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Implicit Finite Difference Solution of One-Dimensional Porous Medium Equations
Using Half-Sweep Newton-Explicit Group Iterative Method
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Abstract: This study considers the implicit fmite difference sclution of 1-Dimensional Porous Medium
Equations (1D PMEs) using Half-Sweep Newton-Explicit Group (HSNEG) iterative method. The general finite
difference approximation equation of 1D PME is formulated using the half-sweep implicit finite difference

scheme. The generated nonlinear system is then sclved using the proposed HSNEG iterative method. The

comparative analysis 1s shown using two tested iterative methods namely Newton-Gauss-Seidel (NGS) and
Newton-Explicit Group (NEQG). The numerical results support the finding that the HSNEG is more superior than
the NGS and the NEG in terms of total iterations and computation time. All three executed iterative methods

showed good accuracy in solving 1D PME.
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INTRODUCTION

The porous medium equation or widely known as
PME, gained mterest from many researchers since the 70°s
and one of the earliest use is to describe the ideal gas flow
in a homogeneous porous medium. PME also present in
the fluid mechamcs that deals with the filtration of an
mcompressible liquid in a porous medium and one of the
mathematical problem are groundwater infiltration model.
Moreover, PME i1s used to describe the heat radiation that
occurs 1n the lonized gases at very high temperature.
There are more interesting applications of the PME that
can be found by Vazquez (2007).

Until today, PME 1s studied in order to solve both the
theoretical and the mathematical challenges arising from
the modeling of the non-linear fluid and heat transfer. For
instance, Patel et al. (2016) studied the counter-current
imbibition phenomenon that occurs during the secondary
o1l recovery process. They introduced the solution of
the formulated 1-Dimensional or 1D PME Model using
the homotopy analysis method. Meher et al. (2011,
2010) investigated the dispersion phenomenon that
occurs i the oil reservor and applied the Adomian
decomposition method and the backlund transformation,
respectively to solve the derived 1D PME problem.

Apart from the use of analytical approaches to
obtain the approximate solution of 1D PME, numerical
approaches have also been utilized for the approximate
solution of 1D PME. For example, Pradhan et al. (2011)

and Borana et al. (201 4) applied the Galerkin finite element
method and Crank-Nicolson finite difference method
respectively m solving the 1D PME numerically.

Besides that, Chew and Sulaiman (2016a) imtiated the
investigation of an efficient numerical method for solving
1D PME with the use of Newton method and explicit
group iterative method. Then, Chew and Sulaiman (2016b)
introduced the Half-Sweep Newton-Gauss-Seidel iterative
method and showed the effectiveness of the use of
half-sweep in finite difference approximation equation for
solving 1D PME problem.

The application of the half-sweep approximation
equation in obtaining the numerical solution of 1D PME
15 found to be efficient in terms of total iterations and
computation time than the standard implicit fiute
difference approximation equation.

The concept of half-sweep in finite difference method
was introduced by Abdullah (1991). This technique
capable to reduce the computational complexity of solving
the large linear system by computing iteratively half of the
total interior grid points. The remaining half of the total
interior grid points are computed directly using the
finite difference approximation equation. Since, then, the
half-sweep has been extensively studied and applied in
solving a number of mathematical problems which
can be referred by Muthuvalu and Sulaiman (2009),
Akhir et al. (2011), Aruchunan and Sulaiman (2011),
Saudi and Sulaiman (2012) and Dahalan and Sulaiman
(2016).
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This study aims to combine the technique of
half-sweep and the explicit group iterative method for
solving the 1D PME. The mnplicit finite difference solution
of 1D PME is obtained using the proposed iterative
method that is called the half-sweep Newton-Explicit
Group (HSNEG) Method.

MATERIALS AND METHODS

Finitedifference approximation equation: The considered
mathematical problem:

u_ (= 1)
ot ox| ox

subjects to the following prescribed initial-boundary
conditions:

u{x, 0)=u,(x)u(0, t) =g, (t)u(Lt) =g (t) 2

with ¢ and m are real parameters. Let considers the
solution function u = u {x, t) = u (ph, nk)with
p=1,2,...Mandn=20,1, ..., T is distributed evenly in
the domain of Q=[0, 1] with a fixed size of h. Similarly, the
time interval is set to be within 1[0, 1] with a fixed size of
k. Both the spatial and temporal steps are denoted as
h=1/Mandk=1/T.

When Eq. 1 is discretized using the implicit
fimte difference scheme, the approxumation equation
can be written as:
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Where:
o= ck/h’
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Equation 3 1s the common mmplicit finite difference
approximation equation which is also known as the
full-sweep approximation equation. Now, by implementing
the half-sweep implicit fimte difference scheme, Eq. 1
becomes:
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Where:
¢ = ck/4h?
B = ckileh’

Both Eq. 3 and Eq. 4 can be generally represented as:
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Based on Eg. 5, the Full-Sweep approximation
equation 18 represented by s = 1 and the half-sweep
approximation equation 18 by s = 2. The application of
Eq. 5 into the interior grid points in the domain of Q will
result in a sparse and large-sized nonlinear system in the
form of:

F(U)=0 (6)
Where:
F(U) - (fhml (U) LET (U) N (U))
And:
U :(ul,n+1’u2,n+1>" ->u1v1—1,n+1)

In this study, Newton method is applied in order to
transform the nonlmear system into the corresponding
linear system. The following procedure of Newton method
for solving Eq. 6. First, the Jacobian matrix of Eq. 6 is
obtained and written in the form of:
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Then, define W = (W ., = Wy oo Wi o) @8 @
correction vector where w,,, =ulr) o) withp=1,2, ..,

M-1 and ¢ 1s the iterative index. Using Eq. 7, the
corresponding linear system can be written as:

T, W =-F(U) (&)
Where:
T = (M-1)*(M-1) non-singular matrix
WandF (U) = The column matrices
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The solution of Eq. 8 can be obtained using either
direct or iterative method. For the case of handling
very sparse and large-sized linear system, iterative
methods are preferable. The next section will discuss
the proposed iterative method that is used to solve
Eq 8.

Explicit group iterative method: In tlis study, the
Newton-generated linear system that is shown in Eq. 8
has the form of a tridiagonal matrix. And then, it is the fact
that when the total mterior grid peints to be computed
increases, the computational complexity also increases.
To reduce the computational complexity, Explicit Group
(EG) iterative method is applied. The EG iterative
method which was introduced by Evans (1985), uses small
fixed-size groups of grid point strategy to reduce the
computational complexity in the iteration process of
solving the linear system. The iterative method that
solves a block of several interior grid points at one time 1s
believed to be much faster than the point iterative method.
By taking a group of four points for instance, a submatrix
of Eq. 8 can be written as:

Dl Vl W R1 _LIWD
L, D, V, W l_ R, (9)
L, Dy V,|w, R,
L4 D4 W, R4 - V4W5

The inversion of Eq. 9 is then produces:
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Thus, the HSNEG iterative method can be summarized
n the following algorithm.

Algorithm 1; HSNEG iterative method:

i. Set the initial vector U = 1.000 and the tolerance error ¢ = 101"
ii. At the time level n
a) Initialize F (U) as well as Jp and set W =0
b) For every group of four points, iterate Eq. 10,
¢) Compute the remaining ungrouped points, see
Evans (1983) for more details,
d) Check the convergence of:

|W(t+1) _ W(,e)‘ <

e) Calculate, U® = U+t
f) Check the convergence of:

R0

iii. Goto ntl if the solution converges

<e

RESULTS AND DISCUSSION

Numerical experiments: For the comparative analysis
between the HSNEG, NEG and NGS, three 1D PME
examples are selected. Three criteria are considered
namely the total iterations (f,.,), the computation time
measured in seconds (sec.) and the maximum absolute
error (Err.). The total number of grid points to be
considered is 256, 512, 1024, 2048 and 4096. The following
three 1D PME examples.

Example 1:

du_df du (11)
dt dx| o dx

with the exact solution u(x, t) = x+t (Polyamin and Zaitsev
2004).

Example 2:

du_df .du (12)
dt dx|  dx

Equation 12 1s known as Boussinesq equation that 1s
used in the field of buoyancy-driven flow (Vazquez, 2007).
The exact solution is given by ulx, t) = (c+1)/2(4-1)"*
(Wazwaz, 2007).

Example 3:

du_1d { Ld_u} (13)
dt 2dx| u’dx
The exact solution is u(x, t) = (0.7x-0.1225t+1.35)™
(Wazwaz, 2007).
From the implementation of the HSNEG, NEG and
NGS iterative methods, numerical results are obtained and
tabulated in Table 1-3.

Table 1: The numerical result of example 1

M Method Diotal Secound Error
256 NGS 48395 19.31 5.33E-07
NEG 13799 .58 1.10E-07
HSNEG 3899 1.93 2.64E-08
512 NGS 169693 133.84 2.10E-06
NEG 48666 45.24 4.99E-07
HSNEG 13799 831 1.10E-07
1024 NGS 587031 919.22 7.62E-06
NEG 170300 312.23 2.08E-06
HSNEG 48666 49.85 4.99E-07
2048 NGS 1993096 6208.25 2.67E-05
NEG 589214 1153.89 T.63E-06
HSNEG 170300 344,92 2.08E-06
4096 NGS 6612931 40998.73 9.66E-05
NEG 2002264 14666.26 2.67E-05
HSNEG 589214 2382.03 7.63E-06
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Table 2: The numerical result of example 2

M Method Dal Second Error
256 NGS 17308 10.88 8.39E-05
NEG 4836 3.76 8.39E-05
HSNEG 1361 1.56 8.39E-05
512 NGS 61658 76.91 8.40E-05
NEG 17333 25.54 8.39E-05
HSNEG 4836 5.16 8.39E-05
1024 NGS 218147 557.97 8.43E-05
NEG 61779 180.40 8.40E-05
HSNEG 17333 28.39 8.39E-05
2048 NGS 763998 3830.51 8.55E-05
NEG 218686 1287.90 8.43E-05
HSNEG 61779 195.56 8.40E-05
4096 NGS 2630914 26497.28 8.99E-05
NEG To6144 9115.08 8.55E-05
HSNEG 218686 1398.62 8.43E-05
Table 3: The numerical result of example 3
M Method Dintal Second Error
256 NGS 24325 16.70 2.71E-06
NEG 7007 5.74 2.92E-06
HSNEG 2033 3.86 2.94E-06
512 NGS 81729 113.26 1.86E-06
NEG 23769 39.00 2.73E-06
HSNEG 7007 6.44 2.92E-06
1024 NGS 265698 767.23 3.33E-06
NEG T9057 267.51 1.89E-06
HSNEG 23769 42.30 2.73E-06
2048 NGS 882282 516d.64 1.66E-05
NEG 273259 1847.28 3.26E-06
HSNEG 79057 289.70 1.89E-06
4096 NGS 2853985 33726.52 6.10E-05
NEG 911564 12906.59 1.64E-05
HSNEG 273259 1990.15 3.26E-06
CONCLUSION

Based on the numerical results obtamned, the
efficiency of the HSNEG in solving 1D PME examples has
been demonstrated. Numerical results, that are presented
showed that the HSNEG 1s more superior than the NGS
and the NEG in terms of total iterations and
computation time. HSNEG has reduced the total
iterations approximately 90.43-92.16% against the NGS
and 69.93-72.10% against the NEG. And then, the
computation time required by the HSNEG is shorter
about 76.89%-54.49% against the NGS and 32.75%-84.03%
against the NEG. All three executed iterative methods
showed good accuracy in solving 1D PME.

In this study, we showed that the application of
EG iterative method together with the half-sweep
unplicit finite difference approximation equation gives a
promising decrement in the computational complexity
for solving the 1D PME. For the future study, the
use of Successive Over-Relaxation (SOR) iterative
method by Young (1954) in improving the rate of
solution will be

comvergence for the numerical

examined.
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