Tournal of Engineering and Applied Sciences 13 (3): 746-751, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Column-Based Storage Structure for Bigdata Processing

Jeong-Joon Kim
Department of Computer Engineering, Korea Polytechnic University, Gyeonggi-do,
237 Sengideahak-ro, 15073 Siheung-si, South Korea

Abstract: The user’s query that is requested by the DBMS often accesses fewer columns than accessing all
row values. However, the existing NSM (Narray Storage Model) storage model that saves in row units can not
handle this properly. Also, in the OLAP environment, it is a feature to frequently use analysis tasks and
aggregate functions to process with value of a specific column It is a well-known fact that column-based
storage model 1s necessary in OLAP environment in other studys, etc., already. Therefore, a column-based
storage model is required. Therefore, the model proposed in this study presents a model that is advantageous

for access by record and has high space efficiency.

Key words: OLAP, column-based storage, DSM, DBMS, aggregate, NSM

INTRODUCTION

User queries requested to the DBMS are more likely
to access fewer columns than accessing the values of all
rows (Jagadish et al., 2005; Ramakrishnan and Gehrke,
2000). However, existing NSM (Narray Storage Model)
storage models that store in row umts do not handle them
appropriately. In addition, the OLAP environment is
characterized by the use of a large number of analytic
functions and aggregate fimctions that process values of
a particular column (Copeland and Khoshafian, 1985,
Ailamaki et ol , 2002). Tt is a well-known fact that column
based storage model is needed in OLAP environment in
other papers. Therefore, a column-based storage model is
required. The proposed storage model provides the
following advantages and advantages (Francois and
Rainer, 1986; Halevy et al., 2006).

Instead of using the RID method at all, we use a join
index to create a smgle record but since the proposed
model uses RID, we need to add a join index 1t 1s expected
to be more advantageous m terms of access to records
and space efficiency because it 1s not necessary to create
(Ross, 2008, Amir et al., 2001).

Literature review: In the NSM Model, the records are
stored sequentially as shown in Fig. 1 and the start offset
of each record is stored at the end of the page. NSM is
not suitable for OLAP environment and storage models
such as DSM and PAX are available. Decomposition
Storage Model (DSM) 15 a method of storing a table m a
column-by-column table without modifying the storage
method inside the DBMS. It has the following structure
(Fig. 2).

746

If you want NSM to query “print a record with
1d =12305”.

Select*from employee where id = 12305

The same query is made in DSM as follows.

Relect id, name, age, gender from al-a3
Where al.id = 12305, a2.id = al.id and a3.id =al.id

The advantages of DSM are:
s If frequently used queries are often processed using
a specific column, disk I/O

Because the store 13 made up of two related
keys and a specific column there are few cache
misses

The disadvantages of DSM are:
¢ Multiple tables must be modified when a record is
updated

There is a lot of duplication of related key and the
storage space is wasted

SYSTEM DESIGN

Suggested model background: By implementing the
column based storage model in the general purpose
DBMS through the proposed technology, users can
provide table with the storage model that can be
used together mn the OLAP (column based) and OLTP
(row based) environments. In particular, the proposed
architecture is designed to be implemented within the

J. Eng. Applied Sci., 13 (3): 746-751, 2018

v
R Page header RHI1 1237
Jane 30 RH2 4322 John
RID SSN Name Age
45 RH3 r563 Jim 20 RH4
1 1237 Jane 30
7658 Susan 52
2 4322 John 45 S
3 1563 Jim 20
4 7658 Susan 52
5 2534 Leon 43
6 8791 Dan 37
¢ | o Y .
Fig. 1: NSM Model
1D Name Age Gender
12000 | Mike Chan 30 M
12305 | George Best 27 M
12305 | Gina Gillian 45 F
13454 | John Smith 39 M
al 53959 | Sarah Croft 53 F
92123 | James White 57 M
ID | Name
12000| Mike Chan \ \
George Best
12305 e a2| 1D Age a3 1D Gender
12305| Gi illi
Gina Gillian 12000 30 12000 M
i 12305 27
13454 John Smith = - 12305 M
12305 5
53959| Sarah Croft 12305 F
92123 James White 13454 39 3454 M
53950 | 53 !
92123 | 57 53959 F
92123 M
12000 Mike Chan|12305 George Best|
1200030]1230527| ...
12000 M|12305 M| ...

Fig. 2: DSM Model

range of existing Row based DBMS architecture, so 1t is
very efficient in implementation in general purpose
DBMS.

First, we examine the storage configuration of existing
DBMS and propose a new structure. Managing disk
tables in a typical DBMS is done in the following
hierarchical structure.

Table space-=Segment-=Extent-=Page

Table space, extent, page are physical structures and
segment 1s a table created by the user. When mserting/

747

deleting/updating data in a specific table, the segment
descriptor is searched for and the data is accessed by
searching for a page existing in the extents pointed by the
segment descriptor (Fig. 2).

In a typical DBMS, the page intemal structure 1s a
slightly modified form based on NSM. However,
depending on the type of record there may be records that
span multiple pages. Such records can be stored on
multiple pages in various forms such as.

From Fig. 3 and 4, Fig. 3
where a certain column with a large size of one

shows a case

row exists 1n another page and the right Fig. 3

J. Eng. Applied Sci., 13 (3)

System extent

1 746-751, 2018

Table index extent

»

1 2 3 31 32 33 63
Data file pages
Segment descriptor > Extent descriptor
Segment descriptor > Extent descriptor
Segment descriptor Extent descriptor 2
Segment descriptor Extent descriptor
Fig. 3: Disk table management of common DBMS
Page header | 12000 Ll oe | 12000
ColDesc |30 M| 12305 Mike Chan_[30| M| 12305
ColDesc 27 Ml George Best |27 Ml

Page header

Mike Chan

John Kit

Fig. 4: Example of storing records in a normal DBMS

shows an example of a case where one row 1s not
recorded on one page and the rest is stored on another

page.

Proposed model (hybrid storage table architecture
using group segment): The proposed technology
15 a new type of architecture that can be stored
on a column basis while maintaining the existing

748

John Kit |RID| o| o|o| o

Pdge header
- [33]m

Flora Ho 27| F |

54647

94765

row-based data structure described before. Use the
segment structure as described above. In addition,
column value m one row is designed to be able to
implement table with column based storage
architecture using existing structure already
implemented, so that, it exists in other page. Hybrid
storage table can be divided into user nterfaces and
storage models.

J. Eng. Applied Sci., 13 (3): 746-751, 2018

User interface: The user is able to specify which columns
should be stored in consecutive pages through the
following syntax when creating a specific table. Column
based table generation syntax 1s as follows.

Create Table T1 ((C1 integer, C2 char (5)) G1, C3 integer G2, C4
varchar (20) G3) column based table

When you create a table with the above syntax, a
table is created in which Cl and C2 have Gl column
group, C3 has G2 column group and C4 has G4 column
group. Here, one group 1s stored as row based and one
group 1s stored as column based.

Storage model: As described, in a typical DBMS, one
table has one segment. On the other hand, the column
based table consists of a base segment which identifies
the information of records in one table and group
segments which means column group. Segments are
created for a single table in the form shown below and
each of these segments knows an extent that contains
information about the space in which their data will be
mserted. The msert/update/delete/select operation using
the above structure 1s performed as follows (Fig. 4).

Insert: For example when a query called insert into T1
values (1, "AAA°, 2, ‘BB’) arrives, it processes in the
following order. A group segment is used to allocate a

Page manged by
base segmemt T1

Page header
RID(G2)“T RID(G3)
RID(G1) [RID(G2)

page to insert the corresponding column. Then, each
group column is inserted into the allocated page and the
RID 1s memorized. Finally, the base segment 1s allocated
space for inserting records and records the stored RIDs.
If you store the records according to the above algorithm,
the records and column values are stored as Fig. 5 and 6.

Update: The update operation can provide various
methods depending on the condition and the type of
update. The following examples are used to illustrate this.

Ex1> update operations that are processed within a group
aupdate T1 set C2 =BBB where C1=1

Segment descriptor Extent descriptor

Base segment descriptor (T1) Extent descriptor

Group segment descriptor (T1.G1) Extent descriptor

Group segment descriptor (T1.G2) Extent descriptor

Group segment descriptor (T1.G3) Extent descriptor

v ¥ v V1

Segment descriptor Extent descriptor

Extent descriptor

Fig. 5: Proposal storage model

Page manged by
group segmemt T1.G3

Page Beada—>| BB | BA

o ofle
Page manged by Page manged by
group segmemt T1/G1 group segemt T1.G2
Pageheader | 1] AAA Pageheader |23 | 5
2 [aac [3[aaD 2 2[3]3]s]4] -

BD [DA | AC | -

ABC|

Fig. 6: Insert procedure example

749

J. Eng. Applied Sci., 13 (3): 746-751, 2018

Ex2> update operations that are processed in different groups
aupdate T1 set C2 = BBB where C4=BB

In this case, C1 and C2 are a group, so they are stored
together in one group segment page. Therefore, only the
group segment T1. G1 can be accessed and the condition
can be checked and updated without accessing the base
segment. Variable columns are not considered.

In this case, first access the base segment, read the
records one by one and use the RTD (G3) to access the
page where the C4 15 stored and compare the predicate.
When a record satisfying the condition is retrieved, it
goes to RID (G1) of the corresponding record and updates
C2-BBB.

Delete: The delete operation accesses the base segment,
follows all the RIDs stored in the record, deletes the mark
and deletes the record.

Select: The search is described as an example having a
type sumilar to an update operation.

Ex1>querying a column within a group
aselect AVG (C1) from T1 where C2 like *AA% or select
count (C3) from T1 where C3 =35

This query can be processed sumply by accessing the
group segment T1. G1 without having to access the base
segment. That is, it is possible to access T1. G1 and
directly access the C1 column of the record matching the
condition.

Ex2>query accessing columnns in multiple groups
a select*from T1

A query that accesses the entire records used mainly
i the OLTP environment accesses the base segment,
accesses the pages pointed to by the base segment and
constructs a row to retumn. In this case, depending on the
number of column groups, it 1s expected that many buffer
misses will not occur because the number of designated
pages 1s accessed at one time. In this example, four pages
must be accessed to retrieve all the columns of a record
and the next record access 1s accessible from the page
already in the buffer, so, no buffer miss occurs.

CONCLUSION

It 15 a well-known fact that a column-based storage
model is required in the OLAP environment. Therefore, a

750

column-based storage model is required. Therefore, the
model proposed m this study proposes a model that 1s
more advantageous in accessing records and more space
efficient.

Since, the proposed model has all the row/column
based storage architecture there are many advantages
over the existing O technology and the OLAP and OLTP
property queries can be tuned to the user’s choice in one
table. Also, there 1s a difference that it 13 possible to
access by record basis without join index or join operation
which 1s a problem of existing column based storage
model.

IMPLEMENTATION

Fmally, it is easy to unplement because it has a
structure that can be well integrated with the storage
architecture of the general purpose DBMS.

ACKNOWLEDGEMENT

This researcher was supported by the National
Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. 201 7R1A2B4011
243).

REFERENCES

Ailamaki, A, D.J. DeWitt and M.D. Hill, 2000. Data page
layouts for relational databases on deep memory
hierarchies. VL.DB. J. Intl. Very Large Data Bases, 11:
198-215.

A, R Kashi and N.S. Netanyahu,

Analyzing quantitative

2001.

databases: Image is
everything. Proceedings of 27th International
Conference on Very Large Data Bases (VLDB’01),
September 11-14, 2001,
Publishers Tne, San Francisco, Califormia, USA., pp:
89-08.

Copeland, G.P. and S. Khoshafian, 1985. Adecomposition
storage model. Proceedings of the ACM SIGMOD
International Conference on Management of Data,

Amir,

Morgan Kaufimann

May 28-31, 1985, ACM, Austin, Texas, pp:
268-279.
Francois, B. and M. Rainer, 1986, Checking

consistency of database constraints: A logical basis.
Proceedings of the 12th International Conference on
Very Large Data Bases (VLDB’86), August 25-28,
1986, Morgan Kaufmann Publisher, Kyoto, Japar, pp:
13-20.

J. Eng. Applied Sci., 13 (3): 746-751, 2018

Halevy, A., A. Rajaraman and J. Ordille, 2006. Data Ramakrishnan, R. and J. Gehrke, 2000. Database
integration: The teenage years. Proceedings of the Management Systems. McGraw-Hill Higher
32nd International Conference on Very Large Data Education, Boston, Massachusetts, I[SBN:
Bases (VLDB’06), September 12-1 5, 2006, VLDB 97R0072465358 Pages: 740,

Endowment, Seoul, Korea, pp: 9-16. .
. - ’ _ Ross, K.A., 2008, Modelng the performance of
Jagadish, HV., B.C. Oot and Q.H. Vu, 2005. Batonx A algorithms on flash memory devices. Proceedings

balanced tree structure for peer-to-peer networlks.

Proceedings of the 31st International Conference of the 4th International Workshop on Data
on Very Large Data Bases (VLDB'05), August Management on New Hardware, June 13, 2008,
30-September 02, 2005, ACM, Trondheim, Norway, ACM, Vancouver, Canada, ISBN:978-1-60558-184-2,
ISBN:1-50593-154-6, pp: 661-672. op: 11-16.

751

	746-751_Page_1
	746-751_Page_2
	746-751_Page_3
	746-751_Page_4
	746-751_Page_5
	746-751_Page_6

