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Abstract: Classical Box M-statisticis one of Likelihood Ratio Test (LRT) constructed under the multivariate
normality distribution. The performance of classical Box M-statistic by using classical estimators suffers from
masking and swamping effects when the outlier occurs in data set. To alleviate the problem, robust estimators
are recommended. In this study, a robust Box M-statistic based on a S-estimator, M, and M-estimator M,, are
proposed as the alternative to the classical Box M-statistic. Over the simulation study, the performance
comparisonof classical, M, and MM-statistics are measured using type 1 error rates. From the results, it showed

that M, (Box M-statistic based on S-estimator) has a competitive performance relative to My and the
classicalstatistic. In summary, M, can be used for testing the equality of two difference covariance matrices or

more when the data contains outlier.
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INTRODUCTION

Nowadays, in multivariate setting testing the stability
of covariance matrices a serious problem and it has
receiving much attention m economic and financial
studies. For example, in financial industry Tang (1998) and
Lee (2006), i real estate industry Eichholtz (1996). In
medical research, Kupek (2002) stated that the covariance
structure stability has been used to model the error
structure of both observed and latent variables. The
covariance structure stability is needed in portfolio
optimization to determine the allocation of international
real estate securities mvestments (Yusoff and Djauhari,
2013). Moreover, the covariance structure stability is also
used to increase the quality and performance through the
entire chamn of marketing, expansion, production and sales
processes this expected at the delivery a very lugh quality
of product to the customers (Roes and Dorr, 1997).

Tang (1998) stated that the stability of covariance
matrices can be examined by testing directly the equality
of covanance matrices across time period. For that aim the
most popular and widely used test is Box M which is
constructed by Box (1949). This test involve determinant
of sample covariance matrix, it is difficult to compute for
the case of high dimensional data sets (Yusoff and
Djauhari, 2012). The Generalized Variance (GV) is
multivariate dispersion measure is used for testing the
homogeneity of covariance matrices. The role of GV
statistic 1s to test the equality of several independent

samples of covariance structure (Sharif et al, 2014).
However, it has drawback where the measure 1s imprecise
because the two different covariance structures might be
acknowledged equal to each other. Moreover, GV statistic
needs that the condiion of covariance matrix 1s
nonsingular (Djauhari and Salleh, 2011). Due to that, this
testis quite cumbersome to compute when the data sets
are of high dimension. Djauhari (2007) developed Vector
Variance (V'V) statistic as a multivariate vanability measure
to help to solve the simgularity problem when dealing with
high dimension data set and to overcome the drawback of
GV statistic. The computational time for VV statistic is
shown to be better compared to GV statistic (Sharif ef af.,
2014).

Among all of those statistics stated above, Box
M-statistic 18 widely practiced and substitute among
applied researchers because it can be easily performed
using IBM SPSS Software. Consequently, in this research,
the focused is assumed on Box M-statistic, since, it 18 well
recogmzed by applied researchers rather than GV which
well known among pure statistical researcher.

The hypothesis used to test the equality of
variance-covariance matrices 18 Hy X, = X, = ... = 2
versus H;: X#% for at least one pair (i, j) where i,
1=1, 2, ..., m. Thus, the M-statistic 1s derived as follows:

M=N1n\§ (1)
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Where
3 ZLELH.SJ = The .pooled sample variance-covariance
N matrix

S = The variance-covariance matrix calculated
from the sample i

m = The number of subgroup where the
stability of matrices is hypothesized

N = nqtn, +, .., +n,

1 = ith sample size

Box (1949) recommended that under H,, the statistical
test can be approximated either by %* distribution or F
distribution. According to Mardia et al. (1979}, the ¥
approximation will be adequate to be used in any practical
determinations. Moreover, ¥* approximation is good if the
mumber of sample sizes, n is >20. Consequently, the
statistical test will be rejected at significance level, o if
M/b exceeds %’, , where:

2p’+3p-1
b Lo R (g 11
la 6(pH){m-1)| < ='n, N

The (1-c)th of Chi-squared distribution with degrees
of freedom:

V= %p (pr1Nm-1)

where, p is the number of variables. Box M-statistic is
improved Likelihood Ratio Test (LRT) constructed under
the multivariate normality distribution (Box, 1949). Also,
this test is constrained under another two assumptions
which are the sample covariance matrices are independent
and the sample size, n must be larger than the number of
variables, p (Sharif, 2013).

Nevertheless, m practice, data that meet the
assumption of normality is difficult to be found. Fail to
fulfil the assumption of normality can distort type 1
error rates (Yusof et al., 2013) and make distributional
behaviour totally fails (Aslam and Rocke, 2005).
Consequently, this statistic is also highly sensitive to
the existence of outliers which can cause
unacceptable results. Thus, a common recommendation
is to use nonparametric test or performing simple
transformation.

However, non-parametric test is less powerful if it
compared to parametric test. Non-parametric test is call for
large sample size to reject the null hypothesis and its
computation is tedious and laborious (Daniel, 1990).
Otherwise, simple transformation is one way to overcome
the problem of outliers. Nevertheless, as identified by
Wilcox (2003), simple transformations are failed to treat
the outliers with efficiently. As a result, the outliers still
exist and minimize the statistical power when applying
simple transformations.

Moreover, there are another two alternative methods
that can be used in to reduce the effect of outhers. The
first method is to calculate the classical estimator after
eliminating outliers from the data. The second method 15
by using robust estimator to replace classical estimator in
decreasing the influence of outliers (Yahaya et al., 2011,
Yuan and Bentler, 2001). The robust method is aim to
produce reliable parameters estimate, related tests and
confidence intervals, even though data follow a given
distribution correctly but conversely, only approximately
in the sense would be qualified (Maronna et al.,
2006). Furthermore, 1t 18 vital tools in analysing data
that are including a contaminated observation
(Muthukrishnan and Ravi, 2016). It can be used to identify
outliers and to deliver resistant results in the existence of
outliers. Thus, robust method attempts to deliver a
good result and therefore, would be interested in this
study.

There are a lot of multivariate robust estimators of
location and scatters widely have been used in
previous research. The major researchs started by Huber
(1964) who mtroduced M-estimator and followed by
S-estimator (Rousseeuw and Yohai, 1984). These two
estimators received much attention by several
researchers. M-estimator is shown to be reliable and
asymptotically normal under their assumptions (Maronna,
1976). This estimator has a good local robustness
properties where it contamns of good efficiencies and
good bound on the influence function at underlying
distribution (Sirkia et af., 2007). S-estimator 1s suggested
for the purpose of minimizing the determinant of
variance-covariance matrix. The benefits of S-estimator
contain fast computation (Kondo et al, 2012) can
accomplish an efficiency up to 33% (Croux et al., 1994)
and highly resistant to outliers which 15 an able to
produce the same values as the usual analysis when there
is no outliers (Aslam and Rocke, 2005).

Entertaimingly, these two estimators have high
Breakdown Point (BP) of approximately 50% (Lopuhaa,
1989). Actually, they have the same asymptotic
properties (Onur and Cetin, 2011), the calculation is
easier compared to other robust estimators (Jeng, 2010,
Salibian-Barrera and Yohai, 2006). Accordingly, to
accomplish a very high robust quality, M-estimator
and S-estimator will be examined for the substitution of
the sample covariance matrix.

MATERIALS AND METHODS

Overview of modified Box M-statistic: In this study, a
discussion on robust Box M-statistic based on M and
S-estimators are presented to accomplished the
modification proses.
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Robust Box Mstatistic based on M-estimator: M-estimator
was the early robust estimator for sample mean vector and
sample covariance matrix of location and scatter
parameters. Based on the ideas of Huber (1964), the
univariate M-estimators act as minimizers of objective
functions, meanwhile, Maronna (1976) presented that
multivariate M-estimators as the results of & and a
positive definite symmetric matrix, £ of:

Where:

1 Weight functions where i=1, 2

d, Distance of (xm)' Y (o)

¥ = Weighted variance-covariance matrix

The robustness properties of M-estimator are
existence, consistency, asymptotic normality, uniqueness,
BP and influence function. Maronna (1976) showed that
M-estimator is consistent, asymptotically normal and the
BP is <1/pt] where p denotes the number of variable.

In order to umprove robust Box M-statistic denoted
by M,, the covariance of M estimator, Sy, where,1=1, 2,

., m 18 substituted into Eq. 1. Thus, the statistic 13 now
turn into the next equation:

My, =NIn[S,|-37 n IS, (2)

Where:

s _ 1l om
SM :ﬁzi 1nisM
the pooled sample covariance matrix of M-estumator

Robust M-statistic based on S-estimator: Let p %" — %" be
a continuously differentiable, symmetric, non decreasing
function which has p(0) and is constant at p(x) = p(c)
for all x>c. The data set of n observation in % the
S-estimator (i £) 1s defined to mimmize | £ as follows:

n'lzp(d =

where, ¢ - /();,-M)' ! (x,40). Meanwhile, the constant of

by, is the predictable value from p(d). Specifically:

sz(v+2;02) V(V+2)xz(v+4;02)

b= 2 ) 26 ”
C
23w+ iy’ (veic’) &
V(VJr )(V+6C)4x (VJr : )+06 [1—?62(\1,02)}

denoted as the cumulative
variable on v degrees of

where, yi(v, ) is
distribution for a %’
freedom.

Additional, the choice of ¢ depends on the
preferred BP for the estimate (Aslam and Rocke, 2005;
Campbell et al., 1995, Rousseeuw and Yohai, 1584).
Aslam and Rocke (2005) have presented translated
biweight (t-biweight) which delivers the lowest sensitivity
to outliers for a given BP. The t-biweight function (a, b) is
as follows:

High BP and equally good behaviowr with
uncontaminated data sets are the basic elements for a
good robust estimator (Mili and Coakley, 1996, Aelst and
Willems, 2005). According to Lopuhaa (1989), the BP
(known as the percentage of outliers) in the sample that
an estimator can dealing with is approximately 50%.
However, Sakata and White (1998) stated that the BP of
an estimator may take different values depending on the
contaminated data at wlich 1t 1s evaluated.

Let M; represents as the robust Box M-statistic based
on S-estimator. The covariance of S-estimator, Sy where,
i=1,2, ..,m is used and introduced into Eq. 1. Thus, the
statistic for My is as follows:

3

8(1)
Where:
g =

5

i Ma

1
E S(i)

the pooled sample covariance matrix of S-estunator.
RESULTS AND DISCUSSION

Evaluation of the proposed Box M-statistic: The
performance of robust estimator isassessed using type 1
error (&) rate. The type 1 error also known as false alarm
rate 13 used to compare the performance of M, and ML,
This error can be denotes as the probability that the null
hypothesis is rejected when it is true. Generally, the
significance levels are set comparatively low at 0.01, 0.05
or 0.10. The smaller the value of ¢, the more confidence
that H, 15 really false when it has been identified. The
type 1 error value becomes larger if the procedure 1s
unstable due to increasing in variability. Inflated false
alarm rate can lead to unnecessary procedure
modifications and loss of confidence in the control chart
as a monitoring tool (Chang and Bai, 2001). Hence, a
method which can control the false alarm rate at the
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n=10 n=20 n=30 n=40 n=>50 n=100
e M Iy L M My L M Iy L M My M M Iy L M Iy L
0
&) 0.0454 00459 00499 00443 00478 005610 00475 00471 00499 00438 00527 00473 0.0498 0.0492 0.0457 00478 00455 0.04990
3 0.0438  015%4 00493 00305 023%4 005340 00458 02164 00493 00471 02076 00473 Q0486 02394 00302 00294 01084 0.050%0
5 0.4%7 01793 00511 00510 02449 003590 00477 02395 0462 00453 022535 00473 Q0453 02449 00262 00259 01502 0.04840
0.05
3 0.1373 02502 00635 00354 03376 004590 00353 02764 00396 00363 02812 00468 0.0353 0.3498 0.0&70 03376 02728 0.03260
5 0.1397 02846 01083 00361 03382 004324 00367 02995 00408 00343 02832 00494 0.0317 0.4590 0.0378 03369 025938 0.03398
0.1
3 0.0382 02801 00458 03730 02564 004640 00363 0294 00459 00396 0.2891 00272 00299 Q3682 00425 02564 02460 0.04310
5 0.0350 02988 0.053 03687 02827 004890 03670 03827 00457 03389 03572 00493 00322 06774 00584 02827 0.265%  0.03900
0.15
3 0.0383 0.2955 00430 00378 0294 004620 03250 03376 00454 03641 03342 0.0595 0.0305 07366 0.0284 02964 02527 0.03010
5 0.0371 03076 00457 00366 02995 004710 00348 03362 00446 00353 03312 00379 00319 08958 00299 02995 02765  0.02930
02
3 0.0370 02987 00422 00393 02121 004930 00342 03593 00437 00332 03801 00369 00284 Q5230 00293 02121 02609  0.03640
5 0.0388 02817 00437 00385 02096 0.05030 0.0342 03477 00419 00324 0305 0.0386 0.0293 0.2310 0.0363 02096  0.2784 0.03808
Shaded region indicate type 1 error within [0.025, 0.075]
Table 2. Type 1 error rate for variable, p =3

n=10 n=20 n=30 n=40 n=350 n=100
e s Iy L M My L s Iy L M My e s Iy L M Iy e
0
&) 0.0454 0.0527 00492 00443 00471 0.0581 00475 00459 00499 00438 00455 00473 00482 0.0423 0.0539 0.0505 Q.0510 0.0525
3 0.0438 02076 00493 00505 02184 00534 00458 01594 00493 00471 01084 00473 0.0467 02612 0.0497 0.4660 03376 0.0433
5 0.04%7 02255 00511 00310 02395 00359 00477 01799 0462 00459 01502 0473 00475 02832 00514 04670 Q3369 0.0481
0.05
3 0.0373 02612 00635 00354 02764 01039 00353 02502 00967 00363 02728 00463 00417 03342 01071 00349 Q02564 0.1342
5 0.0397 02832 01083 00361 02995 03324 00367 02846 04082 00343 02598 0.0%M8 0.0377 03312 04578 0.0364 0.2827 05006
0.1
3 0.0382 02891 00458 00378 0294 00464 00363 02801 0459 Q0396 02460 02727 Q0374 03801 00431 00338 0294 0.0529
5 0.0350 03372 00530 00360 03827 0048¢ 00367 02983 00457 00358 0.2653¢ 00493 Q0369 03050 00300 Q0353 02995 0.0607
0.15
3 0.0383 03342 00430 00378 03378 00462 00325 02955 00454 00364 02527 00954 0.0385 0.2527 0.0434 0.0360 0.2801 0.0374
5 0.0371 03312 00457 00366 03389 00471 00348 03076 00446 00359 02766 00379 0.0345 0.2766 0.0411 0.0347 0.2988 0.0388
02
3 0.0370 03601 00422 00398 03398 00493 00342 02967 00437 00332 02609 00382 Q0371 02609 00456 Q0349 02955 0.0357
5 0.0386 03050 00437 00365 03477 00503 00348 02817 00419 00324 02734 00386 00349 02784 00407 00334 03076 0.0357

Shaded region indicate type 1 error within [0.025, 0.075]

desired level 13 necessary to be examined. In this research,
the simulation is performed using MATLAB 7.8.0
(R2009a) with 10000 repetitions at sigmificance level,
® = 0.05 and the contaminated data ranging from £ = 0, 5,
10, 15 and 20%. The data set consists of different number
of variables which are small (p = 3 and 5), medium p=10
and 15) and large p = 20 and 30) as well as different size of
sample, n=5, 10, 20, 30, 40, 50 and 100.

If the observations of M,,/b and Myb, respectively
are rejected by the critical value, it would be considering
as outliers and recommended to remove from the data
set.

To examine the effect of outliers on the statistic
performance we have considered a contaminated model
used Alfaro and Ortega (2009) as follows:

(1-E)MVN, (0, 1, }+EMVN, (1,1, ) (4)

Where:
£ = The proportion of contamination data
i = The shift in mean
I, = The identity matrix

For the purpose of comparison and checking on the
robust level the The Bradley’s criterion of robustness is

used as a reference. We can consider a procedure robust
if its empirical value of type 1 emror is between
03¢ &<l5e. Furthermore, the closer the value to «, the
more robust i1s the statistic. Therefore, when the
significance level is set at ¢ = 0.05, a statistic is robust
when the type 1 error is lies between 0.025 and 0.075.
Otherwise, a statistic 1s considered to be non-robust. The
values that closest to the significance level and within the
0.025 and 0.075 are shaded in the tables.

Table 1-6 recorded the type I error for each condition
are arranged based on the ascending number of variables,
namely small (p = 3 and 5), medium (p =10 and 15) and
large number variables (p = 20 and 30) witha = 0.05.
The first column in each table displays the percentage of
outliers (£) and followed by shift of mean (). The
following three columns record the type 1 error rates of
the M-statistic, MDM-statistic and M, statistics
investigated 1n this study. This situation 1s repeated for
different sample sizes.

In Table 1 and 2, there are 198 conditions involved in
assessing the robustness of statistic for small number of
variables (p = 3 and 5). There are 50 out of 198 condition
of Box M-statistic, 65 condition of M; statistic and 6 of
M, fall within the robust interval. However, when p =5,
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Table 3: Type I error rate for variable, p =10
n=20 n=30 n=40 n=>30 n=100

Q.
=

M ML 8 i M, s M . j M M, M, M M, M,

0.0443 0.0471 0.0561 0.04750 0.0459 0.0498 0.0438 0.0455 0.0473 0.0489 0.0500 0.0539 0.0505 0.0550 0.0525
0.0505 0.0560 00521 0.04090 0.05%4 0.0478 0.0471 01178 0.0469 0.0477 0.2076 0.0497 0.0460 0.2507 0.0430
0.0521 00356 0.0560 0.04547 0.0799 0.0462 0.0465 0.1502 0.0425 0.0493 0.2255 0.0524 0.0407 0.2898 0.0443

]

0.0394 0.2764 01039 0.1343 0.2502 00977 0.0366 0.2754 0.0488 0.0421 02612 0.0307 0.0354 0.3472 0.0322
00321 02995 03324 0.1567 0.2646 04802 0.0344 0.25%8 0.0548 0.0377 0.2732 0.0408 0.0354 03242 0.0562

0.0378 0.2964 00464 0.0378 02871 0.0450 0.0366 02136 0.0772 0.0750 0.2851 0.0402 01358 03112 0.0529

BTN R = R N = N ===
=

0.0343 03898 0.0489 0.0393 0.2988 0.0475 0.0358 02659 0.0498 0.0769 0.3562 0.0550 01353 0.3109 0.0671
15

03718 0.3468 00462 0.0925 0.2655 0.0455 0.0964 02527 0.0540 0.0850 0.3530 0.0452 03612 03452 0.0374

0.3666 03139 0.0471 0.0%48 0.3706 0.0435 0.0859 02766 0.0380 0.0845 0.2289 0.0401 0.3475 0.2987 0.0586
2

01398 03598 0.0493 01378 0.2967 0.0463 0.0932 0.2690 0.0369 0.371 0.3210 0.0455 03492 0.2760 0.0399

0.1365 0.3747 0.0503 0.1348 0.2817 0.0420 0.0924 0.2584 0.0386 0.349 0.3789 0.0471 03341 03219 0.0557

Table4: Type 1 error rate for variable, p = 15

n=20 n=30 n=40 n=>50 n=100
e/l i Iy 1, M Iy M, M My M, i Iy 1, M Iy 1,
0.0443 0.0471 0.0561 0.0475 0.0459 0.0499 0.0438 0.0455 0.0473 0.0489 0.0527 0.0539 0.0505 0.0527 0.0525
0.0505 0.064 0.0534 0.0458 0.1594 0.0493 0.0471 0.1084 0.0429 0.0467 0.3076 0.0497 0.0466 0.2976 0.0433
0.051 0.03395 0.0559 0.0477 0.1799 0.0462 0.0459 0.1502 0.0431 0.0475 0.3255 0.0514 0.0467 02455 0.0421
05
0.0354 02784 01039 0.0353 0.2502 0.0967 0.0363 02728 0.0488 0.0417 03612 0.047 0.0349 02612 0.0342

00361 02995 03324 0.0367 0.2646 04082 0.0343 0.25%8 0.0481 0.0377 0.3832 00478 0.0354 02732 0.0508

[ = R N = B =R R i~ R E R P iy =]
[

0.0378 02964 0.1464 0.0368 0.2801 0.0459 0.03% 0.248 0.0727 01374 0.2891 0.0431 03518 0.2898 0.0529

0.036 03827 01488 0.0367 0.2588 0.0457 0.0358 02659 0.0458 0.136% 0.3572 0.0500 03536 03472 0.0607
15

0.0378 0.337¢ 00462 0.0325 0.2955 0.0454 03641 02527 0.054 0.2385 0.3342 0.0434 01358 03242 0.0374

0.0366 03389 0.0471 0.0348 0.3076 0.0446 03591 02766 0.0379 0.2345 03312 0.0411 0.1347 03112 0.0386
2

0.0398 03598 0.0493 0.0342 0.2967 0.0437 03322 0.2609 0.0369 01371 0.3601 0.0456 02349 0.3109 0.0397

0.0365 03477 0.0503 0.0348 0.2817 0.0419 03242 0.2784 0.0386 0.134% 0.315 0.0407 0.2334 03452 0.0357

Table 5: Type 1 error rate for variable, p =20

n=40 n=>50 n =100
el M i I, M Il I, M i I,
0
&) 00438 0.0455 0.0473 0.0489 0.0566 0.0532 0.0505 0.0521 0.0525
3 0.0471 0.1084 0.0473 0.0467 0.2728 0.0457 0.0466 0.2189 0.0423
5 0.0459 0.1502 0.0473 0.0475 0.2598 0.0514 0.0467 02276 0.0481
0.05
3 0.0633 02728 0.0468 0.0417 0.2967 0.0357 0.0349 0.2177 0.0342
5 02431 0.2598 0.0948 03377 02817 0.0457 0.0364 0.2955 0.0506
0.1
3 0.3963 0.2460 0.2727 03742 0.2801 0.0431 0.0358 0.3076 0.0529
5 0.3581 0.2659 0.0498 0.0369 0.2988 0.0500 0.0353 0.2967 0.0607
0.15
3 0.0364 0.2527 0.0954 0.0385 0.2609 0.0434 0.2360 0.2817 0.0347
5 00352 0.2768 0.0372 0.0345 02784 0.041m 0.2347 0.2385 0.0336
02
3 0.0332 0.2602 0.0362 0.0371 0.0967 0.0458 0.3490 0.2345 0.0377
5 0.0324 02784 0.0386 0.0349 0.4082 0.0407 0.3534 0.1371 0.0357

Shaded region mdicate type 1 error withn [0.025, 0.075]

Table & Type 1 error rate for variable, p =30

n=40 n=>350 n=100
e M My M, M o M, M My M,
0
&) 0.0524 0.0500 0.0492 0.0508 0.0499 0.0525 0.0456 00478 0.0525
3 0.0600 0.1928 0.0493 0.0498 0.1084 0.0333 0.0486 0.2659 0.0413
5 0.0588 01422 0.0462 0.0492 0.1502 0.0421 00422 0.2527 0.0461
0.05
3 0.0552 0.3995 0.0967 0.0424 02728 0.0342 0.0384 0.2766 0.0342
5 0.0530 0.3343 0.4082 0.0498 0.2598 0.0426 0.0414 0.2609 0.0406
0.1
3 0.5945 0.2298 0.0459 0.4887 0.2460 0.04398 0.4827 0.2734 0.0529
5 05241 0.2054 0.0457 043912 0.26359 0.0607 04312 0.3995 0.0547
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Table 5: Continue

n=40 n=>50 n =100
e s My e s Iy e s My e
0.15
3 0.5478 0.2706 0.0454 0.4685 0.2527 0.0374 0.4786 0.3343 0.0374
5 0.5223 0.2634 00448 0.4245 02766 0.0388 04702 0.2298 0.0336
0.2
3 05165 0.2209 0.0437 04842 0.2609 0.0487 04068 0.2967 0.0397
5 0.529 01256 00412 04761 02784 0.0657 04721 0.2817 0.0357

Shaded region mdicate type 1 error withn [0.025, 0.075]

there are 65 conditions of Box M-statistic, 55 condition of
M, statistic and 6 of M,; fall within the robust interval. As
a conclusion, the type 1 error rate for small number of
variables show that M, statistic is robust when p = 3 while
box M-statistic is robust when p = 5.

In Table 3 and 4, there are 165 conditions involved 1n
evaluating the robustness of statistics for medium number
of variables (p = 10 and 15). There are 33 out of 165
conditions of Box M-statistic, 51 conditions of M
statistic and 8 of M, that fall within the robust interval.
Meanwhile, for M,; M-statistic has 35 conditions that fall
within the robust interval compared to M, statistic has
only 49 conditions and 8 of M, fall within the robust
interval. Thus, we concluded that M, statisticis more
robust by compared to all other statistics.

When p = 20 and 30, Box M-statistic has 13 and 15
out of 99 conditions that fall within robust interval,
respectively. Meanwhile, for both p, all the conditions 33
for M, statistic are fall within the robust interval. For M,
has 5 and 3 fall within the robust interval. Therefore, we
summarized that M, statistic is a powerful robustness in
large number of vanables.

CONCLUSION

Box M-statistic 1s known as a test for testing two or
several covarlance matrices, under conditions of
non-normality, this test 1s known to under perform. Other
test statistics are suggested to produce active methods
regardless of the conditions. In this research, we
proposed other procedures to the box M-statistic by
using a robust estimator known as the S-estimator for
scatter matrix. The S-estimator has the properties such as
the affine equivariant and a lngh BP and has a better
calculation. The performance of the suggested robust
test by usmng the S-estimator (M; and by using the
M-estimator (M) was compared with the Box M-statistic
in terms of the type 1 error rate. The result study showed
that Mj statistic performs well in terms of controlling type
1 errors.
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