Tournal of Engineering and Applied Sciences 13 (6): 1320-1325, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Using Object to Slice Java Program

Amir Ngah and Siti Aminah Selamat
School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu,
Kuala Terengganu, 21030 Terengganu, Malaysia

Abstract: Decomposition slicing is a slicing technique that captures all computation on a given variable
regardless of the line number. This techmque was originally proposed for the C language which 1s a structured
programming language. Thus, this study proposes the slicing technique to slice the Java program by using the
idea of decomposition slicing. The technique is called the Object Decom position Slicing (ODS) technique
which consists of three steps. This study also presents the implementation of the ODS into a simple Java

prograr.

Key words: Program slicing, Java, Object Decomposition Slicing (ODS), technicues, variable, language

INTRODUCTION

Program slicing is a process to decompose a large
program mto smaller components called slice. Weiser
(1981) 1s the first to mntroduce program slicing that slices
a program based on a slicing criterion (s, v) where s 1s the
location that consist of the variable of interest and v is the
variable of interest. The slicing technique proposed by
Weiser is called static slicing. After that, Korel and Laski
(1988) proposed a dynamic slicing techmique that slices
the program using three criteria with an addition of input
mto the two criteria used by Weiser. The slice produced
in the dynamic slicing is much smaller than the static
slicing but the slice produced can be varied because
there are many possible inputs for one single program.
Later, Gallagher and Lyle (1991) proposed decomposition
slicing that would output only one slice for a variable.
Decomposition slicing techmque only has a variable as
the slicing criterion without the location of interest and
the technique only focuses on C program. Therefore, this
study will try to implement the idea of decomposition
slicmg into the Java program with a little modification
on the slicing criterion. The slicing criterion that waill
be used in this technique is an object instead of a
variable.

Tava program has been popular and widely used in
many applications, especially in mobile applications. This
might be because Java 1s a platform mdependent language
that 1s easier to maintain. However, the object orented
features such as inheritance, polymorphism and dynamic
binding must be taken into account while slicing the
program. The technique proposed in this study will
include all statements in the Java program related to the
slicing criterion

Literature review: Java is an object oriented programming
that was released by Sun Microsystem in 1995, A year
after that, Kovacs et ol (1996) proposed an improved
static slicing that can be used to slice mter-procedural
Java program while the tools for slicing sequential Java
program were introduced later in 2007. Kovacs’s static
slicing is designed to handle JTava features such as static
variables, multiple package and interface. Kovacs also
proposed a new dependency representation that can be
used for polymorphic calls.

Mohapatrae et al. (2006) proposed dynamic slicing
for the distributed Tava program. In recent years,
Zhang et al. (2014) used dynamic slicing for fault
localization in the Java program and Xi et al (2011)
proposed coarse-grained dynamic slicing for Java
program to encounter the drawback of the original
dynamic slicing that use a lot of CPU time and memory
space.

Java is a platform independent programming
language that enables Tava to be developed and run in
any device as long as there is a Java Virtual Machine
(JVM). In order to execute a Java program, the compiler
first translates a high level language Java program into
Java bytecode which is a machine language for VM and
the interpreter will execute the program. By using the
bytecode, Zhao (2000) proposed a dependence analysis
in the Java bytecode in order to understand the
dependency on the Java program, Zhao also proposed a
bytecode slicing by using a bytecode analysis. Other
related research on Java bytecode as discussed by
Szegedi and Gyimothy (2005) who proposed a dynamic
slicing of the Java bytecode while Wang and
Roychoudhury (2008) proposed the dynamic slicing using
Java bytecode traces.

Corresponding Author: Amir Ngah, School of Informatics and Applied Mathematics, Umversiti Malaysia Terengganu,
Kuala Terengganuy, 21030 Terenggami, Malaysia
1320

J. Eng. Applied Sci., 13 (6): 1320-1325, 2018

JTava is a programming language that supports
concurrent programming. Concurrent programming is a
programming which the execution 1z computed
concurrently instead of sequentially. This makes the
execution of the program unpredictable resulting in many
problems in the slicing process. As a solution for the
problem, several study were proposed (Chen and Xu,
2001, Ranganath and Hatcliff, 2007) on slicing concurrent
Tava program.

Program slicing has been applied in many of the
software engineering areas such as debugging, testing
and mamtenance. Panda and Mohapatra (2015) proposed
a new slicing method for JTava program using hierarchical
characteristics in the Java program for detecting
regression error in the modified program. Panda and
Mohapatra (2015) also proposed the same technique to
measure cohesion in Java programs while Jiang et al.
(2010) proposed a debugging approach for Java Runtime
Exception.

Program slicing is also proposed for the JavaScript,
which is a programming language for web application
developments. By combining dynamic and static
analyses, Ye ef al. (2016) proposed slicing the JavaScript
by utilizing data dependency, control dependency and
DOM dependency in the program.

MATERIALS AND METHODS

A proposed slicing technique for Java: Inthis study, the
idea of decomposition slicing will be used to slice the Java
program using object as the slicing criterion. The
technique 1s called the Object Decomposition Shcing
(ODS). ODS has three steps which are step 1: check object
defimition; step 2: get information and step 3: combine.
The steps of ODS illustrated in Fig. 1 shows that the ODS
accepts the Java program as an mput and produces the
object decomposition slice with respect to the object
slicing criterion as an output. The Tava program is
assumed formatted and compilable. This study shows the
example of the formatted Java program. Meanwhile, the
mumber of slice depends on the number of object. The
slice produced from this technique is an executable
program. Thus, the ODS will only accept a program that
can be compiled and run correctly as an mput.

Step 1 of the ODS is to check the object definition.
This step accepts the formatted java program and the
output list of object from the Java program. Object 1s an
mstance of the class, a process of creating an
instance is referred to as instantiation. Instantiation
statement includes the type of the reference variable, the
name of reference variable, the keyword new and the
constructor of the instantiated class. Reference variable 1s

Java program

Check object definition

v

Get information
Get class and relevant constructor
Get relevant date field and methds

v

Combine

Slice of object x
Fig. 1: Object decomposition slicing technique

used to store the location of the object of the instantiated
class and the object then can be used to access the
member of that class. Object reference variable and object
are two different items but always used interchangeably.
This is because the usage can help m the understanding
of the object. In this study, object reference variable will
be referred to as the object to make the terminology
easier.

The class instantiation can be divided into two parts,
declaration and imtiation of object. These two parts can
be written in two separate statements or m a single
statement that combines both parts. The followmng
statement shows how the instantiation statement can be
writter:

. Written in two separate staternents
<typeOfObject objectNarne;>
<objectName= new constructorOfInstantiatedClass;>
. Written in one combined statement
<typeOfObject objectName = new constructor of Instantiated Class;>

For class mstantiation, the type of object 1s referring
to the name of the class. The object must be of java
primitive data type which is boolean, byte, int, short,
long, float, double or char. This is because objectis a
generic type that stores reference instead of the value
of primitive type. Algorithm 1 and 2 show the syntax of
the class instantiation. The class in Algorithm 1
instantiates and defines the object for the called class in
Algorithm 2.

Algorithm 1; class instantiation and object definition:
class className{
returnType methodName{
class instantiation and defination
object usage
}/end method
}lend class

1321

J. Eng. Applied Sci., 13 (6): 1320-1325, 2018

Algorithm 2; called class:
Class className{
data field
default constructor
parameterized constructor
method

Vend class

After the object is defined, it can be used in the class
where the object is defined. The statement of object usage
15 the statement that contams the object accessing the
class member of the called class.

The object definition and usage will be included in
the slice. In addition, the declaration of class in
Algorithm 1 that consists of method and class header
along with the open and closed braces of the respective
class and method will also be mcluded in the slice to
produce an executable slice.

Step 2 of ODS has two parts. The first part is to get
the class name and the relevant constructor of the called
class. The class name of the object can be obtained from
the statement where the object 1s created. The statement
consists of the constructor’s name where the constructor
has the same name as the class. By identifying the
constructor, the class name is simultaneously captured.
The class header of the called class will be included in the
slice because the instantiation statement has dependency
on the object definition. The class header that will be
included in the slice is as follows:

<modifier class className{}>

Constructor is a special type of method that are
mvoked to create the object using the new operator.
Different from normal method, the constructor has its
own characteristics for it to be a constructor; otherwise,
it 13 considered as a normal Java method. These three
characteristics differentiate the constructor from the
method in JTava (Liang, 2013):

* Constructor must have the same name as the class
where 1t resides

¢ Constructor cannot have any return type

¢ Constructor is invoked during the initialization of
an object. The invocation operator is a new
keyword

Constructor can be divided mto two types, default
constructor and parameterized constructor. Default
constructor is a constructor without argument and the
parameterized constructor is a constructor with argument.
The program can have one default constructor and many
parameterized constructor but each parameterized
constructor must have different parameter. The Java
compiler differentiates the constructors based on the
mumber and the type of arguments had by the
constructor.

Tt is possible for the Java class to not have any
constructors declared explicitly. If the called class mn the
program 1s mstantiated but the called class does not have
a constructor, the system will generate the default
constructor implicitly when the program is run. To invoke
a constructor, the keyword new is used along with the
type of constructor invoked:

+ Invoke default constructor:

<new constructorOfInstantiated Class();>

+ Invoke parameterized constructor:

<new constructorOfinstantiatedClass(pararmeter);>

The second part of step 2 1s to get the relevant data
field and method from the called class. In this part, the
output from step 1 will be used as an input to get the
relevant data field and method. When the object is
created, its members which are the data field and method
can be accessed and invoked. In order to access the data
members, the dot operator () 1s used. The following
statement demonstrates how the object members can be
accessed:

s Accessing object data field:

<object.data_field;>

¢ Invoking object method:

<object.method();>

Data field 1s defined by using identifier variable.
Variable needs to be declared before it can be used and it
can have a public, protected, default or private modifier.
Variables are best set private and accessed only through
method, so that, the data is encapsulated. However in this
research, the default modifier will be applied to reduce
complexity m the Java program. The program in this study
will assume that the members are the default type,
whereby the data can only be accessed by the class under
the same package. Access includes calling, manipulating
and changing the value of the data field When the
object accesses the data field, the data field in the
called class 1s considered to have an mfluence on the
object. Therefore, the declaration of the data field 1s
included m the slice. The declaration of the data field
is as follows:

<modifier dataType dataFieldName;>

Method 1n the called class can be accessed through
the object such as the data field. Method 1s almost similar
to the constructor except for the three characteristics that

1322

J. Eng. Applied Sci., 13 (6): 1320-1325, 2018

Table 1: Tnput and output for steps 1-3
Steps Input
1 Java program

Output

Object

Class header, definition and
usage of object

Class header

Relevant constructor
Declaration of data field
Relevant method

Cormplete slice

2 Object

3 Information from steps 1 and 2

differentiate the two of them. One of the characteristics 1s
that the method can have a returmn type while the
constructor cannot. Method with the same name but
different argument is called overloading method. Java
runtime system differentiates this type of method based
on the difference n the argument type. When the object
accesses the method, the method is considered to have an
influence on the object. The accessed method in called
class then included m the slice. The method must have
the following statement.

<modifier remmType methodName(argument){staternent(s)}

Not all statements of object members that are accessed
are considered to have object dependency and taken into
the slice. Any object members that are accessed mside the
double quotation mark will be ignored and considered to
have no dependency on the object.

Step 3 will combine the output from steps 1 and 2 into
one whole complete slice. Step 1 output produces the
component of slice from the class that consists of object
definition while step 2 produces the component of slice
from the called class. This two components will be
combined to produce one complete slice. The mput and
output for steps 1 and 2 are simplified in Table 1.

RESULTS AND DISCUSSION

An example: Simple Java program is used to demonstrate
the ODS technique. The example Java program consists of
two classes which are the class that consists a definition
of the object and the called class. The name of the class
that consists the defimtion of object 18 TestShape as
shown in Algorithm 3, the name of the called class is
rectangle as shown in Algorithm 4.

Algorithm 3; class test shape:
M1 public class TestShape

M2 {

M3 public static void main (string [] arg)

M4 {

M35 Rectangle recl = new Rectangle ()
Mé recl. getArea ()

M7 recl. getPrimeter ()

M8 }

Mo}

Algorithm 4; class rectangle:

loly] public class rectangle

C2 {

Ci3 double width

Cid double length

5 Rectangle ()

6

7 Width=1
C8 Length =2
C.9 }

C10 Rectangle (int width, int length)

C 11 {

Cci12 this.width = width

13 this.length = length

C,14 }

G115 double getArea ()

Ci16

C17 return width*length
C19 double getPerimeter ()

;20 {

C21 return 2#(width+length)
C22 3

23)

First step is to check the object definition in the
TestShape class. In Algorithm 3, there is one definition for
the object of the rectangle class and the object is stored
1n the reference variable recl m line munber M5. Object
recl 1s used m line numbers M6 and M7. Thus, the
statement 1 line numbers M5, M6 and M7 1s included in
the recl slice of TestShape class. In order to produce an
executable slice, the class and method header where the
object is defined in line numbers M1 and M3 and all
related curly braces in line numbers M2, M4, M8 and M9
are also mcluded 1n the slice. Therefore, all the statements
in the TestShape class are included m the slice and the
output of step 1 is object rec] as follows:

ObjectList = {rec1}
Slice-recl ruusma = {M1, M2, M3, M4, M5, M6, M7, M8, M9}

The first part of step 2 is to get the name of the class
that is used to create an object and all relevant
constructors. The line number M5 in Algorithm 3 shows
that the rectangle class 1s used to define the object named
recl. Therefore, the class header and the relevant
constructor of the rectangle class will be mncluded m the
slice of the ODS. In Algorithm 4, the class header for the
rectangle class 1s on line number C,1 and the curly braces
are on line number C,2 and C,19. Thus, the statement on
line numbers C,1, C,2, and C,19 will be mcluded m the
slice. The object recl 1s imtialized using the default
constructor of the rectangle class. The constructor
invocation can be found written after the keyword new in
the object definition statement. The constructor that 1s
invoked to imtialize the object, therefore, will be mcluded
in the slice. For object recl, the default constructor that 1s
included starts on line mumber C,5 until line number C,9 of
the rectangle class.

Second part of step 2 1s to get the relevant data field
and the method of an object member. The statement where

1323

J. Eng. Applied Sci., 13 (6): 1320-1325, 2018

the object recl accesses the object member is on line
numbers M6 and M7 of the TestShape class. The
accessing statement is called object usage where the
object is used to access the object members. Members of
the class that are accessed using the object will be
included in the slice.

The rectangle class has two data fields, width and
length that were 1mtialized in the constructor. The mutial
value of the data field can be initialized directly or defined
during constructor invocation. For object recl, the data
field 18 imtialized during the constructor invocation where
the value is set in the constructor. If the data field is not
initialized, the Java Runtime System will set the data field
with a default value. In the rectangle class, the definition
of data field is included in the slice because
it is used in the constructor. The following statement is
the declaration of the data field on line numbers C,3 and
C,4 of the rectangle class.

Object member method is invoked when the object
accesses the method mn rectangle. The method that will be
included in the slice is only the user-defined method and
not the pre-defined method. There are two user-defined
methods m the rectangle class which are getArea and
getPerimeter of type double. All statements in the
invoked method will be included in the slice. Object recl
accesses the method on line number M6 and M7 of the
TestShape class. Both accessing statements invoke the
method getArea and getPerimeter in the rectangle
class.

At the end of step 2, ODS has chosen all the
statements in the rectangle class related to the object recl.
The statement that will be included m the slice 1s the all
statements related to the definition and usage of object
recl. All statements of the rectangle class that will be
included in the slice are as follows:

Slice-rec] puame = {C11, C12, 43, G4, 15, €16, €7,
C.8,)9, C,10, C 11, Cy12, C)13,
€114 C,15,C116, Cy17, C18 and C;19}

Step 3 is last step in the ODS technique. This step will
combine all the information gathered from steps 1 and 2
mto complete slice based on an object. The rectangle
class has one object which is recl, thus, the ODS will
produce one slice as an output. The slice will consist of
two classes, the TestShape class and the rectangle class
where all the statements that are not related to the object
are sliced away from the program:

0DS,..; = {Slice-recl,yspapSlice-reclp cnpg. }

For the slice of object recl, the slice of the TestShape
class will include all 9 lines of codes. As for the rectangle
class, the slice will include 19 lines from 23 lines of
codes. The class rectangle 1s reduced by 5 lines of codes

equivalents to 15.63% of the whole program. The 5 lines
removed from the program are the statements that do not
have dependency on the object slicing criterion.

CONCLUSION

Object decomposition slicing is a new slicing
technique proposed for Tava program. The technique
consists of three steps and the slice consists of all
statement that have dependency on slicing criterion
object. The result from the example shows that the slice
produced is smaller than the original program with a
reduction of 15.63% from the whole original program. The
ODS techmque 1s expected to be applied n more complex
programs in the future.

ACKNOWLEDGEMENT

This research is sponsor by Ministry of Education,
Malaysia Government under Research Acculturation
Collaborative Grant (RACE), Vot No. 56032,

REFERENCES

Chen, 7. and B. Xu, 2001. Slicing concurrent Java
programs. ACM. Sigplan Not., 36: 41-47.

Gallagher, K.B. and T R. Lyle, 1991. Using program slicing
in software maintenance. TEEE Trans. Software Eng.,
17. 751-761.

Hang, 5., H. Zhang, Q. Wang and Y. Zhang, 2010. A
debugging approach for java runtime exceptions
based on program slicing and stack traces.
Proceedings of the 2010 10th International Conference
on Quality Software (QSIC), July 14-15, 2010,
IEEE, Xuzhou, China, ISBN:978-1-4244-8078-4, pp:
393-398.

Korel, B. and T. Laski, 1988. Dynamic program slicing.
Inform. Processing Lett., 29: 155-163.

Kovacs, G., F. Magyar and T. Gyimothy, 1996. Static
slicing of Tava programs. Master Thesis, University of
Szeged, Szeged, Hungary.

Liang, D.Y., 2013. Introduction to Java Programming:
Comprehensive Version. 10th Edn., Pearson, Upper
Saddle River, New Jersey, USA.,.

Mohapatra, D.P., R. Kumar, R. Mall, D.8. Kumar
and M. Bhasin, 2006. Distributed dynamic slicing
of java programs. I Syst. Software, 79:
1661-1678.

Panda, S. and D.P. Mohapatra, 2015. ACCo: A novel
approach to measure cohesion using hierarchical
slicing of Java programs. Tnnovations Syst. Software
Eng., 11: 243-260.

Ranganath, V.P. and T. Hatcliff, 2007. Slicing concurrent
Java programs using indus and Kaveri. Intl. T.
Software Tools Technol. Transfer, 9: 489-504.

1324

J. Eng. Applied Sci., 13 (6): 1320-1325, 2018

Szegedi, A. and T. Gyimothy, 2005. Dynamic slicing of
Java bytecode programs. Proceedings of the TEEE 5th
International Workshop on Source Code Analysis
and Meanipulation, September 30-October 1, 2003,
TEEE, Szeged, Hungary, ISBN:0-7695-2292-0, pp: 35-44.

Wang, T. and A. Roychoudhury, 2008. Dynamic slicing
on Java bytecode traces. ACM. Trans. Program. Lang.
Syst., 30: 1-10.

Weiser, M., 198]1. Program slicing. Proceedings of
the 5th International Conference on Software
Engmeering, March 09-12, 1981, IEEE Press,
New York, USA, ISBN:0-89791-146-6, pp:
439-449.

Xi, L., M. Li, Z. Dan and L.. Wei, 2011. An approach of
coarse-grained dynamic slice for Java program.
Proceedings of the 2011 IEEE 3rd International
Conference on Communication Software and
Networks (ICCSN), May 27-29, 2011, TEEE, Hunan,
China, ISBN:978-1-61284-486-2, pp: 670-674.

Ye, I, C. Zhang, I.. Ma, H. Yuand I. Zhao, 201 6. Efficient

and precise dynamic slicing for client-side Javascript
programs. Proceedings of the 2016 IEEE 23rd
International Conference on Software Analysis,
Evolution and Reengineering, Vol. 1, March 14-18,
2016, TEEE, Shanghai, China, ISBN:978-1-5090-1855-0,
Pp: 449-459.

Zhang, P., X. Mao, Y. Le1 and Z. Zhang, 2014. Fault

localization based on dynamic slicing via JSlice for
Java programs. Proceedings of the 5th TEEE
International Conference on Software Engimeering
and Service Science (ICSESS), Tune, 27-29, 2014, IEEE,
Changsha, China, ISBN: 978-1-4799-3279-5, pp:
565-568.

Zhao, T., 2000. Dependence analysis of Java bytecode.

1325

Proceedings of the 24th Annual International
Conference on Computer Software and Applications,
October 25-27, 2000, TEEE, Fukuoka, Japan,
[SBN:0-7685-0792-1, pp: 486-491.

	1320-1325 - Copy_Page_1
	1320-1325 - Copy_Page_2
	1320-1325 - Copy_Page_3
	1320-1325 - Copy_Page_4
	1320-1325 - Copy_Page_5
	1320-1325 - Copy_Page_6

