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Abstract: The aim of this research is the development and testing of intelligent system for equipment health
management in the technological process of yellow phosphorus production. In the course of research, the
methods of mathematical modeling, experimental design methods, methods of fuzzy modeling, methods for
creating and training neural networks and neural network algorithms were used The peculiarities of the
technological process of phosphorus electric smelting are discussed. The three-step procedure of developing
mtelligent or hybrid models for the management process is proposed to increase the effectiveness of this
process on the example of ore-thermal smelting of phosphate ore. A subsystem for calculating the power on
the mean level of the automated management system of technological process parameters with the calculations
readability once in 10 min is developed which allows stabilizing the temperature under the furnace roof arch
which m turn leads to the reduction of phosphorus loss with the exhaust gases out of the condenser. It 1s
indicated that the mean level subsystem determines the optimal values of power depending on the voltage level,
linear current, the arrangement of the electrodes on the crossbar and the average temperature under the furnace
roof arch.
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INTRODUCTION

Intensive progressive stage in the development of
optimum control systems for various parameters of
technological processes started a long time ago
(Suleimenov and Hammetov, 2011), however, still the
significant optimum control system was not implemented.
The threshold, after which the automatic control of the
technological process will be recognized as completely
successful 13 the complete exclusion of the human control
of the process. At the moment, it has not yet, crossed this
boundary, human experience and human competence is
still needed in the management of production processes.
This 18 due to the extreme complexity of technological
processes in ferrous and nonferrous metallurgy, chemical
and other economy branches. Currently, there is an urgent
need for the development of optimum control systems for
parameters i industry
which enables to use mineral resources, save thermal and
electrical energy, reduce environmental problems, increase

of technological processes

economic returns from production, etc. (Hodge et al.,
2016, Saxena et al, 2015). Artificial mtelligence and
neural networks become a relevant issue in various fields
of human activity. The development of information
technologies allowed us to store large amounts of
information (Zaychenko, 2008), thanks to their associative
memory they are most often used in the chemical industry
for pattern recognition in analytical purposes and for
predicting the possibility of a specific compound
synthesis and its properties (Vijayaraghavan et af., 2014).
Manufacturers are trying to cope with the problem of a
constantly evolving range of products in order to meet
customer requirements. Using an artificial neural networlk,
we can process large amounts of data to understand
market trends and to be able to produce products
with the evolutionary characteristics (Uraikul e# al., 2007).
Application of artificial neural networles has also extended
into the planning process for critically important objects
of infrastructure (Suleimenov ef al., 2012) and control of
nonlinear systems (Rutkovskiy, 2010). Tn modern industry,
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the actual application of the neural networks theory, fuzzy
logic and fuzzy sets, artificial intelligence and modeling
systems, the study of the principles of mechanism and
algorithms  of mtelligent management  pattem
recognition and image understanding becomes relevant
(Kalman et al., 1969).

The above directions found wide application in
metallurgy both in stand-alone and combined use cases.
The areas in which they are effectively used are various:
assessment and forecast of technological parameters,
control and diagnostics of technological processes,
optimization and planmng of results, process modeling
and interactive modeling in dialogue modes. They
allow creating intellectual models of automation objects
and applied neuro-systems which help to facilitate
technical condition control of mdustrial facilities
(Aitbayevich et al., 2015).

Today, m the field of the theory and practice of
artificial intelligence, effective artificial intelligence
technologies are created and used in various practical
applications including management. Tt should be noted
that the majority of these studies focus on the
development and implementation of systems for local
control, designed to solve problems of stabilization of
some output variables of the technological process using
mtelligent controller (Suleimenov, 2009; Kalogirou, 2003).

However, in our view, the most effective use of
mtelligent technologies 1s together with classical methods
of technological process management (Mayrhauser et al.,
2000, Mukhanov et af., 2012, Abas, 2013,
Suleimenov et al., 2014). Thus, it is possible to combine
the advantages of traditional methods, techmques and
algorithms with the mathematical apparatus of the artificial
intelligence theory. Let us call such systems hybrid
management systems (Szandala, 2015, Wang et al., 2015;
Khatibi et al., 2011).

Especially important is the establishment of effective
management systems for the complex and large-tonnage
technologies that manufacture high-value products. This
class includes the production technologies of non-ferrous
and rare metals, production of chemical and petrochemical
industry, pharmaceutical engineering, etc. It says that the
expansion of neural networks sphere is caused by the
means of mathematical modeling of complex processes
and systems, in which there is a need for processing large
amounts of data (Yang et al., 2013; Leonenkov, 2003,
Zadeh, 1975, Wojcik ez al., 2014).

In this study, the researcher propose to test the
developed methods and tools for the creation of smart
technology to control parameters of a complex
technological process at the mean level of the automated
management system-production of yellow phosphorus.
Even a slight improvement of this process can lead to
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significant economic and environmental effects. The
industry  constantly needs the modermzation and
automation of equipment to control its state because the
equipment becomes obsolete m terms of technology and
out of order in connection with the expiration of
production time and in some cases reaches a critical state
which entails production accidents and the danger to life
and health of employees. The mam trend of industral
development is the presentation of more stringent
requiremnents for security and reliability of technological
processes. Integration of systems and creation of a
unified database help to automate industrial processes.
Along with the requirements of high economic efficiency,
the attention is focused on the products quality that is
impossible to implement without the use of control
methods based on modermn mtelligent technologies.

Thus, the aim of this research is to develop and test
intelligent system for optimum control of complex objects,
in particular the parameters of the technological process
of yellow phosphorus production in the chemical
industry, to improve the efficiency of this process. The
main objective of this research 1s to create management
methods of complex technological process which
(unlike existing) combines various models at different
levels of the automated system and includes a model
based on full-factor experiment that provides a basis for
justifying decisions on the basis of expert knowledge.

MATERIALS AND METHODS

The researcher of this study proposed a three-step
procedure of creating optimum control systems for
technological processe’s parameters by Szandala (2015),
Wang et al. (2015), Khatibi et al. (2011) and Zadeh (1975).

The first stage: The transcendent studies of the
technological characteristics of the management object
are carried out according to the lterary sources,
publications in periodical editions and the manufacturer’s
techmical documentation. As a rule, existing processes
had to go through a long phase of research,
experimental-industrial and industrial testing before they
were put into production. The case studies and attempts
to develop mathematical models remain. A careful analysis
of all this information is needed in order to use it in the
development of intelligent management systems. This 1s
especially important in the possible creation of Hybrid
Management Systems (HMS).

At this stage, it is necessary to analyze the performed
process as a management object identifying mput and
output, controlled and uncontrolled, ruled and unruled
variables. It 15 necessary to estimate the object delayed
action according to different channels, the object’s class
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(continuous or discrete), the degree of information
completeness considering object variables, the operating
range of object variable changes, etc.

After careful analysis of the available information, it
is necessary to develop the structure of the future control
system that will greatly facilitate further work.

The second stage: A process control model 1s
developed With the help of sophisticated experts
(operators technologists or engmeering personnel at a
production department or plant) the main purpose of the
control 1s determined (an analogue of the objective
function in optimization issues) which is generally known
and which experienced operators usually aim to achieve.
Then with the help of ranking method, the variables which
in the opimon of experts are basic to the object (process)
are determined from the total list of all types of
variables.

The main objective of the second stage is the
development of the planming matrix for the Full Factorial
Experiment (FFE). Using the FFE on matrix, a model of the
control object (process) 15 created. Thus, for a three-level
factors, the total number of possible factors combinations
with two input variables is N = 3* = 9 with three variables
s 3* =27, etc.

For example, when there are two mput variables, the
FFE planning matrix is created as shown in Table 1 and 2
are the basis for the development of intelligent systems,
since, they focus years of experience, knowledge and
mtuition of experts m a particular subject area. The
efficiency of the entire control system will depend on the
quality of the FFE matrix.

Values: 0.0; 0.5; 1.0 mean minimum, average and maximum
values of the input variables X, and X;. The expert only
assigns values of the output variable Y™ (control action)
in the range from 0.0-1.0 considering his/her experience,
knowledge and intuition. Normalization of mput and
output variables in the range from 0-1 is based ona Eq. 1:

K= e (1)
O
Where:
X = Normalized (from 0-1) value of input or
output variable
X = The current value of the variable
X X = Minimum and maximum values

The matrix design for expeniments is more convenient
for experts than recommended in all textbooks and
publications (Saxena ef af., 2015; Mukhanov et al., 2012;
Abas, 2013; Suleimenov et al., 2014) composition of the
fuzzy productions rules. In this case, it 1s not necessary
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Table 1: FFE planning matrix

Experiment No. X X, Y expert evaluation
1 0.0 0.0 1.0
2 Q.0 Q.5 0.8
3 Q.0 1.0 Q7
4 0.5 0.0 0.8
5 Q.5 Q.5 1.0
6 0.5 1.0 0.9
7 1.0 Q.0 Q7
8 1.0 0.5 0.8
9 1.0 1.0 1.0

Table 2: Comparison matrix of calculated and experimental values of the
output variable

Experiment No. X, Xz Y? model evaluation Y* expert evaluation
1 0.0 0.0 1.0 0.95
2 0.0 0.5 0.8 0.85
3 0.0 1.0 0.7 0.65
4 0.5 0.0 0.8 0.80
5 0.5 0.5 1.0 1.00
4] 0.5 1.0 0.9 0.85
7 1.0 0.0 0.7 0.80
8 1.0 0.5 0.8 0.75
9 1.0 1.0 1.0 1.00
for the expert to invent endless terms (“a lot”, “very little™,

“quite normal”, etc.,) he just puts the value of the output
(control) variable to the range from 0.0-1.0. The FFE
planning matrix can be used for four different methods of
creating management models: expenment planmng, expert
systems, neural networks and neuro-fuzzy algorithms.

In contrast to the well-known classical methods of the
experiment planning, FFE planning matrix with the help of
experts significantly accelerates and reduces the cost of
the procedure. Experts carry out the so called “thought
experiments” instead of a costly, actually carrying out
active experiments. In addition, we need to consider that
the conduct of active experiments n the conditions of
production are unrealistic because of the possible
emergency situations during the change of variables from
their minimum values to maximum values and vice versa.
Moreover, many enterprises sumply cannot change the
variables, according to the FFE plamming matrix.

Tt should be emphasized that the output values Y, are
actually controlling variables that is why the planning
matrix displays the process management model for all
scheduled combmations of input variables. To calculate
values at intermediate combinations of input variables
(e.g., when X, = 0.21 and X, = 0.74), it is necessary to
synthesize the process control model which 1s the main
objective of the second phase.

Tt is also important that the FFE planning matrix can
be used to create a management model in five different
ways: experunent planmng, fuzzy algorithms, neural
networks, neuro-fuzzy networks, hybrid models.

It should be noted that the use of known
mathematical relationships identified in the first phase of
the research 1s the most effective together with mntelligent
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models. ITn this case, you should be sure that such
dependencies adequately reflect the various physic
chemical regularities of a specific process.

The third stage: The obtained models are subjected to
rigorous study and analysis of their sensitivity, stability
and umqueness. For this, the management process
modeling is carried out at different variations of input
variables, the curves of the output variables change are
constructed at the input variables change and their
analysis is performed together with experts. After the
study completion of models, obtained by different
methods, they are compared for their adequacy. For this
reason with the help of models, output variables are
calculated at values of mput variables taken from the
planming matrix FFE and are compared with the estimates
given by the expert. After that, a matrix of comparisons 1s
created (Table 2) which allows calculating the amount of
modeling error
absolute percentage error is calculated according to Eq. 2:

m various ways. For example, the

1 N
§=100— Y| v=-7| - (2)
N Z\ \

1=1

where Y™ and Y, respectively the experimental and
calculated values of output variables. The absolute error
1s calculated for the models obtamed in four different
ways and then their comparative analysis takes place. The
model with the smallest absolute error is considered the
most effective. In addition, it should undergo modeling
tests in the conditions of existing industry. Thus, the
valid input variables are served to the input of the model
taken from the measuring equipment of the industrial unit
the modeling results (output control variable) are
compared with the control value which 1s actually carried
out by an experienced operator-technologist. In the case
of a satisfactory modeling result, the model 15 mtegrated
mnto an industrial controller. Otherwise, everything starts
from the beginmng a return to the first stage and updating
all of the model parameters.

RESULTS AND DISCUSSION

TLet us consider the application of the proposed
method on the example of the creation of an intellectual
control system for parameters management of electric
smelting i the production of yellow phosphorus.

The technology of phosphorus electric smelting is
described in detail by Biswas and Breuel Taking into
account this information, we can identify its followimng
characteristics as the control object:

+  Considerable delayed action of the electric smelting
process due to large amounts of ingredients

» Large volumes of silos and bunkers, leading to
significant delays on the respective control channels

»  Wide range of components of the fumace burden
phosphates, sinter fines, quartzite fines, dust, coke

» Heterogeneous composition of the furnace burden
components in the ore silo

On the one hand, the process of electric smelting, in
terms of furnace burdening is not difficult. Tts optimal
composition is known from a predetermined calculation of
the furmace burden based on the balance equations. The
furnace burden enters the furnace with its penetration.
The versatility of the electro-thermal method lies in a clear
separation of the recovery reaction products: gases
contaiming phosphorus, slag consisting of calcium and
magnesium silicates and ferrophosphorus. We condense
the phosphorus from gases and get it in pure form
(99.5%).

The main difficulty in the preparation of the furnace
burden is a disturbance action of variable (but controlled)
amounts of loaded components: sinter fines, coke and
siliceous raw materials. Largest perturbations in the
electric smelting process are made by the acidity index
and the content of sinter fines which does not allow
withstanding a given amount of fuel in the furnace
burden. This i1s due to the fact that the fumace burden
fuel does not fade completely durng agglomeration of
phosphorites. There 13 a certain optimum i the acidity
index. If this optimum 15 exceeded, the quantity of the
finished product decreases and the fumace efficiency
reduces and when the value ranks below the optimum not
all reactions proceed to the end. However, there is no
exact dependence of the furnace power on the acidity
index.

To accomplish the above goal, we proposed a
three-step structure of a control system for process
parameters of ore-thermal smelting of phosphate ore
which 1s shown in Fig. 1.

At the top level of management, an optimal
calculation of the furnace burden and furnace mean power
15 performed depending physic-chemical
composition of the starting components and a necessary
amount of the yellow phosphorus. The calculation
increment 1 time per shift.

On the lower level of the Automated Control System
for Technological Process (ACSTP) there is a subsystem
of fumace capacity stabilization which works in a mode of
Direct Digital Control (DDC), i.e., constantly. However, as
experience has shown, for various reasons, the furnace
temperature changes continuously during melting, mainly

on the
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Fig. 1: A three-level hierarchical structure of the optimum control system for process parameters of yellow phosphorus

production

due to uneven composition of the furnace burden over
the height of the furnace. The furnace temperature is
estimated mndirectly from the mean temperature measured
by the sensors under the furnace roof arch and 1s a very
umportant indicator of the furmace operation.

The phosphorus removal in the condenser depends
ultmately on the temperature in the furnace. At high
temperature (above 800 N), an increase in the volume of
exhaust gases takes place and therefore the speed of
their expiration which leads to “skips™ of gases parts
through the condensers and irreversible loss of part of the
phosphorus. Additionally, at temperatures above 800°C,
part of the atoms of phosphorus passes into the 4-valent
state, resulting in poor solubility of such compounds in
water which also leads to its losses in the capacitors
(Mukhanov et ai., 2012).

In these circumstances, the researchers of this study
suggest to develop another level subsystem calculate
power of the mean level of ACSTP with a readability
calculations 1 every 10 min. Synthesis of one-level
process control system will change the capacity of the
furnace during the shift increments once per 10 min.
This discreteness allows often enough to adjust the
temperature and at the same time it corresponds to the
delayed action of the furnace temperature. At high
temperature under the furnace roof arch, system will
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recommend to reduce the capacity of the furnace and with
the low temperature-to increase. The average capacity of
the furnace per shift must be approximately equal to the
value calculated for the ACSTP.

In regard with this problem, a three-level hierarchical
structure of the system of optimum control of process of
production of vellow phosphorus will be of the form
shown in Fig. 1. Onthe upper level of ACSTP on the basis
of mformation on capacity of the fumace m the current
days, coming from the management of the plant and
taking into account the physic-chemical properties of the
components of the fumnace burden produces the
calculation of the optimal composition of furnace burden
and power the fumace on the cwrent shift. Mean
level of ACSTP has two subsystems: the subsystem of
calculating the optimum current capacity of the furnace
and the control subsystem purification of exhaust furnace
gases mn dry electrostatic precipitators (GAP). Taking into
account the current values of voltage level, line current
and average temperature under the furmnace roof arch.
Taking into account the designed at the ACSTP upper
level capacity of the furnace for the shift, the first
subsystem calculates the current power based on the
temperature under the furnace roof arch:
temperatures it increases and at high values reduces the
current capacity of the furnace. The second subsystem is

at low
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Table 3: The FFE planning matrix for the subsystem of mean-level management.

Tncome variable

Outcome variable

Experiment No. Voltage level (X;) Linear current (X5)

Crossbar height (X3) The temperature under the arch (X,

The current voltage (Y)

1 0.0 0.5
2 0.5 0.5
3 1.0 0.5
79 0.0 1.0
80 0.5 1.0
81 1.0 1.0

0.0 0.5 0.76
0.0 0.5 0.53
0.0 0.5 0.00
1.0 1.0 0.78
1.0 1.0 0.63
1.0 1.0 0.07

based on the average temperature under the furnace roof
arch, the furnace on and off before and after the ESP
calculates the current values of the field strength, length
of time between electrodes on and off in front of set. On
the lower level, subsystem of the process control system
to stabilize the power of the furnace produces the
stabilization by immersion or lifting of the electrodes, this
subsystem performs the stabilization of the calculated
mean parameters of furnace operation.

Thus, adding to system an additional mean-level
ACSPT allows stabilizing the temperature under the
furnace roof arch which leads to the reduction of
phosphorus in the exhaust gases after the condenser. Due
to the fact that the task of calculating the optimum furnace
burden composition and average capacity per shuft is
purely a technological problem that is well studied and
widely used in practice, we will not consider it in this
article.

The 1ssue of the purification process management of
waste furnace gases 1s rather complicated and requires
separate consideration; therefore, it is not considered in
this article. The problem of stabilization of power is well
known and currently used m the production, we will not
consider it.

Thus, we consider the problem of creating an
intelligent subsystem control parameters of the process of
electric smelting of phosphorus at the mean level of
ACSTP, 1e., the problem of stabilization of the
temperature in the furnace. The swrvey of operators
technologists phosphoric factory is the optimal value of
power depends on the level of voltage, linear current, the
arrangement of the electrodes on the crossbar and the
average temperature under the furnace roof arch.

The main challenge in developing the model of
management 1s the preparation of the planming matrix of
the Full Factonal Experiment (FFE). The quality of the FFE
matrix will depend on the efficiency of the entire control
system. The planning matrix FFE should reflect the
experience, knowledge and mtuition of the techmicians,
operators, long time working on phosphoric ore-smelting
furnaces. As noted above, the task subsystem
intermediate level is to determine the optimal values of
power (Y) depending on the level of voltage (X,), line

Table 4: Comparative anatysis of calculated and experimental values of the
output variable by the method of experiment planning

Y
No. X, X, X X, e =

1 -1.0 1.0 -1.0 -1 0.79 0.800
2 1.0 1.0 1.0 -1 0.02 0.046
3 L0 1.0 1.0 -1 0.90 0.870
4 1.0 1.0 1.0 -1 0.10 0.090
5 L0 L0 1.0 -1 0.84 0.800
6 1.0 1.0 1.0 -1 0.07 0.070
75 0.5 1.0 0.3 1 0.24 0.380
76 1.0 0.5 0.5 1 0.05 0.800
77 -1.0 0.3 1.0 1 0.79 0.760
78 0.5 0.5 1.0 1 0.24 0.560
79 1.0 0.3 1.0 1 0.06 0.000
80 0.5 L0 1.0 1 0.20 0.600
81 0.5 1.0 1.0 1 0.26 0.630

Absolute error (%0) = 14.41%

currents (X,), the arrangement of the electrodes on the
crossbar (X;) and average temperature under the furnace
roof arch (X,). As a rule such calculations should be
performed continuously (about once every 5-7 min),
depending on the situation. A survey of teclnology
workshops has allowed us to compile a FFE plamming
matrix for 81 experiment with a three-level assessment
(0, 0, 0, 5and 1, 0), four mput vanables: N =34 =81.
Table 3 and 4 shows a fragment of the FFE planning
matrix for four input and one output variable.

Normalization in the range from 0-1 input and output
variables was carried out according to Eq. 1. In Table 3, all
the variables are in a normalized form between 0.0 and 1.0.
Thus, the seventh step i the voltage corresponds to the
value 0 and the forty third to the value of 1; the maximum
value of line current is 70 kA which corresponds to 1 in
Table 3 and mimmimum O kA; the maximum value of the
stroke of the electrodes or the height of the crossbar
100 cm, minimum 20 cm; the maximum furnace power
is 70 MW and the minimum was 0 MW.

The FFE planmng matrix 1s composed of experienced
technologists using the “intellectual” experiment. That is
why 1t 15 much easier to make such a matrix, than
according to active experiment. In Table 3, the years of
technologists experience with the furnace are focused. In
the FFE planning matrix, the expert knowledge for the
management of current capacity 1s founded depending on

612
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the temperature under the furnace roof arch, the steps of
the voltage values of linear currents and height of the
electrodes crossbar. The FFE planning matrix can be used
to develop management models m four ways: by the
design of the experiment, the fuzzy modeling method is
neural networks and neuro-fuzzy methods.

Due to the fact that the method of experiment
planning often mcludes a two-stage estimation variables
(from -1 to +1), the experiments only with such levels of
assessment variables were selected from Table 3. Thus,
the rating of 0.0 of Table 3 corresponds to the rating
of -1.0 and assessment 1.0 to assessment of +1.0. Using
this simple technique, a FFE matrix was prepared for the
two-level assessment.

For two-level factors, the total mumber of possible
combinations of the number of factors is N = 2' = 16. In
this regard, the plan is developed in which the number of
columns of the factors and their combinations equals the
number of terms in Eq. 3:

Y = bD +blxl+b2X‘2+b3X‘3 +b4x4 +b12X1X2+

b13X1X3 +b14X1X4 +b23X2X3+b24X2 X4 +b34X3X4

3)

Tt now remains to find the appropriate coefficients of
Eq. 3 by the equations:

;yu (4

b7

0

1
YAV,
u=l1

b7

LS

n
PRESA
u=l|

b7

1

]

n n n
Usmg Eq. 4, we calculated the coefficients of
regression equations which after substitution in Eq. 4,

gave the following relation to calculate Y:

Y = 0.436-0.3678X, +0.039X, +0.0278X,-0.0485X, -
0.0098X,X,-0.001X,X, +0.0153X,X, +

0.0098X,3,-0.0165X,X,-0.0052X X,
(5)

Using the regression Eq. 5, the output (control)
variables were modeled for all 81 experimental points. A
comparative table of the modeling results and the
experimental values was developed with the help of
which using Hq. 2, we calculated the error. Table 4
shows fragments of calculations by Eq. 5 -Y, and the
experimental value of the output variable - Y.

Analysis of publications (Hodge et al., 2016;
Saxena et al., 2015; Zaychenko, 2008) have shown that
mtellectual technologies can be used dwectly m the
development of process optimum control models not a
model of the process itself. That 1s considered
technologies allow you to develop control algorithms in
contrast to the traditional cham: development of
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process model structure- experimental research on the
object-model identification~formulation of optimization
problem-selection of optimization method-development
of optimuim control algorithm.

The use of intellectual technologies allows solving
a similar problem immediately and as shown by the
experience of the researchers of this study (Suleimenov,
2009; Mukhanov et af., 2012; Suleimenov et al, 2014)
successfully. The methods of artificial intelligence mvolve
the use of knowledge, experience and intuition of human
experts who are familiar with the subject area. That is, the
so-called effect of “ready knowledge” i1s used here. In
contrast, the development of a mathematical model
{main system component) is the process of creating “new
knowledge” and therefore requires a fairly long tume to
conduct theoretical research as well as high material and
labor costs for conducting the experimental studies and
model identification.

Moreover, experienced  operators-technologists
during their long work learned to make the technological
process n optimal modes at different mitial situations
(and they often succeed) (Abas, 2013; Suleimenov et al.,
2014; Szandala, 2015, Wang et al., 2015; Khatibi et al.,
2011; Yang et al., 2013; Lecnenkov, 2003). The “ready
knowledge” transferred from experts to the knowledge
base of intelligent system greatly simplifies the creation of
intelligent systems. Their operation allows excluding the
human factor in the process management (these are such
properties of the human body as fatigue not fast enough
reaction not enough psychological stability, sleepiness
during monotonous work, slight experience of young
operators and others) (Zadeh, 1975, 2008; Wojcik et al.,
2014; Fazilat er al., 2012, Swedrowski et al., 2014,
Bobillo and Straccia, 2008).

The development of mtelligent models (algorithms)
for process parameters control i yellow phosphorus
production at the average level of ACSTP is performed by
three methods: fuzzy modeling, neural networlk method
and neuro-fuzzy method.

Fuzzy modeling: Developing a fuzzy model (Leonenkov,
2003) 18 performed using the graphical tools of Matlab
system. Then we define membership functions for the four
input and one output variable for this reason we will use
the editor of membership functions in the MATLAB
system. The graphical interface editor of membership
functions is shown in Fig. 2 which shows the membership
functions for the four input variables: level of stress (X,),
linear currents (X,), the height of lifting (lowermng) of
crossbar with electrodes (X;) and average temperature
under the furnace roof arch (¥,) and one output variable
current furnace capacity (Y). Then, the fuzzy products
rules are formed, i.e., each experiment from Table 3,
corresponds to a product rule, for example.
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Fig. 2: The graphical user nterface of membership functions editor after defimng the first input variable

Rule 1: “TF X, is EQUAL to 0” AND “X, is EQUAL to 0.5
AND “X, IS EQUAL to 07 AND “X, 18 EQUAL to 0.57
THEN “Y 1s EQUAL to 0.76”.

Rule 2: “TF X is EQUAL to 0.5” AND “X, is EQUAL to
0.57 AND “X, 18 EQUAL to 0” AND “X, 1s EQUAL to 0.57
THEN “Y 1s EQUAL to 0.537,

Rule 3: “TF X, is EQUAL to 1” AND “X, is EQUAL to 0.57
AND “X; 1s EQUAL to 0”7 AND “X, 1s EQUAL to 0.57
THEN “Y 1s EQUAL to 0”.

Rule 4: “IF X, 1s EQUAL to 0" AND “X, 1s EQUAL to 07
AND “X; is EQUAL to 07 AND *X, 1s EQUAL to 0.57
THEN “Y 1s EQUAL to 0.72”.

Using the similar technique, we have drawn up the
products rules for all 81 experiments from Table 3. After
MATLAB generates all the necessary procedures in
accordance with the selected algorithm of fuzzy inference
(for example, Mamdani algorithm), a fuzzy optimum control
model for the melting phosphorus process at the mean
level of the hierarchy (Fig. 3) will be presented mn the
interface of rules view.

Thus, the interface shown in Fig. 3 is an optimum
control model (algorithm), using which you can simulate
different modes at all possible combinations of values of
input variables.

Modeling using neural networks: For process control
modeling can also be used in the neural network, instead
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of fuzzy models. For training the neural network, it is
necessary to mtroduce the results of the 81 experunents
of FFE planming matrix. The program MATLAB 2006 has
a graphical interface that allows you to introduce the
necessary data for the network architecture choice and its
traimng method.

To train the neural network, we mput source data
from the FFE rapid planning matrix (Table 3). Output
variables (control actions) are using the window
“Datatarget”. Next, we create a neural network (Fig. 4).

In the margin “mnput data™, we specify a previously
created data, set the type of neural network; we choose
the perceptron (Feed-ForwardBackPropagation) with 10
sigmoid (TANSIG) neurons of the hidden layer and one
linear (PURELIN) neuron of the output layer. Traimng will
be done using the Levenberg-Marquardt algorithm
(Levenberg-Marquardt) which implements the function of
TRAINLM. The error function 1s MSE. The program will
show progress and learming outcomes.

Modeling using neuro-fuzzy algorithms: Tnstead of fuzzy
models and neural networks it is possible to apply hybrid
models such as neuro-fuzzy network which is supposed
to combine all the advantages of the two above
mentioned methods (Fazilat ef al., 2012; Swedrowski et al.,
2014; Zadeh, 2008; Bobillo and Straccia, 2008). The
capabilities of MATLAB allow you to carry out these
studies. To do this, in MATLAB there 1s the ANFIS editor
that allows you to create or download a specific model of
an adaptive system of neuro-fuzzy inference, to complete
her traming, to wvisualize its structure, change and
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1! Network: model

View| Train | Simulate | Adapt | Reinitialize Weights | View/Edit Weights|

Hidden Layer

Output Layer

Fig. 4: Neural network control model at the mean level of ACSTP

configure its settings and customize the network to obtain
results of fuzzy inference. Entered in the mam command
window of MATLAB anfisedit and press enter screen
appears. Tt should be noted that in MATLAB 2008 and
above there 1s no need to do tlus because this editor 1s
launched as with all programs via the Start button-opens
the editor ANFISA.

Each row corresponds to an individual data point on
the graph that for the training data depicted with a circle.
On the horizontal axis, you specify the ordinal (index) of
the mndividual rows of data and the vertical axis mdicates
the values of the output variable. The next step in the
development of hybrid network is to generate the
structure of the fuzzy nference system. At this stage, you
can view the network architecture (Fig. 5).

Now it is necessary to choose a teaching method for
a hybrid network such as the optimization method, the
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mumber of leaming epochs and permissible error. The
network shown m Fig. 5 15 the governance model at the
mean level of the hierarchy using neuro-fuzzy algorithms.
In the future, this model can be used for the calculation of
output variables for any changes in the mput. After
training the network, it is possible to test, upload the test
data to view or to ask any valid value in FIS editor rule
viewer as well as fuzzy logic (Fig. 6) which 15 a
neuro-fuzzy control model for the mean level of ACSTP.
The studie’s results of intellectual control models at the
mean level of ACSTP are summarized m Table 5. The
magnitude of the absolute error was calculated by
Eq. 2, analysis of Table 4 showed that the use of the
method of experiment planmng is impossible due to
unacceptably high values of absolute errors. Intellectual
models (Table 5) showed their advantage: from 0.2-2.9%
while the best proved method 1s the method of neuro
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Fig. 6: Neuro-fuzzy control model

Table 5: The results of intellectual models modeling

Experiment No. Fuzzy logic Neural network Neuro-fuzzy network Right answer ¥
1 2.000 3 4 5.00
1 0.760 0.76357 0.76 0.76
2 0.530 0.53443 0.53 0.53
3 0.006 0.033213 0.0000002 0.00
77 0.600 0.52031 0.6 0.60
78 0.050 0.021506 0.04 0.04
79 0.780 0.75978 0.78 0.78
80 0.630 0.57944 0.63 0.63
81 0.070 0.064694 0.07 0.07
Error (%) 0.300 2.9 0.2 -

fuzzy networks (0.2%). As the analysis of works in the
field of the theory and practice of artificial intelligence
shown, currently there are created effective artificial
mtelligence technologies. However, most authors use
these technologies for design, research and
implementation of only local control systems which are
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mainly designed to solve stabilization problems of some
variables of the technological process. The mentioned
studies have shown high efficiency of the control
algorithms, obtamned by using the artificial mntellhigence
methods. Compared to classic methods of building
analytical and statistical models, methods based on
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knowledge, experience, intuition of human experts allow
you to create a system of optimum control for complex
processes much easier, faster and more efficient.
Assessment of the mtellectual models adequacy 1s much
higher than in traditional modeling.

CONCLUSION

As a result of the conducted analysis of the
synthesis methods and investigation of intelligent and
hybrid models, it can be seen that most authors use
mtelligent technologies for development, research and
implementation of local management systems. Information
technology can be used directly in the development of an
optimum control model for the process parameters, not the
model of the process itself.

In this research, we specified the features of the
technological process of electric smelting of phosphorus
and described the techmque of development of mtelligent
control technology which combines various models at
different levels of the automated system and improves the
efficiency of such process.

We have proposed the concept of a three-step
process for creating control systems for the process
parameters of ore-smelting smelting of phosphate ore,
based on the preparation of the FFE planning matrix,
mstead of recommended m the literature products rules
which include years of experience, knowledge and
intuition of human experts.

The FFE matrix are formed as a result of “intellectual”
experimentation of experts and technologists, who worked
hard on the project. It 1s much easier than costly,
dangerous and long “real” experiments at existing
facilities.

The structure is developed subsystem calculate
power of the mean level of ACSTP with the discreteness
of the calculations: 1 every 10 min. This discreteness
allows adjusting the temperature and at the same time, 1t
corresponds to the delayed action of the fumace
temperature. Thus, adding to system mid-level process
control system allows to stabilize the temperature under
the furnace roof arch which leads to the reduction of
phosphorus in the exhaust gases after the condenser.
Four management models were synthesized at the mean
level of ACSTP: neural networlk, fuzzy, neuro-fuzzy and
obtained by using the method of experiment planning.

The study of all four models of effectiveness revealed
that the use of the method of experiment plannming 1s
unpossible due to unacceptably high values (14.41%) of
absolute error. In addition, the newo-fuzzy model
most accurately describes the management process
(absolute error of 0.2%0).
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Studies performed in this research, have shown high
efficiency of the control algorithms, obtained by using the
artificial intelligence methods. Methods based on
knowledge, experience, intuition of human experts allow
creating systems of optimum control parameters of
complex processes much easier, faster and more efficient.
Assessment of the adequacy of the intellectual models is
much higher than traditional modeling.

The proposed methods allow developing ACSTP
instead of the development of a model of the process
which can be used in industry to assess and forecast
technological parameters, control and diagnostics of
technological processes, optimization and plaming
results, etc.
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