Tournal of Engineering and Applied Sciences 13 (5): 1064-1072, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Big Data-based Log Collection and Analysis in IoT Environments

Dong Jin Shin, Jong Min Eun, Ho Geun Lee, Myoung Gyun Lee,
Jeong Min Park and Jeong Joon Kim
Department of Computer Science and Engineering, Korea Polytechnic University,
Gyeonggi-do, 15073 Siheung-si, Korea

Abstract: Recently, various new technologies such as A1, IoT, cloud and big data are being developed 1n line

with the 4th industrial revolution. As the amount of various sensor data based on IoT is mcreased, many
techniques are required to collect and analyze the data. Therefore, we want to present the analysis results

through processing of big data. In ToT, sensor data can be various kinds and quantities such as ultrasonic
waves, infrared rays, cameras and vibrations. This type of mformal data 1s difficult to obtain the desired
analytical results when applied to a general analysis program. In this study, we mnplemented a system that
processes informal data by collecting, storing, processing and analyzing data. We used Raspberry Pi in ToT and
generated web server log data. The generated web server log data is collected in real time using flume, a
collection solution of ig data. Storage is stored in the HDFS of the hadoop solution and the unwanted
properties are refined through processing solutions Hive and Pig. At the end of the final refine process, we

analyzed the files with R programming and Spark.

Key words: Big data, [oT, sensor data, informal data, analysis, Korea

INTRODUCTION

In recent years, revolutionary changes in information

and communication technologies such as computers have
been taking place due to the development of various new
technologies such as Ai, ToT, cloud and big data in
the 4th industrial revolution. Sensor data is generated
using ToT in various fields. Sensor data processing such
as temperature, ultrasound, mfrared, camera and vibration
must be analyzed quickly and accurately mn each field.
Because sensor data is mostly informal data using big
data enables qualitative analysis rather than general
analysis. Big data i1s recognized as a trend mn data
collection and analysis solutions used in today’s diverse
fields and 1s applied to various areas that require formal
and informal data analysis. Unlike traditional analysis
solutions, large amounts of data are stored in a distributed
manner, so, storage space efficiency and analysis speed
are different (Dong-Beom et af., 2017, Jeong-joon,
2010).

In this study, web server 1s installed among various
sensor data generated by Raspberry Pi to generate log
data. The generated log data 1s stored in real time in HDFS
of hadoop storage space using flume, a real-time
collection solution of big data. Distributed stored logs on
web server are refined using Hive and Pig processing
solutions. First, the logs stored in HDFS typically use

Hive-supplied ‘RegexSerde’ regular expressions to
receive data in tabular form and store it in HDFS with a
new delimiter specified. Second, secondly, it uses Pig,
loads the re-stored files into memory, refines unnecessary
attributes and stores them m HDFS. The final refined
file is stored in CSV format, separating the attributes
based on comma (,) mn order to convemently code in R.
We analyzed the frequency of access through R
programming with the final refined CSV file. Also, the
contents of the most frequently accessed pages
were analyzed using Spark (Kim, 2014; Dong-Gon Kim,
2013).

Literature review

Big data collection solution: What 1s important in
processing based on big data is the collect of data. Data
1s collected using the big data solution, stored in hadoop
and processed and analyzed. Big data collection solutions
include ‘crawling’” using Python, “Sqoop” for collecting
relational databases and ‘Flume’ for collecting logs. This
study refers to the flume solution for log collection. Flume
is a solution that efficiently collects large amounts of log
data and collects large amounts of log data distributed to
a large number of servers into repositories. Flume consists
of three layers: source, channel and smk. Figure 1 shows
an example of a structure using flume (Han et al.,
2014).

Corresponding Author: Jeong Joon Kim, Department of Computer Science and Engineering, Korea Polytechnic University,

Gyeonggi-do, 15073 Siheung-si, Korea

1064

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

Web server
Agent
Fig. 1: Structure using flume
Client NameNode
Secondary
DataNode DataNode DataNode
node

Fig. 2: Distributed storage configuration using hadoop

Big data storage solution: Hadoop stores data in HDFS,
a distributed system that supports distributed storage and
processing and processes the data using MapReduce.
HDFS consists of NameNode and DataNode. NameNode
manages meta data to maintan the file system and
momitors the data nodes. DataNode 1s a file stored in
HDFS and the block size is distributed based on the basic
64 MB. Among them, SecondaryNode acts as NameNode
when NameNode is down. Figure 2 shows the distributed
storage structure of hadoop (Lee and Lee, 2015).

MATERIALS AND METHODS

Big data processing solution: MapReduce 1s primarily
used to process big data processing solutions. Pig is one
of the sub-projects that make up hadoop. Tt is based on
MapReduce-specific development tool level and consists
of a high-level scripting language. Hive provides data
summarization, query and analysis capabilities such as
relational databases. Pig’s main hierarchy is composed of
compilers and creates data conversion procedures for
MapReduce programs for massively parallel processing.
Hive provides a SQL-like language in a relational
database called HiveQL and supports all the features of
MapReduce. Figure 3 shows the processing structure
using Hive and Pig (Kim and Bahn, 2013).

Block A
| B Block B

4 Pig Latin (Script) HiveQL(SQL}\
Client libraries /
[Pig] [Hive)
- J
s > 4 N
[MapReduce j
Hadoop cluster
HDFS
L)

Fig. 3: Data processing configuration through Pig and
Hive

Big data analysis solution: Big data analysis solution
include R programming and Spark which are mamly used
in statistics. R is a language that provides functions such
as statistics, visualization and data mining with processed
and refined data. This 1s the language used in the
statistics industry and has attracted attention as a
large-scale data analysis that needs to process large
amounts of data in recent years. Spark is also a high
performance cluster computing system for general use.
Spark 15 an optimized engine that provides lugh-level
APTs written in Java, Scala and Python and supports
common execution graphs. Tt also supports rich advanced
tools such as spark SQL for SQL and structured data
processing, MLIib for machine learming, graph X for graph

1065

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

@67 oMonday
O Tuesday
O Wednesday
8 Thursday
B Friday
4 -
$
=
S
2 -
0

T T T T
Monday Tuesday Wednesday Thursday Friday

Cars variables

(b)

Milib
Spark . GraphX
Spark SQL streaming (1];2?;!125 (graph)

Apache spark

Fig. 4: R and spark visualization and structure: a) Car variables and b) Spark visualization

processing and sparlk steaming for real time processing.
Figure 4 shows an example of the results to be analyzed
and the processing structure of Spark (Kim, 2014).

RESULTS AND DISCUSSION

Big data-based log collection and analysis process using
ToT

System configuration diagram: The process of collecting
and analyzing logs based on big data using loT proposed
i this document 1s to create a random home page by
installing a web server on RaspBerry Pi. Logs
accumulated through the generated homepage are
collected mn real time through “Log real-time collect
manager”. The collected logs are distributed and stored
through the “Data store manager”. Distributed logs are
refined through “Data process manager”. Once the final
processing is complete, the analysis results are visualized
through the “Analysis manager”. Figure 5 shows the
overall configuration.

RaspBerry Pi: Among the big data processes proposed
n this study, data is generated using RaspBerry P1 among
ToT related devices. The type used was Pi3 Version and T
installed Apache web server by installing Ubuntu After
the installation was completed, a homepage was created
and a log was generated. In The overall configuration
means using more RaspBerry Pi but omitted in
Fig. 5.

Log real-time collect manager: Logs generated by
RaspBerry Pi’s web server are transmitted through the
“RaspBerty Pi Agent Module” of “T.og Real-Time Collect
Meanager”. The transmitted data log 13 again completed
through the secondary transfer of “NameNode Agent

Module”. This process is performed in real time and the
transmitted logs are transferred to “Data Store Manager™.

Data store manager: “Data store manager” is a manager
that distributes automatically stored when logs are
transmitted m real time. This structure 15 composed
“Fully-distributed operation” and it 1s distributed and
stored through four nodes of the actual computer.

Data process manager: “Data process manager” 1s a data
processing manager stored i HDFS. The primary
processing is a “Table import module” that uses Hive to
input a file in the form of a table. The second process is a
“Process Module” that uses the Pig to refine the
properties. Finally, it consists of a “file conversion
module” that converts the file to CSV format for
analysis.

Analysis manager: “Analysis manager” 1s analyzed
through R programming and spark. The analysis consists
of “Access per hour module” for checking the frequency
of visits per hour during the day and “Access per O3
module” for checking the operating system frequency by
day. “TP Top N module” analyzes the maximum number of
connected TPs. Finally, it consists of a “WordCloud
module” that checks the frequency of pages accessed
using spark.

System operation process

System log collection process: The real-time log
collection process used flume among the big data
collection solutions:

» Step 1: RaspBerry P1 Agent Module
» Step 2: NameNode AgentModule

1066

J. Eng. Applied Sei.,

13 (5): 1064-1072, 2018

[RaspBerry Pi Log real-time

L—

Log — |

llect manager ————
web server RaspBerry Pi > Na_m(?Node =
agent module

Data store manager Analysis manager

—
DatalNode Access per hour

module

module

RaspBerry Pi Data3Node Access per OS
/ agent module

RaspBerry Pi ° v
Apache : Data process manager P TopN module
web server [Table import] [File conversion]
module module
Log 4

v
NameNode
agent module

< WordCloud module

Fig. 5: Expression that determines the initial number of buckets

Step 1; RaspBerry Pi agent module: Install the flume of
each RaspBerry P1i and set up as shown i Algorithm 1.

Algorithm 1; Flume setting command of RaspBerry Pi:
1

. agent02.sources.execGenSrc.type = exec
agent02.sources. execGenSre. command = tail-FAvar/log/apache2/ac cess.log
2. agent02.sources.execGenSrc.batchSize = 1000
agent02. sources. execGenSre.channels = memoryChannel
3. agent02.sinks.avroSink.type = avro
agent02.sinks.avroSink. hostname = 192.168.40.11
agent02.sinks. avroSink.port = 33333
agent02.sinks.avroSink.batch-size = 1000

The configuration of the stream that transmits
RaspBerry Pi’s log file in real time using flume is
composed of source, channel and sink. Sources is a part
that receives events from external sources. It reads
‘fvar/log/apacheZ/access.log” which 15 the path where
RaspBerry Pi’s installed web server logs are accumulated,
by reading the Linux ‘tail” command The channel
temporarily stores the event and sends it to the sink. It is
implemented as a queue in memory as above. The sink
part 1s an external part for outputting events. NameNode
sends “192.168.40.11° TP and random port address for
33333 and the number of events that can be received 1s
1000 (Algorithm 2).

Algorithm 2; Flume setting command of NameNode:

1. agentOl.sources.avroGenSrc.type = avro
agent01.sources. avroGenSrc.bind = 192.168.40.11
agent0l.sources.avroGenSrc.port = 33333

2. agent01.sources.avroGenSre. charmels = memory Charmel
agent01.sinks HDFS.type = HDFS

3. agent01.sinks HDFS hdfs.path = hdfs:/master: 5000/ web 1
agent01.sinks. HDFS hdfs. writeFormat = text
agent01.sinks. HDFS hdfs.batchSize = 1000
agent01.sinks. HDFS hdfs.rollSize = 0
agent01.sinks. HDFS. hdfs.rollinterval = 600

Step 2; NameNode AgentModule: The events output
through the RaspBerry Pi agent module sink are received
by the source part in the NameNode flume structure and
the IP and port to receive the event are specified. The

memory channel used is implemented in the same queue.
In the NameNode, the sink part specifies the address of
the master node used for distributed storage in HDFS and
the path where the file will be stored. Finally, the log file
format accurnulated in HDFS 1s set to text, the number of
events 18 limited to 1000, the file size is irelevant and after
10 min, the file is saved as the next file.

System log store process: Logs collected in real time are
distributed and stored in HDFS of the storage process,
consisting of four nodes in hadoop ‘Fully-Distributed
Operation’. Figure 6 shows that the data 1s distributed and
stored.

The path stored through the NameNode Agent
Module can confirm that the data has been collected in
the path “/webl’ under the root. You can see the data
collected through flume. It 15 saved in number format.
Figure 7 shows the log data collected with the ‘cat’
command.

The format of the collected log data is as follows.
“Remote host, identity, user, time, request message,
status code, size, referer URL, user browser”. The remote
host is the TP of the connecting client, the user name and
the authenticated user name refer to the user name of the
comecting host. Tine 1s the requested time and date and
is collected in Unix time. Also, the request page is the
page address used by the connected client and the status
code is the HTTP status code and 200 means that the
request 18 normally completed. The transmatted size 1s the
byte size excluding the header from the requested page,
the referenced URL is the previous URI, and the
requested browser 1s the version of the browser used by
the client.

System log processing process: The process of
processing distributed log data 1s processed through
three processes m total:

1067

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

hadoop@hadoop-name:~$ hadoop fs
17/12/88 14:05:31 WARN util.MativeCodeloader: Unable to load native-hadoop 1libra

ry for your platform...
Found 13 items

~FW=r==r=-~
B557743271
~FW=r==r==
8558291584

-TW-T--r--
0560248310
-TW-T--r--

hadoop
hadoop
hadoop

hadoop

supergroup

supergroup

supergroup

supergroup

-1s [web1l

7084

6318

1480

7212

52239

hadoop supergroup
0562161529
-TW-T--r--
0563548065
-TW-T--r--
0564453286

hadoop supergroup

hadoop supergroup

Fig. 6 Verifying files stored on HDFS

Identity m m

hadoop@hadoop-name:~$S haduop fs
17/12/08 14:23:15 WARN util.NativeCodelLoader:
ry for your platform...

Remote Host

/192.168.0.23/top.htmL"
37.36 (KHTML,
192.168.0.27 -
2.168.0.23/Admission_Guide.html"
eWebKit/537.36 (KHTML,
192.168.0.27 -
T 10.0; Win64;
afari/537.36"
152.168.06.27 - -

- 1510557742 "GET / HTTP/1.1"
x64) AppleWebKit/537.36 (KHTML,

1518557742

Gecko) Chrome/62.0.3202.89 Safarif537.36"
192.168.0.27 - - 1510557742

23087

8865

Request Message

"GET /ftop.html HTTP/1.1"
23/" "Mozilla/5.0 (Windows NT 10.8; Win64;

200 1687
x64) AppleWebKit/537.36 (KHTML, like

"GET fmain.html HTTPf1.1"

using builtin-java classes where applicable

2017-11-13 16:28 fwebl/FlumeData.151
2617-11-13 16:41 fwebl/FlumeData.151
28017-11-13 16:51 fwebl/FlumeData.151
2017-11-13 17:14 /webl/FlumeData.151
2817-11-13 17:46 [webl/FlumeData.151
2617-11-13 18:09 /fwebl/FlumeData.151

2017-11-13 18:24 /[webl/FlumeData.151

| Status Code [Size

/ i

-cat /webl/FlumeData‘151@55?7432?1

Unable to load native-hadoop libra
using builtin-java classes where applicable
192.168.0.27)- |- 1510557736 |"GET /Admission Guide.html HTTP/1.1" 260|646 |"http:/
"Mozilla/5.8 (Windows NT 18.0; Win64; x64) AppleWebKit/5
Llike Gecko) Chrome/62.0.3202.89 Safari/537.36"

- 1518557736 "GET jimage/2-1.PNG HTTP/1.1" 200 1357986 "http://19
"Mozilla/5.0 (Windows NT 18.0;
like Gecko) Chrome/62.0.3202.89 Safari/537.36"
200 541 "-"

Referer URL

Win64; x64) Appl

"Mozilla/5.8 (Windows N

like Gecko) Chrome/62.06.3202.89 S

"http://192.168.0.

200 649 "http://192.168.0.

23/" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/62.0.3202.89 safari/537.36"
Fig. 7: Check collected log data in HDFS

¢ Step 1. table import module
* Step 2: process module
* Step 3: file conversion module (Algorithm 3)

Algorlthm 3; Insert log data using Hive:
. hive 8ET hive.support.sgll1.reserved keywords = false
2. hive create table apache logl (host STRING, identity STRING, user
8TRING, time STRING, request STRING, status STRING, size
STRING, referer STRING, agent STRING)
ROW FORMAT SERDE ‘“org.apachehadoop.hive.contrib.serde2.
RegexSerDe’
WITH SERDEPROPERTIES (“inputregex” = "([* |% ([~ V]*
[Ty @ 19 (VTR TR 091 ([0-91%)
(AR (R, output. format. string”™ = “%61 38 20238
%3%s 20435 %0585 20635 %0785 208%s %093%s™) STORED AS TEXTFILE
. hive> LOAD DATA INPATH “Awvebl/#” INTO TABLE apache_logl
4. hive> nsert overwrite directory “/webl_output’ row format delimited
fields terminated by *|° select™fiom default.apache logl
5. hadoop s -1s fwebl output
-rwr-xr-x 3 hadoop supergroup 740160 2017-11-17 16:10
fwebl_output/000000_0

[

Step 1: Table import module: To enter data in a tabular
format using a hive, you can not specify the user and
identity values of the hive as attribute names. Create the

hive d apache logl table. The most important of these is
the ‘RegexSerDe’ format. For Apache weblog data, the
value that separates the attribute 1s a space of “\t”.
However, if there 1s a space between the attribute values,
it is difficult to distinguish all the attributes in the second
stage of the pig and to perform accurate segmentation.
Therefore, if you are using the ‘RegexSerDe’ format and
there are spaces in the long string, set the string to a
single property value. Enter the collected log data and
save 1t in the generated apache logl table. Save the
attributes of the apache logl table as pipe “|”. HDFS
‘fwebl output’ directory. If you search the file locally,
you can see that it is saved as ‘000000 O file
(Algorithm 4).

Algorithm 4; Process using Pig:

1. grunt> logl = LOAD *./000000_0° USING PigStorage(*|")

2. grunt> logl relation = FOREACH logl GENERATE $0 as
host:chararray, $3 as time:chararray, $4 as request:chararray, $5 as
status:chararray, $6 as size:chararray, $7 as referer:chararray, $8 as
agent:chararray

3. grunt> store logs] relation into “logl refile’ using PigStorage(®,”)

1068

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

Step 2: Process module: Tnput “000000 0 file saved in
“/webl output” mto the logl variable of pig. Use the Pig
Foreach syntax to refine (delete) the user and identity
attributes and then enter them in the logl relation
variable. HDFS “/logl refile’ Save the file by separating
the attributes m the
(Algorithm 5).

o
]

with commas directory

Algorithm 5; File CSV conversion process:

1. hadoop fs -ls /logl_refile/
-rw-r--r— 3 hadoop supergroup 111110 2017-11-27 16:20
fogl refile/ SUCCESS
-rw-r--r— 3 hadoop supergroup 740160 2017-11-27 16:20
fogl refile/part-m-00000
2. hadoop fs -getmerge /logl_refile/ ./logl_refile.csv
3. Is-al
-rw-r--r-- 1 hadoop hadoop 740160 Nov 27 16:21 logl refile.csv

Step 3: File conversion module: Check the “/logl refile’
directory i HDFS to see if there are any files created
through step 4 of step 2. Youcan see the file SUCCESS
and the generated file ‘part-m-00000" Converts the files
i the ‘/logl refile” directory in HDFS to a file called
logl refile.csv in the local which is the current directory.
If you verify the directory locally You can see that the
‘part-m-00000° file in HDFS is converted locally to
logl refile.csv.

System log analysis process: Performs four analyzes
based on the completed CS5V file. In the previous process,
only one log was processed. However, in the actual
unplementation, we performed four RaspBerry Pis and
as the entire code became longer, the analysis was
coded based on two or one RaspBerry PT units
(Algorithm 6).

600+
® Web server 1
| Web server 2
5004

400 1

300

Access

200 1

100

Algorithm 6; Access per hour module code:

1. LOGS =read.csv(*logl_refile.csv”, header = F)
LOGS2 =read.csv(“log2_refile.csv”, header =F)

2. vall <-LOGS$V2
val2 <- LOGR2§V2

3. vall 2 =as.POSIXct(vall, origin =*“1970-01-01"")
val2 2 =as.POSIXct(val2, origin =*“1970-01-01"")

4. hours = format (vall 2, “%6H™)
hours2 = format (val2 2, “%6H™)

5. plot (main = “Weekly access time”, xlab = “Time”, ylab = “Access”,
table (hours), type = 0", col =*blue”)

6. lines (tablethours2), type = “0”, col =*red™)

7. legend (“topright”, legend = ¢ (“Web Serverl”, “Web Server2”),
pch=¢(19,19), cex = 1, col = ¢ (“blue”,’red”))

First; Access per hour module: The header values of the
refined logl and log2 refile.csv are set to false and loaded
into the LOGS and LOGS2 variables. The second attribute
of the LOGS, LOGS?2 variable time value is entered in the
vall and 2 variables. Convert the Unix time values of vall
and 2 to year-month-day and enter them into vall 2 and
val2 2, respectively. Only “% H’ times of vall 2 and
val2 2 are converted to ‘hours’ and “hours2” variables.
Use the ‘Plot” function to visualize the graph for a few
hours first. Similarly, “hours2” is visualized with additional
colors. Use the ‘Legend feature to clearly display the
legend 1n the upper right corner of the graph.

Figure 8 is a graph showing the frequency of access
by time using the ‘plot” function. We checked the
frequency of access using two RaspBerry Pi and as a
result, we observed a large amount of connection in
afternoon time on web serverl. On the other hand, the
second web large amount of

server shows a

comection 1n the mormng, indicating that various
clients have accessed the web server at various times
(Algorithm 7).

0 T T T T T T T T T T

00 01 02 03 04 05 07 08 09 10

11 12 14 16

17 18

Time

Fig. 8 Access per hour module visualize graph; weekly access time

1069

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

Algorlthm 7; Access per hour OS module code:
L.OGS =read.csv(*logl refile.csv”, header =F)
#LOGS =read.csv(“log2 _refile.csv”, header =F)
2. x<-LOGS
3. blacklist <- ¢(“iPhone™)
blacklist2 <- c(*Windows™)
4. spam <- x[grep(blacklist,x$V7),]
spam2 <- x[grep(blacklist2,x$V7),]
5. LOGS$V2<-as.POSIXct(as.numeric(as.character(LOGS $V2)),origin =
“1970-01-017)
6. LOGS$V2 <- format{LOGS$V2, “%0A™)
7. dl <-subset(LOGS, V2 %6in%o o “‘monday™))
d5 <-subset(LOGS, V2 %6in%o o friday™))
8. Tl<-mrow(dl)
TS<-nrow(ds)
9. board <- ¢(T1, T2, T3, T4, T5)
10. names(board) <- c(“Monday”,“Tuesday”, “Wendesday™, “Thursday™,
“Friday™)

12. barplot(board3, beside = T, xlab = “Days”, ylab = “Access”,
col = c(**blue” “orange”,“vellow” “green™), las = 1, border = “gray”,
main =“08 visit frequency (PIE 27")

13. legend(*“topright”, legend = c(“Total”, “iPhone”, “Windows”),
pch=c¢(15,15,15), cex =1, col = c(*blue”,“orange”, “yellow™))

Second; Access per hour OS module: Read the CSV file
into the LOGS variable. You can annotate each of the two
RaspBerry Pis separately. If vou use a different P1, you
can set the annotations to reverse. Enter the LOGS
original in the x variable. Set the classification of the
operating system to use and store it in the blacklist
variable. In this case, we set three filtering words: iPhone,
Windows and Linux. In the blacklist variable, information
of the used browser which 1s the 7th attribute 1s Grep the
three words specified in filtering and store them i the
new variables spam, spam 2, 3. Convert the second
attribute of LOGS, Unix time, into year-month-day. Only
re-convert the second attribute’s day of the week. Enter
data for each day of the week in the variables dl-5.
Measure the number of values stored in variables d1~d5
and store them in variables T1~T5. Set the value of the
number of the board variable to a vector. Name each row
in the beard vector. Since, it is a process of repeating
the conversion only to spam 2 and spam 3 set in some are
omitted. Visualize the connection frequency information
of OS by graph using barplot function. When the
visualization 1s completed, add a legend to the upper right
corner to confirm the graph classification.

Figure 9 is a graph visualizing the frequency of
operating system accessing the web server using the
barplot function. Tf you check the frequency of the
operating system accessing your web server, you will see
that most clients are mostly connected through Windows.
There are similar connections on Monday and Tuesday
and on Wednesday there are more connections to the
web server than any other day. In particular, only client
connections using Windows have been confirmed on
Friday and access to customers using the 1iPhone has not
been confirmed. Most customers can conclude that they
are trying to comnect to a web server from a desktop
browser instead of a mobile browser (Algorithm 8).

12007 5 Total

10004 O iPhone
L 800- o Windows
S 600
< 400

200 |_| |_|
0 L Ll T
Mondav Tuesday Wednesday ~Thursday — Friday

Days

Fig. 9: Access per hour OS module visualize graph; OS
visit frequency (PIE 1)

1P
0192.168.0.10 @192.168.0.123
0192.168.0.13 @192.168.0.142
0192.168.0.177 m192.168.0.178
2192.168.0.19 m=192.168.0.34
m192.168.0.82 @192.168.0.9
0

Fig. 10: TP top N module visualize graph

Algorithm 8; IP TopN module:

1. logl <- read.csv(*logl refile.csv”,colnames = c(*ip”,"time”, “line”,
“hp_status” bytes” “URL™08™)

2. ip_count <- logl %% group by (ip) %6+% summarise(N = n())

3. ip_top_N <- ip_count %0>% arrange(desc(ip_count$N)) %6>% head(10)

4. geplot(ip_top_N ,aes(x ="y =N, fill =ip_top_N))t+geom_bar(stat =
“identity”,width = 1)+coord_polar(theta = “y™)

Third; IP top N module: Read the CSV file mto the logl
variable. Name each property. Analyze the top 10 IP using
only the IP attribute. Calculate the number of each group
by grouping the TP attribute in logl with the ip count
variable. Sort ip Top N variable to the number of
grouped TP in 2. Draw a circular graph using the ggplot
function with the number of sorted 1ip_top N.

Figure 10 1s a graph visualizing the IP count of the
client accessed through the color difference using the

1070

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

ggplot function. If you check the TP top 10 frequency of
connecting web server, 192.168.0.10 client has the most
connection and 192.168.0.9 client has the second most
connection. From the third, we could see that the majority
of clients with similar frequency were approaching.

Fourth; WordCloud meodule: The last analysis,
WordCloud module was used sparlk and the programming
language used Pyspark which is a combination of spark
and Python. In order to visualize the result screen, we
built Pyspark environment by installing Matlotlib
package, Ipython package for using Python in the Linux
shell console screen and WordCloud package for analysis
Algorithm 9 shows the code for WordCloud module
analysis by executing Pyspark.

Algorlthm 9; WordCloud module code:
File = sc.textFile(*/logl refile/part-m-000007")

2. File.first()
u’192.168.0.27, 1510557736,
HTTP/1.1, 200, 646, ...,

3. split_File =File.map(lambda line: line.split(“,”))

4. access_page = split_File.map(lambda fields: fields[2])

5

6

GET/Admission Guide.html

access_page.saveAsTextFilet/word™)

hadoop fs-1s/word/

hadoop fs-getmergesword/* ~/refile/word
7. import matplotlib.pyplot as plt
8. from wordcloud imp ort WordCloud
9. text = open(*/home/Madoop/refile/word™). read()
10. WordCloud = WordCloud(background color = *white™). generate(text)
11. plt.figure(figsize = (12, 12))
12. plt.imshow(wordcloud, interpolation = “bilinear’™)
13. pltaxis¢off™)
14. plt.show()

Through step 2 of the process, the final tabulated file
saved in HDFS is loaded into the file variable. Print the
first value of the file with the first() function, see that, it
was input normally. Also, we can confirm that the third
attribute is needed to analyze the frequency of accessed
pages. Split the variable split File with the comma “,”. In
Spartk, since, the start of array starts from 0, enter the
attribute of in access page variable. Save the entered
variable to the word directory under HDFS root. On Linux
locally, use the hadoop ‘getmerge’ command to split the
files m the/word directory in HDF'S through to merge them
together and store the filename m the/refile path under the
local home directory as word. Go back to the Pyspark
console screen and import the matplotlib package for
visualization of results as alias plt. Import the WordCloud
package for analysis. Load the locally stored ‘word’ file
through into the text variable. Run the WordCloud
package on the wordcloud variable, the background color
15 white and the text to load brings up the text variable.
Call up the plt specified as an alias and specify the size of
the wvisualization result screen. Outputs wordelouded
content through the imshow() function which enhances
the clarity of the text. Delete the horizontal and vertical
variable values of visualization output. Finally, output the
above visualization picture.

Fig. 11: WordCloud module visualize result

Figure 11 shows the frequency of page accesses using
different packages in Pyspark. When you check the
visualization results, many words related to HTTP1, GET
and png are output. That means you’ve got a lot of
access to the pages associated with the image.

CONCLUSION

In this study, implemented and analyzed with hadoop,
a representative solution of big data, flume, a real-time
collection solution, Hive, Pig in processing and R and
Spark in analysis. In general analysis when log data 1s
accumulated, it is input to the program according to the
necessary timing to produce analysis result. Also, the
more log data, the more time it takes to analyze and the
cost of storing log data will increase. However, if the log
data is collected in real time through the processing of big
data and distributed using four nodes, 1t is possible to
have more capacity in terms of capacity. In addition, it is
possible to refine collected log data differently from
general analysis, so that, users can analyze more
variously.

Currently, real-time analysis of big data 1s required in
various service fields. This analysis is based on the user’s
feedback on the service, It will contribute to the selection
of mmprovement direction of various analysis platform.
Also, applying machine learning technicque to big data will
be a leader in data security by enhancing enterprise value
through backup of data by predicting server load in the
future and applying new attack defense method in terms
of security.

RECOMMENDATIONS

In the future, we will implement a fast and efficient
analysis system by collecting sensor data from various
ToTs. In addition, we will apply machine learning method
to log collection and analysis system and aim at
realization of accurate service platform by analyzing more
various prediction analysis and abnormal behavior
detection than statistical analysis.

1071

J. Eng. Applied Sci., 13 (5): 1064-1072, 2018

REFERENCES

Dong-Beom, K., K. Tae-Young, K. Jeong-Joon and
P. Jeong-Min, 2017. Sensor data collecting and
processing system. Asia Pac. J. Multimedia Serv.
Convergent Art Humanities Sociclogy, 7: 259-269.

Dong-Gon, Kim, 2013. A study on application cases of big
data log analysis. Master Thesis, Department of
Computer Engineering, Graduate School of Industry
and Technology, Chonnam National University,
Gwangju, South Korea.

Han, K. H., H.J. Jeong, D.5. Lee, MLH. Chae and C.H. Yoon
et al, 2014. A study on implementation model for
security log analysis system using big data platform.
. Digital Convergence, 12: 351-359.

Teong-Joon, K., 2010. Efficient processing of aggregate
queries in wireless sensor networks. PhD Thesis,
Computer & Information Communication Engineenng,
Konkuk Umversity, Seoul, South Korea.

Kim, I. and H. Bahn, 2013. An efficient log data
management architecture for big data processing in
cloud computing environments. J. Inst. Internet
Broadcast. Commun., 13: 1-7.

Kim, I.S., 2014. Big data analysis technologies and
practical examples. Korea Contents Assoc. Rev., 12:
14-20.

Lee, S.J. and DH. Lee, 2015. Real time predictive
analytic system design and implementation using Big
data-log. T. Korea Inst. Inf. Secur. Cryptology, 25:
1399-1410.

1072

	1064-1072 - Copy_Page_1
	1064-1072 - Copy_Page_2
	1064-1072 - Copy_Page_3
	1064-1072 - Copy_Page_4
	1064-1072 - Copy_Page_5
	1064-1072 - Copy_Page_6
	1064-1072 - Copy_Page_7
	1064-1072 - Copy_Page_8
	1064-1072 - Copy_Page_9

