Tournal of Engineering and Applied Sciences 13 (5): 1057-1063, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Development of Distributed DBMS Based Duplication File Removal Techniques

Jeong-Joon Kim and Jeong-Min Park
Department of Computer Engineering, Korea Polytechnic University,
Gyeonggi-do, 15073 Siheung-si, South Korea

Abstract: By using the server for a long time, various files are created and saved in various folders. Also in the

case of a data server, overlapping files become increasing through a large amount of uploading which may
result in space shortage. The server PC needs data deduplication technology for effective duplicate file
management and file service and various technologies such as MD3, hash, SHA]1, etc. are required for this. In
addition by using DBMS to store information of files, we try to provide a system that can mimmize duplication

when new files are created or modified.

Key words: Distributed DBMS, deduplication, recovery, SHA-Z, hash, SHAI

INTRODUCTION

As the server 1s used for a long time, various files are
created and stored in various folders. In addition, in the
case of a data server, redundant files are increased
through a large amount of uploads, resulting m a space
shortage (Kiun and Kim, 2016; Oh et af., 2012).

As the server is used for a long time, various files are
created and stored in various folders. Also in the case of
a data server, redundant files are mcreased through a
large amount of uploading, resulting in a case where the
space is shortened. Server PC needs data de-duplication
technology for efficient duplicate file management and file
service and various technologies such as MDS5, hash and
SHA]1 are required. Also, it is aimed to provide a system
that can mimmize duplication when creating new files or
modifymmg files by storing mformation of files using
DBMS (Moon ef al., 2007).

Literature review

Hash function and CRC (Cycle Redundancy Check): The
hash function produces fixed-size results by truncating,
substituting or repositioning variable-size data and this
result is often referred to as a hash value (Jung and Choi,
2014; Anonymous, 2018a). If the two hash values are
different, the onginal data for that hash value must also be
different (not reversed). The quality of the hash function
is determined by how little hash collision (when two
different hash values of the data are equal) in the expected
mput area. The more collisions, the more difficult it is to
distinguish between different data and the cost of
retrieving data increases. CRC is a method of determining
a check value for checking whether there is an error in

transmitted data when transmitting data through a
network or the like. CRC16 and CRC32. Before transmitting
the data, the CRC value 1s calculated according to the
value of the given data and the CRC value is added to the
data and the CRC value is calculated again as the value of
the data received after the data transmission. Then the
two values are compared. If the two values are different
from each other, it can be seen that an error is added due
to noise or the like during data transmission. CRC is easy
to implement in binary-based hardware and is excellent for
detecting common errors in data transmission. However,
due to the structure of the CRC, it is easy to create other
data with a given CRC value intentionally and therefore
can not be used to check the integrity of the data failure.

MD5 (Message-Digest Algorithm 5): A 128 bit
cryptographic hash function 1s used to process input
variable-size data into padding (data 1s divided into 512
lengths) and divided into 512 bit message blocks
(Anonymous, 2018b, 2017).

Padding first adds the first single bit 1 to the end of
the message and then pads it with zeros to a position that
15 64 bits less than the length of a multiple of 512. The
remaining 64 bits are filled with a 64 bit integer value
representing the length of the original (original) message.
It 18 used mainly for checking the integrity of programs or
files. In additien, hash collisions can occur and must be
implemented in little-endian fashion (Fig. 1).

SHA-1 (Secure Hash Algorithm): There are SHA-1 and
SHA-1 and SHA-2 (SHA256/224 and SHA-512/384) but
they are based on popular SHA-1 (Lee et al., 2010). Using
a 160 bit cryptographic hash function, the maximum input

Corresponding Author: Jeong Min Park, Department of Computer Engineering, Korea Polytechnic University,
237 Sangideahak-ro, Siheung-si, Gyeonggi-do, South Korea
1057

J. Eng. Applied Sci., 13 (5): 1057-1063, 2018

Message Message Last message .
block 1 block 1 part Padding
Cryptographic Cryptographic Cry ptog{'aphic
Start = function function function End
Fig. 1: Message-digest algorithm 5
Table 1: SHA-1 configuration
Hash value Inside condition Number of

Algorithms size size Block size length limit ~ Word size courses Used operation Crash
SHA-0 160 160 512 64 32 80 +, and, or, Xor, rotl Discovered
SHA-1 160 160 512 64 32 80 +, and, or, xor, rotl Offense of attack only
SHA-256/224 256/224 236 512 64 32 64 +, and, or, xor, shr, rotr -
SHA-512/384 512/384 512 1024 128 64 80 +, and, or, xor, shr, rotr

message size is limited to 2™ bits. The input variable size
data 1s divided mto n 512 bit blocks and processed by the
US standard encryption algorithm based on MD4. Tt is
somewhat slower than MDS5 but 1t keeps large
message summaries safer when subjected to violent
collisions and strikes. Finally, it must be implemented in
big-endian fashion (Anonymous, 2017, Lee et al., 2010)
(Table 1).

Considerations and limitations when removing duplicate
files: Duplicate and duplicate option setting, duplicate log
setting, duplicate condition: file name, tume, size, creation
time, duplicate file size date, modification date, file
contents (checksum/hash value), DB structure (link file
name/link path/original file name/original path/{(other
conditions)). Only file duplication can be removed (except
for inter-directory duplication) and the hash code conflict
of the file duplication algorithm 1s specified as a
constraint.

MATERIALS AND METHODS

System design

System structure diagram: Figure 2 shows the overall
system structure of the duplicate file removal system.
Duplicate file removal system consists of file
deduplication manager and duplication manager. The file
de-duplication manager consists of modules that provide
the following functions.

Destination volume to perform deduplication/volume
to set directory/directory specification module, the size of
the file, MD5 and SHA-2 hash values, a duplicate file
check module for comparing the actual data values to

check duplication, a duplicate check condition filter
module for filtering the check target file according to
options such as creation date, MDS 1s a metadata
management module that manages metadata about file
duplication, a schedule setting module for scheduling to
perform a deduplication operation on a specific schedule
are composed.

The redundancy rate manager is composed of
modules that provide the following functions. A total
redundancy check module for outputting redundancy
information for all files, output module for outputting
redundancy rate information for each job, a full duplicate
file listing module that outputs a list of duplicated files in
the past are composed. The main processing steps of the
duplicate file removal system consist of request metadata
(file name, path, size) of files to be deduplicated to MDS,
1n the deduplication process, the DS requests the result of
comparing the MD5 and SHA-2 checksums with the
actual file data, the redundancy rate for each job is
displayed and stored in MDS and removal of the actual
duplicate file requires the DS to delete the file.

Key features and processes

Main function: Table 2 shows the functions that can be
set up for deduplication in the file deduplication
system. The deduplication target volumesdirectory is
a mandatory option. The following examples shows an
example of performing deduplication from the “default”
“volume,/test” path. functions.

Example for Deduplication in./test:

Rooti@->gfs dedup-v default-p/test

1038

J. Eng. Applied Sci., 13 (5): 1057-1063, 2018

gfs_dedup
MDS
File deduplication
- - View metadata
| Specify volume/directory |
|Identify duplicate file (MD%, SHA-2, data)l
| Duplicate check condition filter | View and save duplicates
Metadata management
Schedule setting
DS

Duplication management

| View all duplicates |

| Deduplication task results output |

| List all duplicate files |

File checksum request

Fig. 2: System structure of duplicate files removal

Table 2: Deduplication function for duplicate files removal

Actual file comparison
request

Remove duplicate file

Table 3: Commands to schedule with crontab

Command Description Command Description
-v <yolume name> Namme the target volume U <user Perform a crontab operation on the entered user
--volume <volume name> If omitted do the work for the user who is now
-p <directory_path> Specify the path to the target directory performing crontab
--path <directory_path> -1 Output current cron table
--runtime <secx 8pecify the number of seconds to perform -e Delete current cron table

deduplication T Edit current cron table

(default: 0)
If the specified time is 0, the operation proceeds
until all d eduplication is finished

-d<.date> Deduplicate only files created after the specified
creation date
--day <date> Input format

“yyyy -mim-dd hhimim:ss™

If you do not specify a date, all files will
be deduplicated regardless of the creation date
Specifies whether duplicate subdirectories are
removed fiom the specified destination path
(default: True)

If this option is specified, only the test results
are output

Specify the deduplication level

Checksum: file size, SHA-2 Hash

value comparison

Data: file size, SHA-2 hash value, data

actual value comparison

-r {True|False}

-recursive {True|False}
--checkonly

--level {Checksum|
Data}

Schedules can be set up using the crontab utility
which supports job scheduling. Table 3 shows the
command to set the schedule. Typically, you use the
“crontab-e” command to schedule a job and the fields in
the cron table are configured as follows.

Configuring fields in the cron table:

<Minute> <Time> <day> <Month>
<Day> <User> <Command>>

<Minute> 1s 0-59, <time> 1s 0-23, <day> 15 0-31,
<month> is 0-12 (0 and 12 are December, 1 is January, ...)

Table 4: Symbuols used in cron table
Symbols Description
* Symbol for “always”
- 8pecifies a range
(ex) “1-3" is 1-3 o’clock
. Separator role
(ex)“1,3” is 1 and 3 o’clock
! Specify periodic intervals
(ex) “3-15/2” is every 2 h between 3:00 and 15:00

Table 5: Redundancy management command in duplicate files removal

Clagsification Command Description
Action --gtat --summary Outputs the redundancy rate for the
entire file
--gtat --job Group information by each task to
output redundancy rate
--gtat --list Print a list of duplicated files for each

job

and <Day of the weel> is 0-7 (0 and 7 for Sunday, 1 for
Monday, ...). The symbols used in the cron table are as
follows (Table 4). The following example shows how to
perform deduplication at 5:30 am every Monday.

Example of performing a deduplication operation:

3005** 1 gfs_dedup--runtime

Table 5 shows the functions that can be set for
redundancy management in the duplicate file removal
systermn.

1039

J. Eng. Applied Sci., 13 (5): 1057-1063, 2018

View full file list
(File name, path, size)

N

Filter duplicate scan condition
(volume/directory, creation date)

A4

Group by file with the same size

\

MDS and SHA-2 checkusm
request for all grouped files

N

File-by-file grouping with
identical checksums

!

Compare
data?

[Processing itself within

gfs_dedup

1 Requseting specific tasks
™ or processing externally

v

Request to compare actual data
of all grouped file

A4

Grouping data by file with each other

S
>
N\

4

Save duplicate file information to DB

Request removal of duplicate files

A4

Output the results of the current
duplicate files

Fig. 3: File deduplication processing in duplicate files removal

Deduplication process: Figure 3 shows the process of
de-duplication of files in the duplicate file removal system.

RESULTS AND DISCUSSION

System implementation: It analyzes the degree of file
duplication by specific volume/directory and creates a
hard link to actually remove duplicate files. The results of
the deduplication performed previously are stored in the
database and support the duplication rate of the file in
various forms. Use the gfs dedup command to analyze
files existing in the target volume/directory, remove the
actual duplicate files and query the duplication rate based
on the results of the previous deduplication operation
(Fig. 4 and Table 6).

Option setting

Examples (with option setting): Specifymng a
specific volume/directory to check for duplication.
Command: gfs dedup-vdefault-p/D1.1-checkonly.
deduplication including subpaths on
specific volumes/directories. Command: gfs dedup-v
default-p/D1.1 -r-checkonly. Perform deduplication only

Perform

Table 6: Set options for deduplication

Options Description Remarks

-v, ...volume<volname> The name of the deduplication New options
target volume

-p, ...path <path> Deduplication target directory path New options

-d, ...day Duplicate only files created after New options
that date

-T, ...recursive Whether subdirectories are New options
searched

...checkonly Output only test results New options
without actual deduplication

.untime <sec Time to perform deduplication New options
(default: 0)

...stat ...summary Summarize the overall results New options
and output redundancy

...gtat ...job Output redundancy per New options
deduplication operation

...stat ... list Output a list of deduplicated files New options

on files created on or after a day before a specific volume.
Command: gfs dedup-v default-d 1. Summarize the results
of the entire deduplication process. Command: gfs dedup
--stat-summary. Print a list of deduplicated files from a
specific volume. Command: gfs dedup-v default --stat-list
(Fig. 5-10).

The v option of the gfs dedup command can be
used in conjunction with the options used for the
redundancy check but at the same time the -p option

1060

J. Eng. Applied Sci., 13 (5): 1057-1063, 2018

Fig. 5: Checking the amount of duplication in the specified volume/directory

@ root@ss3i~/glory-u2n/bin

I AT 1E

Fig. 6: Checking the amount of duplication in the specified volume/directory

EP root@ss3:~/glory-uZn/bin W M W [[R

HoHoH HH

HoHoH

:

HoHoHH

H

H

Fig. 7: Perform deduplication only on generated files after a specified date

1061

J. Eng. Applied Sei.,

13 (5): 1057-1063, 2018

@ root@ss3:~/glory-uZn/bin

o DL

DUPFILE TOTALFILE FILES (%) DUPSIZE TOTALSIZE SIZE (%)

-3tat --

273K

Fig. 8: Deduplication processing result

@ root@ss3:~/glory-uZn/bin

sinld

: dedup -v default

4

r bin]% ./g Lat list
JOEID VOLID INOID MTIMFE FSIZE
; P 01:00 /D1.1

Fig. 9: Output a list of deduplicated files

@ root@ss3:~/glory-uZn/bin

3

|8

dedup -v default --

JOBID VOLID JTIME DUPFILE DUPSIZE OETICNS

--job

Fig. 10: Deduplication mformation output

should be excluded from being entered. Output
deduplication job information performed on a specific
volume. Command: gfs dedup -v default --stat --job.

CONCLUSION

Server PC needs data de-duplication technology for
efficient duplicate file management and file service and
various technologies such as MD5, hash and SHA1 are
required. Also, it is aimed to provide a system that can
minimize duplication when creating new files or modifying
files by storing nformation of files using DBMS.

In this study, we propose a deduplication algorithm
that applies encryption algorithms such as MD5 and
SHA-1 for efficiency and accuracy of service by providing
it as a daemon that performs periodic deduplication by
scheduling. Read the configuration file at the start of the

service to enable the setting of file duplication option for
specific volume/directory and to allow the file duplication
rate to be periodically logged.

ACKNOWLEDGEMENT

This researcher was supported by the National
Research Foundation of Korea (NRF) grant funded by
the Korea govermment (MSIT) (No. 2017
R1A2B4011243).

REFERENCES
Anonymous, 2017, Secure hash algorithms. Wikimedia
Foundation, Inc, San Francisco, California.

https:/fen. wikipedia.org/wiki/Secure Hash Algorit
hms.

1062

J. Eng. Applied Sci., 13 (5): 1057-1063, 2018

Anonymous, 201 8b. Cyclic redundancy check. Wikimedia
Foundatior, Inc, San Francisco, Califorma.

https://en wikipedia.org/wiki/Cyclic_redundancy ¢
heck.

Anonymous, 2018a. Hash function. Wikimedia
Foundation, Inc., San Francisco, California. https://
en.wikipedia. org/wiki/Hash function.

Jung, S.0. and H. Choi, 2014. Performance analysis of
open source based distributed deduplication file
systermn. KIISE. Trans. Comput. Practices, 20: 623-631.

Kim, D.W. and I.8. Kim, 2016. Analysis of the efficiency
for some selected double-block-length Hash
functions based on AES/LEA. J. Korea Inst. Inf
Secur. Cryptol., 26: 1353-1360.

1063

Lee, E-H., JH. Lee, Y.J. Jang and K.R. Cho, 2010.
Implementation of high-throughput SHA-1 Hash
algonthm using multiple unfolding technique. J. Inst.
Electron. Eng. Korea SD., 47: 41-49.

Moon, CJ., MY, Choi, SM. Kim and I.H. Jung, 2007
A synchronization algorithm for mobile database
using message digest. J. KIISE. Databases, 34:
357-368.

Oh, SJ, TJ Yun, CH TLee, JK. Lee and
KH. Chung et al, 2012. Improved a mutual
authentication protocel m RFID based on hash
function and CRC code. T. Korean Inst. Commun. Inf.
Sci., 37: 132-139.

	1057-1063 - Copy_Page_1
	1057-1063 - Copy_Page_2
	1057-1063 - Copy_Page_3
	1057-1063 - Copy_Page_4
	1057-1063 - Copy_Page_5
	1057-1063 - Copy_Page_6
	1057-1063 - Copy_Page_7

