Apps.
(Anonymous, 20180), Ahnlab V3 Mobile Security
{Anonymous, 2018n) and Kakao Talk (Anonymous, 2018f)
which are widely distributed through the Google Play
Store. Tnside the Forged App., we added a malicious code
module to send and receive Fake SMS. Fake Apps. are
implemented to operate with the same interface as existing
normal Apps. And a system that provides verification
Apps. and a server-based signature self-verification
function to detect such Fake Apps. As a result of

© Android Emulator - Nexuss:5554

ALL INSTALLED APK VERIFY

com.android.carrierconfig #safety
android #safety
com.android.contacts #safety
- ..
com.rovio.angrybirds #danger
.
com.android egg #safety
com.android mip #safety

com.android.backupconfirm #safety

com android statementservice #safety

com.google.android. gm #safety

Fig. 7. Implementation of mobile forgery identification system and its experiment result

1572

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

@

B @ommnciomsiux =

UsD ~

1.125.10

IR 7 ///////

AnnLabV3 Mobile Security

Fig. 8: a) Fake Apps. with errors and b) Fake Apps. that works properly

measuring whether or not to detect Forged Apps. it was
found that conventional mobile vaccines did not detect
modified Fake Apps. However, if we use Fake App.
detection method with server-side self-signature
verification developed in this study, we can provide
wdentification and verification process for certification
values contained in suspicious Mobile App. As a result,
we were able to provide the ability to identify normal and
Counterfeit Apps. efficiently.

When we checked the test results, we were able to
confirm that the receiver was functiomng properly in our
game and Vaccine Apps. and we were able to confirm that
the malicious action was performed. However, in case of
Shinhan Bank Apps. and chat applications (Kakao Talk),
Malicious codes could not be injected because the
Counterfeit filtering function 1s built in the normal App.
Especially, when it 1s a Financial App., it 1s set to be linked

with a Vaccine App. to improve security. However, after

adding malicious code to the vaccine App. to create a
Counterfeit App., we can confirm that it is possible to
create a Counterfeit App. for a Financial App. by
mserting/modifying malicious code to work with a
Financial App. Also, in case of mobile anti-virus
application, we were able to build a Counterfeit App. as
shown in Fig. 8 and we were confident that it would
provide detection function for malicious mobile vaccines
and game Counterfeit Apps.

We tested whether the existing mobile wvaccine
detected the Fake App. developed in this study. Testing
with mobile antivirus such as Malwarebytes for Android

(Anonymous, 2018h), McAfee Mobile Security
(Anonymous, 2018i), Kaspersky Mobile Antivirus
(Anonymous, 2018g) and V3 Mobile Security

(Anonymous, 2018n) showed that all of the existing
antivirus programs did not detect Fake Apps. Failure to
detect Fake Apps. n a typical mobile antivirus program 1s
a serious problem. As mentioned earlier, we can easily
create a malicious Counterfeit App. that provides a similar

interface to a normal App. Therefore, it is necessary
to study a technique that can continuously improve
detection performance for malicious counterfeit

Apps.
CONCLUSION

Currently, most mobile Apps. do not include
monitoring and self-verification of forgery. However, only
specific Apps. used m the banking industry are verifying
therr own counterfeiting. In addition, the mobile vaccine
App. which 18 required to filter malicious activity 1s not
able to detect malicious Forgery App. and can’t detect
and check whether the malicious application is
counterfeited. Therefore, in order to prevent this, we
designed and implemented a Fake App. detection
mechamsm that i1s more improved than the existing
method by integrating and managing forgery by
performing a self-verification method for Fake App.
signatures. In detail, the client/server-based signature
value self-verification method for the analysis target
can provide a reliable venfication process for the
forgery-proofing application and can reduce the
possibility of misuse detection, so that, it can be applied
to all mobile applications. Therefore, this will provide safe
Mobile Apps. usage environment.

ACKNOWLEDGEMENT

This research was supported by Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by the
Ministry of FEducation, Science and Technology
(NRF-2017R1D1B03035040). And This article 1s a revised
and expanded version of a study (Lee and Lee, 2018)
entitled “Android Mobile Forged Apps. Detection with
Server-Side Signature Verification”, presented at
Advanced and Applied Convergence, the 4th

1573

J. Eng. Applied Sci., 13 (6): 1567-1574, 2018

International Joint Conference on Convergence
(I1CC2018) held on January 31-February 7, 2018, Hawaii,
USA.

REFERENCES

Anonymous, 2016, Dex2jar: Tools to work with
android.dex and java.class files brought to you by:
pxbl988. Slashdot Media and Dice Inc., Redwood
City, California. https://sourceforge.
net/projects/dex2jar/.

Anonymous, 2018a. A fast, open source web browser
engine. WebKit. https://webkit.org/

Anonymous, 2018b. A tool for reverse engineering
Android APK files. GitHub Inc., San Francisco,
California, USA. https://github.com/1BotPeaches/
Apletool.

Anonymous, 2018c. Android studio the official TDE for
Android. Android. https://developer.
android com/studio/mdex. htm 1.

Anonymous, 2018d. Angry birds classic. Rovio
Entertainment, Espoo, Finland. https://play.google.
com/store/apps/details7id=com.ahnlab.v3mobilese
curity.soda.

Anonymous, 2018e.
http://d benow .ca/

Anonymous, 2018f. Kakao talk: Free calls and text. Kakao,
Jeju City, South Korea. https://play.google.
com/store/apps/details ?id=com kakao.tallk.

Anonymous, 2018g. Kaspersky mobile antivirus:
AppLock & web security. Kaspersky Lab, Moscow,
Russia. https://play.google.
com/store/apps/details71d=com kms. free.

Anonymous, 2018h. Malwarebytes for Android advanced
protection against malware, ransomware and other
growing threats to Android devices. Malwarebytes,
Santa Clara, California, TTSA.

Anonymous, 20181 McAfee mobile security and lock.
McAfee, Santa Clara, Califorma, USA. https:/play.
google.com/store/apps/details 7id=com. wsandroid.
suite.

Anonymous, 2018). More than 1 million google accounts
breached by gooligan. Check Point Software
Technologies, Tel Aviv, Israel. https://blog.
checkpoint.com/2016/11/30/1-million-google-
accounts-breached-gooligan/.

Anonymous, 2018k. Sign APK is used to sign the APK
file after repack: The easiest way ever. GitHub Inc.,
San Francisco, California, USA. https://github.
com/techexpertize/SignApk.

Anonymous, 20181 Trojan: Android/fakeinst threat
description. F-Secure, Helsmkai, Filand.
https://www.f-secure.com/v-descs/trojan_
android fakeinst.shtml.

ID project. Java Decompiler.

Anonymous, 2018m. Trojan: Android/vdloader a threat

description. F-Secure, Helsinki, Finland.
https: /fwww.f-secure.com/v-descs/trojan_android
vdloader.shtml.

Anonymous, 2018n V3 mobile security-anti

malware/booster/apps lock. Ahnlab, Inc., Gyeonggi
Province, South Korea. https://play.google.
com/store/apps/details ?id=com.ahnlab.v3mobilese
curity.soda.

Anonymous, 20180. [ShinhanSol (SOL)-Shinhan bank
smartphone banking]. Shinhan Bank, Seoul, South
Korea. (In Korean)

Enck, W., M. Ongtang and P. McDaniel, 2009.
Understanding android security. IEEE Security
Privacy, 7: 50-57.

Faruki, P, V. Laxmi, A. Bhammal, M.S. Gaur and
V. Ganmoor, 2015. AndroSimilar: Robust signature for
detecting variants of Android malware. J. Inf. Secur.
Appl., 22: 66-80.

Ham, Y.J. and HW. Lee, 2014. Malicious Trojan horse
application discrimination mechanism using realtime
event similarity on android mobile devices. I. Internet
Comput. Serv., 15: 31-43.

Lee, H.S. and HW. Lee, 2015b. Fake C&C server for
evidence aggregation and detection of server-side
polymorphic mobile malware on android platform.
Intl. Inf. Inst., 18: 3723-3737.

Lee, HS. and HW. Lee, 2015a. Implementation of
polymorphic malware DB based dynamic analysis
system for android Mobile Applications. Intl. Inf
Inst., 18: 3187-3197.

Lee, J. and HW. Lee, 2018. Android mobile forged apps
detection with server-side signature verification.
Proceedings of the 4th International Joint Conference
on Convergence (ITCC’18), January 31-February 7,
2018, Sheraton Waikiki Hotel, Honolulu, Hawaii,
USA., pp: 59-60.

Rahman, M., M. Rahman, B. Carbunar and D H. Chau,
2016. Fairplay: Fraud and Malware Detection in
Google Play. In: Proceedings of the 2016 SIAM
International Conference on Data Mining,
Venkatasubramanian, S.C. and W. Meira (Eds.).
Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, USA., TSBN:978-1-61197-
434-8, pp: 99-107.

Shabtai, A., U. Kanonov, Y. Elovici, C. Glezer and
Y. Weiss, 2012, Andromaly: A behavioral malware
detection framework for Android devices. J. Intell.
Inform. Syst., 38: 161-190.

Verma, S., SK. Muttoo and SK. Pal, 2016. MDroid:
Android based malware detection using MCM
classifier. Intl. J. Eng. Appl. Sci. Technol, 1: 206-215.

Zaidi, SF.A., M A Shah, M. Kamran, Q. Javaid and
S. Zhang, 2016. A swrvey on security for smartphone
device. Intl. I. Adv. Comput. Sci. Appl., 7: 206-219.

1574

	1567-1574 - Copy_Page_1
	1567-1574 - Copy_Page_2
	1567-1574 - Copy_Page_3
	1567-1574 - Copy_Page_4
	1567-1574 - Copy_Page_5
	1567-1574 - Copy_Page_6
	1567-1574 - Copy_Page_7
	1567-1574 - Copy_Page_8

