Tournal of Engineering and Applied Sciences 13 (4): 940-953, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

A Comparison of Axisymmetric Models of Multilayer Piezo
Actuators for the Creation of Annular Strain Waves

Alexander Vinogradov, Yegor Matveev Yegor, Roman Lubchenko and Pavel Titov
Department of System Analysis, Research Institute of Advanced Materials and Technology,
Moscow, Russia

Abstract: This study presents the theoretical results of a comparative analysis of axisymmetric models of piezo
actuators with a bimorph and unimorph structures. The ummorph actuator contains ring elements that are
fastened to a round metal base. The bimorph actuator has two bound identical piezo ceramic disks with
a thin-film electrode between them: the outer surfaces of the disks are covered with thin silver ring electrodes.
Different voltages are applied to the ring parts which deforms the bend and creates a system of ring
protuberances and depressions. Such actuators are relatively new in piezo engineering-literature does not
describe a methodology of their design or comparative analysis. This research 1s relevant for the choice of an
optimal scheme of further development. Quasi-static models are constructed according to the circuits of
mutiation of bend strains in the multilayer piezoelectric structures (disks, rings and membranes). Special software
for their calculation was developed. The results of modeling of bimorphs and umimorphs with ring electrodes
were obtained via. the analytical methods and the finite element methods; test models were compared to known
designs. The study found that a unimorph with a base with an optimized thickness had greater strains than the
bimorph did. Furthermore, the bunorph contained two times as many double-ended electrodes which
complicated its structure and limited its application in micropumps without additional protective means which
reduce its energy efficiency. As a result, the preferred model 1s that of a unimorph that serves as a piezo

actuator for the creation of ammular waves.

Key words: Multilayer piezo actuator, bimorph, unumorph, FEM, membranes, ceramic disks

INTRODUCTION

Piezoelectric actuators based on a unimorph or
bimorph are commonly used in micropumps, microvalves
and other elements of microfluidics due to their small size
and energy consumption and good reliability when
operating on various liquid environments. Among all
geometric forms of piezo actuators, the workable one is
the disk form which has the same bending rigidity and
isotropic properties in all radial directions. The physical
models of piezo actuators are easy to manufacture
which simplifies experimental studies. The mathematical
description of the stressed and deformed states of disk
and ring piezo actuators uses axisymmetric models that
are built in a polar coordinate system (for disks without
bends) or a cylindrical system (for bendable
membranes).

There are different variants of disk piezoelectric
actuators that are used in micropumps (Zhang et al., 2016;
Pecar et al., 2014; Kamitani and Hirata, 2009a, b). The
piezo actuators can be unimorph (Anonymous, 2017) or
bimorph (Zhang et al., 2016) while the piezo pump can be
single-chamber (Pecaret «l, 2014), double-chamber

(Hao et al., 2015), triple-chamber (He et al, 2017;
Husband et al., 2004) or multi-chamber. The reverse flow
can be limited by a cantilever check valve (Anonymous,
2017), a swing-check or vertical-check valve (Zhang et al.,
2016), a nozzle/diffuser system (He et al, 2017); Tesla
valves (Forster et al, 1995), a network of branch ducts
around the outlet (Ma ef al., 2015), protrusions in the base
of the pump chamber (Husband et al., 2004), ring-mesa
check valves (Anonymous, 2017; Shungo and Takeshi,
2012), etc. The wave of bending strains which carries the
fluid can spread in several ways: along the axis in a
rectangular (Husband et al, 2004) or tubular piezo
actuator in a circle in a ring actuator (Bar-Cohen and
Chang, 2000) or along the radius in a disk actuator
(Kamitani and Hirata, 2009). A fundamental study on
microfluidics (Nguyen and Wereley, 2002) described the
principle of operation of a peristaltic micropump with
round driving membranes and presented an algorithm for
calculating the volume of its working chamber and
performance.

An important advantage of disk piezo actuators is
the possibility of realizing the principle of fluid pumping
by munning waves of bending strains which propagate
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Fig. 1: Disk piezo drives n micropumps (closes analogs): 1) Single-chamber (Dong et af., 2007); 2) Double-chamber)
(Shungoe and Takeshi, 2012), 3) Ring peristaltic (Kamitani and Hirata 2009a, b); a-c) Soaking mode; d-f) Neutral

state and g-i) Fischarge mode

from the periphery to the center. A similar design wlich
was considered in patents (Kamitam and Hirata, 2009a, b).
Figure 1 is the prototype that is used in this research. The
closest analogs of the herein investigated actuator which
operated based on the principles of bending strains of a
rigid disk are presented in Fig. 1.

The micropump under consideration (Fig. 1) consists
of a rigid base (metal or rubber) with five holes (four on
the periphery and one in the center) and a disk piezo
actuator which 1s formed by a single disk piezo element
with concentrically placed ring electrodes. When signals
with a certain phase offset are sent to the piezo elements,
the fluid is pumped by the ring sections from the
peripheral inlets to the central outlet.

The disadvantages of such a design 1s the relatively
small bend of the disk piezo element during the wavelike
ring stramn due to increased rigidity. The constant rigidity
of the bend of the disk piezo element does not allow
increasing the local bend to the necessary size and
improving the performance of the micropump. In order to
mcrease the bends, it 13 necessary to increase the
supplied voltage which is not always possible due to the
limited electric strength of the piezo material. Another
shortcoming of the micropump that is proposed in the
prototype 1s the fact that on drawing near the central part
of the body with the outlet, the volume of the chamber
with the fluid during a wavelike motion reduces in
proportion to the square of the radius which creates
excess stress on the piezo disk and breaches the tightness
between the ring chambers, this causes uncertainty in
regards to the performance because not all of the
incoming fluid reaches the outlet. Furthermore, using a
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bimorph as a bendable disk piezo element requires placing
electrodes on both of its surfaces, cne of which faces the
body chamber and forms a ¢learance in which the pumped
fluid is located which creates the danger of electric
breakdown and/or alteration of the properties of the
pumped fluid.

This research offers a theoretical framework and
results of a modal analysis of designs without the above
mentioned flaws.

The purpose of the research is to choose the
preferred design of a ring piezoelectric actuator for further
development of its structure. The choice was made based
on a comparative analysis of axisymmetric models that
were built on the basis of a unimorph and bimorph
designs which were calculated analytically and
numerically via. the Finite Element Method (FEM).

MATERIALS AND METHODS

Literature offers several analytical ways of designing
plezoelectric single disks (Samuel, 2011; Li et al., 1999,
Dong et al., 2007) with a limited number of layers and two
variants of boundary conditions: with either free bearing
or anchorage of the outer duct In this research, the
modeling used an original analytical method of design of
multilayer round plates that consisted of multiple
concentric ring sections (blocks) with alternating rigidity.
The boundary conditions have a wide range of rigid
comnection with the body of the structure. The method 15
based on elasticity theory equations (Timoshenko and
Gudier, 1979, Timoshenko and Woinowsky-Krieger, 1963)
with regard to the inverse piezoeffect (Burdess and
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Wren, 1986). The other method that is used in this
research to compare the results is the finite element
method with the use of a temperature analogy of the
plezoeffect.

Theoretical framework of the analytical method of
calculation of a multilayer piezo actuator with ring
sections with alternating rigidity.

The model under consideration consists of m
multilayer ring sections (blocks) with axis z. Strains of an
arbitrary layer of a certain block with layers with the same
diameter are determined via. Hooke’s law equations with
regard to the inverse piezoeffect which have the following
form in a polar coordinate system (r, 0) (Burdess and
Wren, 1986):

ér =8,,0,s,,0,+d, B, (1
o =5,,0,48,0,+d,E, 2)
Ve = 2(511'512)1:@ (3)
D, =d, (o, to, )+e E, 4
Where:
E and £, = The radial and circumferential linear
relative strains
o,ando, = The radial and circumferential standard
elastic stress
Y:a = The shear torsional strain
Tia = The shear stress during the rotation of the
layer plane
d,, = The transverse piezo module for the

piezoelectric layer that is polarized along
its depth (the z axis that is perpendicular
to the layer plane)

E. = -9®/9z = The strain of the outer electric field with a
potential of ®©

D, = The induction or density of the charge on
the surface of the piezo layer
€5 = The absolute dielectric permeability of the

piezo material

The components of the elastic compliance matrix s,
and s,, are linked with the elastic constants of a
transversely i1sotropic piezo ceramic material with the
following Eq. 5:

s, =Y, s, =-v/Y (5)

Where:
Y = The Young’s modulus
v = The Poisson’s ratio
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According to Cauchy equation by Timoshenko and
Gudier (1979), linear stramns that proceed from Eq. 1 and 2
of the axisymmetric model are linked with radial motion u
with the following Eq. &:

g =ouar, &, =ur (6)

According to the condition of axial symmetry,
motions U in the circumferential direction 6 should equal
zero and their derivative du/d8 = 0.

In order to take into account the bend with the
displacement of depression w along axis z, it is necessary
to consider the problem in a cylindrical coordinate system
(r, 0, z). At that, the aforementioned equations remain in
force under the condition of absence of axial loads and
appropriate normal stress, i.e., 0, = 0. Furthermore, the
condition of axial symmetry guarantees the absence of all
components of shearing stress and angular strains 1n all
the layers of the model (Timoshenko and Woinowsky-
Krieger, 1963).

The function of radial motions u depends on two
linear coordmates r and z which 13 why m a cylindrical
system, it as the form of u=u(r, z).

Based on Eq. 1 and 2, radial motions with regard to
Eq. 5 and 6 are expressed with the following equation as
two-variable functions:

o,(r,z)= [Yl(l-vz)} L ou/drtv(wr)-(1+v)d,E, | 7
o, (1 z):[Y/(l-vz)J[aufaﬁv(u/r)-(1+V)d31EZ] (8)

The main differential equation of equilibrium for the
axisymmetric problem has the following form (Timoshenko
and Womowsky-Krieger, 1963):

&)

r=(da,/or)+0, -0, =0

which with regard to Eq. 7 and 8, comes down to a second
order differential equation in partial derivatives with
respect to the desired function u(r, z):

8[(1/r)><8(ur)/8r]/8r:0 (10)

Double mtegration with regard to the Kirchhoff
hypothesis about the linearity of standards solves Eq. 10
in the following form:

u(r, z) =(C,-C.z2)r+(C,-C,z) /1 (11)
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While arbitrary constants C,-C, for each multilayer
block are determined from the boundary conditions.
Internal forces that are attributed to the perimeter of the
circle of radius 1 axial radial foreces Ni(r) and bending
moments M(r) are integrally characterized by
intensiveness of the following form:

H
NJ(I‘):J.GQ(I‘, z)dz
’ (12)
H
Mj(r):J.GrJ(r, z)zdz
o
Where:
H=h+h+ ... .h =

z-coordinate

The total thickness of the model
The reckoned from the lower
surface of the first bottom layer

The bendmng function 1s found using the following Eq. 13:

w(r)=C,r%/2+C In(r)+C, (13)

The angular displacement of the standard with a bend
of @) = -dw/dr through the integration constants
equals:

(14)

p(r)=-Cr-C, 1

If in the m block model, the j block number is
reckoned from the first one that contains an axis of
symmetry, then for strain-stress state functions in
block j, analytical dependencies contain five
unknown constants Cy;, C;, ..., Cy;. Boundary conditions
and finding unknown constants. The problem has a
total of 5 m unknowns.

In the first solid block (without a hole) which
contains an axis of symmetry (G = 1), the angular
displacement of standard ¢, and the radial motion u, equal
zero att = 0. Then, C,, = C,; = 0. The remaming 5 (m-2)
constants are found from the boundary conditions of
block conjunction and fixation of the outer surface.

In the m model, there is one boundary between the
blocks. The conjunction conditions on the boundaries
with the outer radiuses R, and mner radiuses R, of static
and kinematic strain-stress state functions (a total of five
types) enable obtaining 5(m-1) linear equations with
respect to the sought unknowns C;-C; (j#1 for C; and
C,,). These equations are as follows:

3js -

Ni(R;)=N;.(R;)
MJ(RJ) - Mj‘rl(RJ)
u, R],O):ujH(R],O)

943

uj(R]) ujH(R])
@(R;)=0.(R]

(15)

Here, j=1, 2,3, ..., m-1. The other three equations are
composed from the boundary conditions on the outer
surface of the multilayer model atr = R,;

M, (R, )K=, (R, ) =0
N, (R, )+K<u, (R,.z)=0 (16)
w,.(R,)=0

Where:

Ky = The rigidity of the elastic coupling of the model

surface with the base for the turn

Ky = The ngidity of the elastic coupling of the surface
for the radial motion
7z, = The coordinate of the point of attachment of the

outer surface to the base

All three parameters are set during modeling. Extreme
cases are as follows:

If Ky, = Ky = 0, then the model has free bearing on a
smooth surface
K, = Kj=ee, an anchorage of the outer surface 1s
modeled
K, = 0, Ky~ o0, @ hinged bearing 1s modeled
K=, Ky = 0, a slotted bearing 1s modeled
In other cases, the elasticity is assessed
experimentally. This forms and solves a system of 5 (m-2)
linear equations with respect to the same number of
unknown constants.

The found constants and Eq. 11 and 13 are used to
determine displacements m each ring block. Stress is

calculated based on the following Eq. 17 and 18:
] (17)

] (18)

Here, coordinates r and z as well as the elastic
characteristics are taken in accordance with the block
number j and layer number i; P = d,,/h, is the piezoelectric

C.-C,z

Grj(raz)_[Y/(l_V)][( 4T3 )'(1V)/(1+V)X

(C,-C,z)r’pU

(Cy-Cyz) +{(1-v)/ (1v)=

Gy (1, 2) = [Y/(I-V)J[

(Cy-Cyz)ir’puU

coefficient of linear strain, U is voltage m the piezo
element.
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In order to implement the method, we developed
special software that included the “pk2016” computation
module, a database with the properties of the materials
and a file with the parameters of the computational model.
The interactive graphical interface of the program displays
the modeling process and allows adjusting the physical
and geometric properties of the model, setting voltage on
the piezo elements and saving the current parameters of
the model and the results in files.

The described method 15 easy to adapt to computing
temperature strain and stress. To that end, it 1s sufficient
to add the temperature element in the form of ¢*dT where
dT 1s temperature changes and « 1s the temperature
coefficient of linear expansion, to summands d, E; in the
initial Eq. 1 and 2 and subsequent Eq. 7 and 8 and to
summands fU in Eq. 17 and 18.

RESULTS AND DISCUSSION

Model of a bimorph actuator with ring electrodes:
Figure 2 shows a flowchart of a bimorph axisymmetric
plezo actuator with ring electrodes. It includes two
plezoelectric disks (bimorph) each with a thuckness of
h, = 0.2 mm, nigidly conmected between each other with a
metallized layer. The flat surfaces of the bimorph have
silver ring electrodes h, = 5 pm thick.

The outer diameter of electrode i equals: D; = 10i mm
(i=1,2,...,5), clearance & = 1 mm. The thickness of outer
electrodes is ighored during the first approximation, since,
h.<<h,. The bimorph is rigidly attached along the outer
cylindrical surface of the radius R; = 25 mm. The arrows
that point upwards show the vectors of imitial polarization
P, in each layer of the bimorph.

Power sources supply alternating cwrrent U; to the
electrodes which changes during time t according to the
harmonic law:

With an amplitude of U, circular frequency w and
phase displacement Ag. Figure 2 shows an example of
a bimorph with five electrodes and the first and fifth
electrodes have identical potentials from source U, at that
which corresponds to the phase displacement between
neighboring electrodes A = 90°. The electrode that
connects the piezo ceramic disks has zero potential

It the amplitude equals U, = 80 V, then at the initial
point in time t, = 0, regardless of the frequency, according
to Shunge and Takewshi (2012), the voltages on the
electrodes will be:

U, =U,=+80V,U,=U, =0,U, =-80v (20

The difference of potentials between the main and
zero electrodes (voltage ;) is considered positive when
the electric field intensity vector E = U/h, matches the
direction of vector P; of the imtial polarization of the
piezo element (Fig. 2). In case of a matched connection,
the lower ring sections with positive, according to
Timoshenko and Gudier (1979), potentials (U>0 and
U,>0) are reduced in terms of their planar sizes while the
upper sections with opposite connection (arbitrarily
U<0 and 1,°<0) expand. Such strains bend these
sections upwards. In order to model both layers of the
bimorph, we used PZT-5H piezo ceramics with the
following properties:

Elasticity modulus Y, = 60.6 GPa

Poissen’s ratio, v, = 0.29

Transverse piezo modulus d31 = -2.74-10-7 mm/V,
Piezoelectric coefficient of linear expansion

B=d,, /hp =-137x10%(1/V)

_ 19 The calculation was performed through the
U, (1) =U, cos [(’JHA([’(I'I)] (19) method of temperature analogy using the ANSYS V. 15
U & .
U, &
Us & _

Uy

o

U,
Us 2
U, &
U, &

R PRI I KA
o Sl &
D2
D.
3 Ds

Ds

Fig. 2: Flowchart of a bimorph disk actuator with five electrodes
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Fig. 3: Map of vertical displacements UZ of the bimorph piezo actuator
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Fig. 4: Strain of a bimorph with five pairs of ring electrodes. Strains are shown for the bottom layer at t = 0 and Ag = 90°

Program. The condition of analogy is the equivalence of
free piezoelectric and temperature strains in the plane of
the piezo ceramic plate:

d,,U, =aT®

Therefore, mstead of voltages U, temperatures T,” are
set 1n the model which are different in upper and lower
signs (1=1, 2, 3, 4, 5) whle the temperature coefficient of
linear expansion « 1s taken as equal to P (with regard to
the sign):

Electrode 1 = 1 2 3 4 5
Up T1° = 80 0 480 0 -80
Down T"= +8 0 —-80 0 +R80

1

Figure 3 shows a map of vertical displacements. One
can see that the bend of the structure runs downwards
with the formation of a saddle i the central part.
Meaximum vertical displacement UZ (W) 15 39.6 pum. At
the same time, the maximum bend W, was 39.39 pm
according to analytical calculations.

The analytically obtained graphical dependency of
the bimorph straun 15 shown in Fig. 4. We also determined
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the form of the elastic curve in the axial section of the
deformed disk bimorph piezo actuator when voltage that
altered according to the cosine law was supplied to each
ring element.

The finite-element model simulated the operation
of the bimorph during a time period t from 0-12 sec
with a step of 1 sec. One transverse wave with a period of
T = 2n/w propagates from the periphery to the center of
the pump during the time under consideration. Circular
frequency w which equals the rate of phase change of the
wave process fluctuations m tiume, during 1 sec is /6
(1.e., w = 05236 rad/sec = 30°/sec). The imtial level of the
voltage at time point t = 0 is U, = 80 V. Phase shift
between two neighboring elements Agp = m/2 (1.57 radian
or 90%). The current level of voltage at T piezo element
(1=1, .., 5) at time point t 1s determined from Eq. 19.

Figure 5 shows the dependency of the phase time t
on the current voltage U; which 1s supplied to 1 pair of
electrodes (i= 1, ..., 5) that are part of the top and bottom
layers of the disk piezo bimorph. At that one second of
phase time corresponds to 30° phase change.

Figure 6 shows the form of elastic curves during the
strain of the disk piezo bimorph which correspond to each
moment of phase time. The diagram shows the downward
displacement of the membrane (depicted with a sold line),
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Fig. 5: Forms of signals that are sent to the top and
bottom layers of the disk piezo bimorph

:m)

Uz (w;,

Transverse displacement

5 10 15 20

Radius of the ring bimorph (r, mm)

25

Fig. 6: Form of the elastic curve of a straned bimorph
at time points t, = 1 sec, t,=2sec, .., t, =12 sec
(t; = 0). Phase step m/6
£
=3
|5
g
a

Radius (mm)

Fig. 7. Analog (Kamitaru and Hirata, 2009a). Diagrams of
membrane displacements along the radius at
various time points t,, ..., t;. Phase step /4

t=1, .., 6 sec and the upward displacement of the
membrane (depicted with a dotted line), t =7, ..., 12 sec.
One can see that the direct and reverse forms of the
elastic curve do not match. The maximum value that was
calculated for 12 tune pomts was UZ,_ . = 45.7 um while the
mimmum one was UZ, . = -39.9 um.

Figure 7 shows similar graphical dependencies of
the bend on the radius of a membrane with a diameter of

30 mm for eight time points which are indicated in patent
(Samuel, 2001).
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The minimums of all dependencies are formally
reduced to zero value which 1s mceorrect, since m this case
as seen from the diagrams, the boundary conditions of
rigid attachment of the outer surface of the plate are
violated, namely: with a radius of 15 mm, all curves show
the values of displacements and their derivatives on the
outer surface of the plate which differ significantly from
ZerOo.

Therefore, we considered a case when the wavelike
transverse strain of the piezo bimorph was restricted on
one side by the bottom of a 20 pm deep chamber. At that,
we solved a specific problem of determining force P which
was distributed across the contact circumference of radius
a, the value whereof was found through the iteration
methaod.

The integral reaction force P which is distributed
across the circumference of radius a creates an additional
bend W(r) of the entire plate with a rigidly connected
surface of radius R. The intensity of the distributed
shearing load on the contact line 1s p = P/(21a). The bend
function is determined via. the following algorithm
(Timoshenko and Gudier, 1979, Timoshenko and
Woinowsky-Krieger, 1963). At O<r<a:

|

Here, D is the cylindrical rigidity of the round plate.
For a transversely isotropic homogenous plate which a
bimorph disk can be regarded as without regard to the
electrodes, the cylindrical rigidity 1s determined from the
following equation:

2(az+r2)ln(a/R)+

w,(r)= Pf(mnD)X[(rZ/RZ+1)(R2—a2)

and at a<r<R:

2(212+r2 )1n(r/R)+

w,(r) = P/(16HD)X[(32/R2+1)(RZ-I"Z)

D= \(113/[12(1-\;2 )]
Where:
Y = Young’s modulus
v

h

The Poisson’s ratio

The full thickness of the plate

Inthe case of a multilayer plate (or block) containing
n layers, an equivalent unit cylindrical rigidity is used
which is found from the following equation:

S Y
Y5

o l-v

D* = [(2,-8)-(2.,8) |

1
3
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Fig. 8: Bimorph bending under different loadings; Bimorph bending; Phase 0. Number of electrodes -3

Here, Y, and v, are Young’s modulus and Poisson’s
ratio, respectively, of layer 1, z _; and z are coordinates of
the lower and upper boundaries of layer i on the z-axis,
along which depressions W are calculated, & is the
coordinate of the neutral surface of the multilayer system
which 1s found from the following equation:

_~EhWS & Eh,
8= ; 1-v} /; 1-v}
where, 8, = (z_, + 72 1s the coordinate of the middle plane
of layer 1 with a thickness of h. This algorithm was used
to determine the force of vertical reaction of the bottom of
the chamber P = 2.256 N which was required to lift the
bent surface of the bimorph to the level of the chamber
depth (h = 20 um) and find the radius of the contact
circumference a = 13 mm.

Figure 8 shows the diagrams of bending of a round
bimorph plate with a diameter of 50 mm and a thickness of
0.4 mm which was made out of PZT-5H piezo ceramics
with different loading types.

The upper curve “P = 2.256 N” shows the form of the
plate bend from the effect of force P which 1s distributed
evenly across the narrow ring of radius a = 13 mm. The
second curve “W(V)” which lies m the range of negative
values of the bend, illustrates the form of stram of the
bimorph only from the piezoelectric impact at set voltages
(Eq. 20). As seen from this dependency, the minimums of
functions are located at points with the abscissa 1, = 11
mm. The third curve “W(V)+W(P)” is a sum of the two
first dependencies and shows the actual profile of the
strained surfaces of the bimorph membrane. The
straight segment “h” shows the bottom of the base
chamber.
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It was found that the minimums of the resulting
bending function were displaced from the axis of
symmetry (a>rm in this case by 2 mm) towards the
fastened surface. The shape of the resulting profile of the
bimorph changed somewhat when compared to free stram.
Nullifymg the mimmums of bending while preserving the
boundary conditions of rigid connection of the membrane
on the outer swface would be impossible at any
reasonable level of contact force.

In most cases, transverse displacements are
calculated without regard to the electrodes. However, the
studies showed that the nigidity of electrodes has a
considerable effect on the bending of the disk piezo
bimorph. We examined a model, in which electrodes
with a thickness of he = 5 pm were placed on the
upper and lower surfaces of rings. The intermediate layer
of metallization was not taken into account, since, it
virtually is not deformed during bending. The electrodes
were made of silver and has Young's modulus of
Y., = 827 GPa and Poisson’s ratio v 5,0.37. The
maximum bending for the model with electrodes which
was calculated according to the FEM was 358 pm, 1e.,
9.6% less than mn the model without electrodes (39.6 pm)
which 1s mdicative of the need to take electrodes mto
designing  high-accuracy  piezo

account  when

actuators.

Model of a unimorph actuator with ring piezo elements:
We considered a model that consisted of a single active
piezoelectric layer that was rigidly connected with an
elastic base layer (umimorph). The flowchart of the
unimorph model 1s presented in Fig. 9.

The active layer with a thickness of h, = 0.2 mm was
made out of PZT-5H piezo ceramics with the same
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Fig. 9: Flowchart of a unimorph with five ring piezo elements
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Fig. 10: Map of vertical displacements UZ of the piezo unimorph

properties as those used in the bimorph model. The elastic
layer had a thickness of b, = 0.06 mm and was made out of
L63 brass with the following properties: Young’s modulus
Y, = 1140 GPa, Poisson’s ratio v, = 0.36. The connection
was r1igid, along the side surface of the ummorph.
Voltages that were supplied to the ring sections of the
active layer were as follows:

U =U,=80V,U,=U,=0V,U,=+80 V

The calculation was performed through the method of
temperature analogy using the ANSYS V. 15 Program.
Therefore, respective temperatures T] were set mstead of
voltages U, and the temperature coefficient of linear
expansion was taken as & = -1.37x10-6 (1/°C).

The outer diameter of element 1equals: D, = 101 mm
(1=1,2 ...,5) clearance & = 1 mm. The thickness of
external electrodes i1s not taken into account, since,
h.<<h, The umimorph is rigidly connected to the cuter
cylindrical surface of radius R; = 25 mm.

Figure 10 shows a map of vertical displacements of
the piezo unmimorph without regard to the thickness of the
electrodes. One can see that the structure 1s bent
downwards with a formation of a local protuberance in the
central part, similar to the bimorph piezo drive that was
considered above. Maximum vertical displacement in the
negative direction-UZ, (W, ) was 48.32 um which was 22%
greater than that of the bimorph (39.6 pm).
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When taking into account the thickness of the
electrodes (h, = 5 pm) which are located on the surfaces of
the piezoelectric layer, the bend is reduced by 13.4% in
relation to the model without electrodes and 1is
41.8 pm.

Analytical comparison of models: Tn order to compare the
characteristics of transformation of the electric tension in
the deformation, we calculated the bimorph and unimorph
meodels of actuators according to the developed method
with an implementation in the PK2016 Program. The main
criterion of comparison 1s the size of the depression W. At
different points in time, the voltages that determined the
current phase wt were set according to Eq. 19 with
a step of 15°. The amplitude was U, = 80 V, phase shift
was 90°.

Figure 11 shows the shapes of the bands of two
models at the imtial moment when the current phase
is wt = 0. The bottom part of figure shows a fragment of
the program window with a scheme of the unimorph. In
the rectangles that represent the sections of piezoelectric
rings, symbols “+7 and “-” denote the sings of supplied
voltages.

The greatest negative depression W, for the
bimorph is -39.39 um with a radius of 11 mm while for the
unimorph, it 18 -47.91 pm with a radius of 6 mm. The
difference between this result and that of the finite
element method does not exceed 1%.
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Fig. 12: Depressions (2 phase wt. =15 W, 1 =-44.36; W .2 = -43.89 um

Figure 12 shows similar dependencies for the second
phase wt. 15 which shows that the maximum
negative depressions of both models are virtually
identical.

Figure 13 shows the distribution of depressions for
the fourth phase wt. = 45° for the same models without
regard to the electrodes (cwrves 1 and 2 in two-layer
models) and with regard to silver electrodes with a
thickness of 5 um and a solder alloy layer with a thickness
of 1010 pm (curves 3 and 4 1 five-layer models). One can
notice that the shapes of dependencies W(r) in the
models differ considerably. Thanks to the better flexibility
of ring sections without piezo ceramics, the umimorph has
a better ability to form annular waves than the bimorph
does.

The presence of electrodes on two sides of the piezo
ceramics and the binding solder allow layer between
the brass base and the piezo ceramics reduces the
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theoretical depression of the unimorph by 11% while the
consideration of the three layers of electrodes m the
bimorph reduces its depression by 12%.

Figure 14 and 15 show schemes of five-layer
computation models and present the diagrams of
depressions W(r) of the bimorph and unimorph
actuators with regard to electrodes with a phase
offset of 180° of the control voltage with an amplitude of
+80 V.

As one can see, the depressions of the unimorph are
generally somewhat larger than those of the bimorph are.
Furthermore, the distribution of the wavelike deformation
of the ummorph 1s more contrasting. This 15 determined
by the presence of ring sections with lower ngidity in
clearances between piezo elements in the model (Fig. 15)
which is lacking in the bimorph model, the high rigidity
whereof 13 determined by two solid piezo ceramic disks
(Fig. 14).
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Tt is worth noting that the strain process in these
models is essentially different. Figure 14, local extremes of
the bending curve in the bimorph correspond to the
location of electrodes on piezo ceramics. Meanwhile, local
sections with maximum curvature of the bending curve in
the unimorph are located opposite the clearances between
the piezo elements. Therefore, the effect of formation of
annular waves here 1s more pronounced.

This research used analytics and numerical methods
to examine the models of bimorph and unimorph disk
Pplezo actuators with five ring piezo elements. It compared
the shapes of depressions and their maximum values at
identical dimensions (outer diameter of 50 mm) and
identical voltages on the piezo elements. Quasi-static
voltages with an amplitude of 80 V changed with time
according to the cosine law with a phase offset of 90° on
neighboring piezo elements. At that, the thickness of the
passive layer in the brass unimorph was chosen at optimal
levels for the methods that was described by Li ef al.
(1999). Both piezo ceramic layers of the bimorph had an
identical thickness of 0.2 mm. The generalization of the
comparison of bending functions and amplitudes found
that the ummorph model had the best indices for the
generation of annular waves of bending stram.

The voltage amplitude of 80 V which corresponded
to the field density of E; = 400 V/mm was chosen
conservatively with a view to preserving the linear
transformation of voltage mto strain i case of an
opposite connection of piezo elements. Experiments
showed that the critical field density for certain samples
of PZT piezo ceramics was 660 V/mm. In addition, the
relatively low voltage guarantees the absence of possible
repolarization and breach of piezo ceramics.

In order to check the developed method, we
conducted comparative computations through known
methods of a test model of a disk urimorph with a free
surface. The model consisted of two layers with an
identical diameter of 50 mm: a brass base with a thickness
of 0.06 mm and a PZT-5H piezo ceramic disk with a
thickness of 0.2 mm. At a voltage of U = 80 V, according
to the method described in study of Li ef al (1999) and
Jang and Kan (2007), we obtained a depression at the
center W, 167.3 um, according to the method
presented i study of Dong ef al. (2007), a depression
W, = 165.6 um, the numerical computation using the
finite element method in the ANSYS system found
W, = 170.8 pm while according to our method, the result
W, =171.0 um was closest to W,. The greatest difference
in the obtained data was about 3% which is satisfactory.
In addition, the computed size of depression W, remains

unchanged if the model 15 represented as consisting of
several, three for instance, multilayer ring blocks of
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varying diameter which give 50 mm when combined while
the sum of layer thicknesses in each block equals the
corresponding thicknesses of the imitial model

The reliability of the obtained results can be
assessed by comparing data from a similar model from
study by Kamitam and Hirata (2009a) which are
represented in the form of diagrams in Fig. 7, to the herein
considered bimorph model. According to study of
Li et al. (1999), the depressions of the unimorph are
proportional to voltage 1T and the square of its diameter D.
Figure 7 (curve t;) shows that the depression amplitude of
a plate with a diameter of D, = 30 mm on axis r = 0 equals
approximately W, = 15 um with a voltage amplitude of
U, = 85V mn the system. For a diameter of D, = 50 mm at a
voltage of U, = 80 V, the method of similarity 1s used to
find the new depression amplitude of the analog
model:

W, = Wpx(D,/D,)" *(U, /U, ) =15x(50/30) 2(80/85) =39.22 pm

According to the analytical method, the obtained
amplitude (swing) of depression AW = [W .| with the
indicated data D, and U, 15 39.4 pm while according to the
finite element method -39.6 um. In both cases, deviation
from the known solution does not exceed 1%.

The dependencies of the depression on the radial
coordinate of the bimorph which are shown in Fig. 6 and
7 are similar. Thus, the obtained results are correct and
reliable.

Furthermore, numerical experiments found that the
consideration of the rngidity of electrodes enabled
increasing the accuracy of modeling by at least
10% which is important for the design of precision
devices.

The optimal ummorph model which was chosen
based on its electromechanical parameters does not solve
all problems. Tts application is limited, for instance by
temperature conditions. Being a system that comprises of
nonhomogeneous plates, the unimorph is sensitive to
temperature changes. The differences in temperature
coefficients of linear expansion even in a stationary
thermal field can cause global bending or buckling of the
entire multilayer system. A selection of matenials can
reduce this negative effect m unimorphs. Bimorphs are
not exposed to temperature bending due to their
symmetric placement of layers.

Figure 16 shows the graphical dependencies of the
global deformations of the umimorph and bimorph when
heated by 1°. The diagrams have different conditions of
fastening of the outer surface of models. Curve 1 was
built for a unimorph with an unfastened outer surface
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Fig. 16: Temperature deformations of the unimorph and bimorph; heating by dT =1°

(theoretical coefficients of elastic connection were
taken as K, = K, = 0). Curve 2 corresponds to the model
of a uniform with a rigidly fastened surface (K, =K, = 10").
Curve 3 shows the temperature bending of the bimorph
with a fastened lower edge of the outer surface (K =0,
K, = 10°). If the surface of the bimorph is fastened rigidly
or is unfastened fully, bending does not occur which is
shown by line 4 which matches the zero axis.

These dependencies show that temperature
deformations are commeasurable with the operating bends
from the piezoeffect and depend largely on the way in
which the outer surface is fastened. Rigid fastening
minimizes temperature deformations m both models.

CONCLUSION

This study shows that the mechamcal behavior of a
bimorph and vnimorph during the formation of annular
stramn waves 13 different. In the bimorph, local extremes of
the bending function of the piezo disk lie in the ring zones
with electrodes under voltage. In the unimorph, extremes
lie in the clearances between ring piezo elements under
voltage. The curvature and depressions in the unimorph
clearances exceed the similar parameters of the bimorph
which is why the picture of wave formation in the
unimorph 18 more contrasting than that in the bimorph 1s.
The results of theoretical calculations through analytical
and numerical methods are virtually identical. The
comparison with known designs also showed good
matching.

It was found that the consideration of metal
electrodes in the computational models of piezo actuators
increased the accuracy of modeling by at least 10%.

952

The behavior of both models under changing
temperature was demonstrated. The ummorph with a
fastened surface bends slightly in its central part while an
ideal bimorph theoretically does not deform.

The herein used original method of analytical
modeling of axisymmetric multilayer piezoelectric
structures with ring sections of varying ngidity with
regard to temperature 1s universal; it generalizes specific
designs that are described in other studies.

The comparative analysis of models for the
generation of annular deformation waves under a stable
temperature 1s a promising model of a unimorph structure.
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