Tournal of Engineering and Applied Sciences 13 (3): 601-606, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Visual Verification Tool for Real-Time Software

Andrey Tyugashev
Department of Applied Mathematics, Informatics and Information Systems,
Samara State Transport University, Samara, Russian Federation

Abstract: For space exploration, we need the appropriate software. Because its failure can lead to large financial,
environmental and human losses. Thus, it becomes necessary to create software that will control the design
and development of spacecraft. The study 1s devoted to verification problem of real-time software. The visual
checking is a way that allows getting a fast ‘rough’ solution in many cases. To achieve this goal, we have used
a range of complementary methods, among which are the methods: analysis and information modeling. The
study also summarizes the experience of domestic and Foreign researchers on the subject. Special software
toolset has been developed to support. As a result of computer simulation, a software was developed
GRAFKONT which checks the programs in real time. Programs that were screened are intended for developing
and designing on-board control software m spacecraft. For visualization of the systems m the spacecraft,
GRAFKONT uses a graphical model which are presented in the form of screenshots in this study.

Key words: Software verification, flight control software, visual checking, graph of spacecrafts, domestic,

designing

INTRODUCTION

Nowadays, computers are widely used not only for
solving traditional computational problems but also in
many other areas for instance as a main component of
automated control systems that control techmeal objects,
technological processes, communication equipment
(Bulata et al, 2016; Stukalenko et al, 2016). Thus,
realization of control algorithms 1s carried out by special
software. Such kind of software 1s critical. An error in the
control program can lead to a catastrophe huge material
losses and human victims (Kim et al., 2015; Shang et al.,
2015; Tate, 2016). It is no wonder that such close attention
is paid to providing control software correctly. The
situation 1s even more complicated because control
software as a rule 1s real-time software. It means that not
only the sequence of control signals is important but also
time when they were carried out.

Specification and verification of the real-time
software should be carried out with accurate
consideration of its singularities (Khurshud et al., 2012,
Roy et al., 2016). Let us note that the real-time systems
can be divided into two big classes: event-driven and
time-driven. We can say that mn the event-driven systems
the moment the event 1s processed 13 not valuable
(i.e., event-driven systems have ‘asynchronous’ nature in
some sense) while i time-driven systems, a concrete
moment of time 15 ‘the trigger mechanism’ of desired
actions. In this case, the main requirement to the control
algorithm 15 implementation of control plan with a correct
binding of processes in time. We often face such a

601

situation when it 1s necessary to provide inplementation
of the coordinated control of technical complex containing
a big number of devices, sensors, subsystems that should
co-operate for execution of target task onboard spacecraft
(Tacobs and Wortman, 2016; Savitha et al., 2014).

It 1s umportant to consider the following 1ssue. Very
often, a critical path on project network graph of
spacecrafts and the whole space launch systems building
1s a path of control system development (Liu et al., 2014,
Mehrabian and Khorasani, 2015; Zhao and Jia, 2016). In
control system development, in turn, the most complex,
long and labor-consuming process is creating and
debugging control software. Thus, hundreds of people
are involved into different activities connected to this
process, including payload specialists, onboard
equipment specialists, mathematicians, programmers,
etc. All of these specialists need to have clear mutual
understanding that 13 why it 13 necessary to use clear
and adequate models of software in all stages of its
lifecycle.

To provide necessary level of quality and reliability
of control software, it goes throw multiple stage process
of testing and debugging. At first, unit testing is being
carried out using special automatic test tools that allow
specifying test scripts by special language. Each test
script is to be used for one path (branch) in the control
program control flow graph. Then, integration testing 1s to
be completed. At this stage, 1ssues commected to correct
interaction between the units should be resolved. At last,
in the stage of complex testing, correctness of the
interaction between the software and spacecraft onboard

J. Eng. Applied Sci., 13 (3): 601-606, 2018

equipment is to be checked. Tt is possible to use the real
devices and aggregates of the spacecraft at this stage as
well as specifically developed program simulators of the
equipmment (Tyugashev, 2006).

At the same time as it was formulated by classics of
software engineering, program testing does not guarantee
total absence of errors; it only allows finding some of
them m certam cases (Tyugashev, 2006). It makes
especially effective the development of other methods
of verification and validation of control algorithms and
real-time software. Some of them are program text
mspections, symbolic execution of the program and the
various methods of formal verification based on logical
inference.

MATERIALS AND METHODS

The theoretical basis of the study was the set of
complementary methods relevant goals, among them are:
system information analysis as an instantiation of the
system approach; information modeling which is the
concretization of the scientific method modeling.

Moreover, during the work was studied and
summarized the experience of scientists considered this
issue. We used general scientific methods of analysis and
synthesis and system-analytical, semantic and logical
methods.

Visual verification of real-time control software: In
development of programming languages, the followmng

issue was noted by specialists: the question about
borders of applicability of formal language tool and
whether it should be connected to the human nature and
structure of human memory. Thus, the one of the most
natural forms of information representation for the human
beings 1s a graphical image picture, diagram, scheme, etc.
The typical words for the graphical representation are
“friendly’, “easy’, ‘clear’, etc. There are several inportant
pre-conditions for the usage of graphical tools in
development of the real-time spacecraft onboard
programs. The main reasons are the following:
complexity of the problem to formulate a consistent
(non-conflicting) specification. Necessity to find a good
understanding between onboard system specialists,
algorithm specialists, programmers and other participants
of the program lifecycle. Necessity to keep accurate
documentation of control programs. Necessity to keep
documentation updated to current version of program.
Possibility of usage of different perspective computer
onboard platforms (Tyugahsev, 2009).

For the real-time control systems, the correctness of
the synchromzation of concurrent processes becomes
very important. The key relationships in this sphere are
‘begin-begin’ (coincidence at begin, CB), end-begin
(immediate following, -), end-end (coincidence at end),
etc. The suitable clear representation in this case 13 a
cyclogram (or Gantt diagram) as it is presented on Fig,. 1.
If the process 1s repeated several times, it can be shown
by the several line segments at the corresponding ‘lane’
intended for this functional process.

Graphical construc
iE File View Window Help
BH%e T
P |U

'B'POW™

'B"Stop™

'B"ON 5P

'B"OFF SP"

FSEE]10ms'
FSEE30MS'

‘50 ‘WUD ‘150

L I L

‘450

[0 [0 [@ [

[En

‘EDU ‘850 |SDU .

Fig. 1: Gantt diagram of concurrent processes

602

J. Eng. Applied Sci., 13 (3): 601-606, 2018

Unfortunately, the widely used visual methodologies,
for example, UML did not support reflecting of such
umportant issues; only in UML2.0, some steps towards
these possibilities had been made.

Author proposed the semantic model of the real-time
control programs that correspond to representation as a
cyclogram (Gantt diagram). The semantic model 1s
constructed on the basis of functional processes
(functional tasks). Fach functional task is to be defined by
a tuple of four objects task name, the moment it begins,
task runtime and a logical vector (set of the logical
conditions that cause the execution of the task). Thus, the
tuple describes one execution of the functional task at the
specified moment of time with the certain set of logical
conditions and duration (Kalentuev and Tyugahsev,
2006; Tyugahsev, 2005; Tyugashev, 2006). There are no
evident specifications of the control’s transition from one
functional task to another in the proposed semantic
model. Therefore, we can mmplement the same semantic
model by different programs with the different control
flow graph (more exactly with the different time-logic
schemes real-time analogs of traditional control flow
graphs (Tyugahsev, 2009).

This allows carrying out optimizing transformations
of real-time control programs. The situation is the same as
the situation with the calculating programs when it is
possible to write several different programs that perform
the same transformation of mput data mput output data
(realize the same function).

As it was noted above, during specification of the
real-time control programs, the one of the key 1ssues 1s
correct synchromzation of the concurrent processes as
well as concordance from the logical point of view. For
example, the programmer can be mterested in answers to
such questions as “Is it true that execution of the
functional task f1 ends before the start of the execution of
functional task 17, “does functional tasks f1 and 5 start
at the same moment of time?”, “is it possible that such
combination of logical conditions allows imposition of
execution of 2 and {777, “does functional task f3 end by
moment t = 50077, “how many concurrent functional tasks
are executed at the moment t = 120, if the specified set of
logical conditions 1s true?” and so on. Similar questions
are to be answered during verification of the most
important features of control programs. Visual
representation allows performing quick check of
inplementing of desired features by the program and if it
1s necessary, using special toolset for further clarification.

In the special visual toolset named GRAFKONT
(Tyugashev, 2006) developed by the researchers, we use
the special problem-oriented language (Tyugahsev, 2005,
2009) which allows describing of coordmation of

603

execution of functional tasks in time as well as in logical
space. For example, f1>f2 means that functional task 2
begins at a moment when flends, f1-f2 means that two
functional tasks should begin at the same moment of time,
(~a3)=>f7 means that functional task {7 executes only if
condition a3 is false.

There is a special simple algorithm implemented in
GRAFKONT visual toolset which performs the reverse
engineering, i.e., construction of semantic model (in the
sense specified above), from the existing control program.

This algorithm is based on the following. The internal
logical scheme of the control program is reflected by
special GRAFKONT system data structures. Because
each typical action branching (by checking value of the
flag in the program memory or the value formed by
sensor), functional subroutine call, time delay, etc. is
implemented by the standard macros (sequence of
commands), we can use existing program code: the first
step is to reconstruct the logical scheme of the program,
1e., form special mternal data structure; further, fixing
the variant of execution, ie., set of values of logical
conditions, construct the cyclogram reflecting the name
and duration of the executed functional tasks. And then
we can check justice of demanded specification on the
constructed cyclogram as it is described below. The
time-logical scheme m GRAFKONT also has two visual
representations ‘time diagram’ (Fig. 2) and program
flowchart (Fig. 3), it is very natural for the visual toolset.
The algorithm of reverse engineering ‘runs’ all actions of
control program, counting the “current time” from the zero
value corresponding to the first “enter” of the control
program and then adding the discovered time delays to
the time value. As a result, we have the beginmng time
and using the user provided process duration information,
end time of all functional tasks. Another parameter which
is “collected” by the algorithm is a ‘current’ logical vector
constructed from the conditions we are choosing on the
branches.

This feature allows, in turn, performing automated
verification of the demanded time constraints and
properties of the program commected with synchromzation
of the processes (begin-begin, end-begin, end-end, etc.)
using corresponding tools for visualization as it 1s shown
inFig. 4 and 5.

Therefore, besides the clear picture that 13 used by
humans to quick check demanded requirements on the
qualitative level (Fig. 2 and 3), it 13 possible to
automatically form the set of the control program features
in the form of discovered formulas. This 1s possible
because the key relationships between the functional
tasks in GRAFKONT system have a natural physical
interpretation. For example, “begin-begin™ relationship
means tfl = tf2, “end-end” relationship means tf1+tfl =

J. Eng. Applied Sci., 13 (3): 601-606, 2018

I (Powd)
Pl ———y
@ 1(0Np12)§ éfE?l > Y3enl
Y w' =1 4138 8 E‘|t KT | Al3Bx3
! g
PISPEC=0 3
Enl & _En5,
D2Enx1 = PrO3Y
SEEI =t on y3 & Enb
g I2Bx4
Fig. 2: Time diagram
(___Enterl)
¥BN1=10,00c
PI SPEC
Al13Bx3(AK) T2 A13Bx3(HEAK) T3
) (Exis) Exit2 (it)
Exitd

Fig. 3: Program flowchart

i [“Fle name fun =] o [Semantics fle name 2] |2 & Display]
}3113 & Download fuﬂl 51233 & . Download sem ‘
i5.200 - Bm -
f
{
73
&}
| | E @
| 5
\ I | r‘_'_r
! \ \
|
I |
‘ [4 | |
| ! I
‘ [4] \
‘ [|| \
L L | . 3
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 80O 850 900 T

Fig. 4: Semantics visualization

604

J. Eng. Applied Sci., 13 (3): 601-606, 2018

CAT1 Name|n = [0 1:
|CH ~| Parameter 1
CA T2 Name/= =% =
A —
i —
g
o ——
i Bt
Fig. 5: Tools for visualization
tf2+tf2, -relationship means tfl+tfl = tf2 where tfl

moment of f1 fimctional task begin, tfl —duration of {1, tf2
and tf2 begin time and duration of f2). The simple
algorithm allows discovering all relationships between the
functional tasks. Proposed semantic model allows making
model checking ease (Fig. 4).

The formal theory of the real-time control program
also allows performing, in fact, some analog of a quick and
clear ‘model checking’ verification method. Note that
real-time program calculus described in, for example,
Tyugahsev (2005, 2007) allows also formal inference of
properties of the real-time control programs, 1.e., just a
formal verification of the specifications.

CONCLUSION

The special toolset for visualization of real-time
ontboard control program semantics has been reviewed.
The semantic model uses the concept of ‘schedule’ that
can be naturally represented in visual (graphical) form as
a cyclogram (Gantt diagram). All illustrations in the study
are screenshots of the different modules of GRAFKONT
visual toolset developed by the researchers for the
Russian space centers and intended for support of
processes of design, development, documenting and
verification of the real-time onboard control spacecraft’s
software.
for

The wvisual toolset provides opportunities

checking required properties of the real-time programs

605

|a1 =l a2ai

T1I=T2 TICHTZ

= |al=1a2=1

connected to synchromzation of executing functional
tasks. Usage of GRAFKONT allows lowering time and
expenditure of labor expenses in development of onboard
control spacecraft programs, raising reliability and quality
of the software and lowering level of dependency on
unique skills and knowledge of the certain person
(programmer, onboard systems specialist, algorithm
development specialist, etc.) by achievement of the best
mutual understanding in the group of developers.

Thus, the proposed program is able to significantly
improve safety in the field of space technology as well as
significantly reduce the financial costs of preparation of
space flights.

REFERENCES

Bulata, P.V., K.N. Volkovb and T.Y. Tlyinaa, 2016.
Interaction of a shock wave with a cloud of particles.
TETME. Math. Educ., 11: 2949-2962.

Tacobs, 8. and K.A. Wortman, 2016. Solar probe

spacecraft flight requirements
verification test framework. Proceedings of the TEEE
Conference on Aerospace, March 5-12, 2016, IEEE,
Big Sky, Montana, USA., ISBN:978-1-4673-7676-1,
pp: 1-8.

Kalentuev, A. and A. Tyugahsev, 2006, CALS
Technologies in Lifecycle of Complex Control

plus software

Programs. Russian Academy of Sciences, Samara,
Russia,.

J. Eng. Applied Sci., 13 (3): 601-606, 2018

Khurshid, A., W. Zhou, M. Caesar and P. Godfrey, 2012.
Veriflow: Verifying networl-wide invariants in real
time. ACM. SIGCOMM. Comput. Commur Rev., 42:
467-472.

Kim, I.H., K.H. Lee, 3.K. Hong and HD. Kim, 2015.
Development trend of cold gas propulsion system of
a sunulator for maneuvering and attitude control
design verification of spacecraft. J. Korean Soc.
Propul. Eng., 19: 87-97.

Liu, X, C. Gan and P. Lu, 2014. Distributed attitude
coordinated tracking control for multi-group
spacecrafts based on mput normalized adaptive
neural network. Proceedings of the Conference on
American Control (ACC’14), June 4-6, 2014, TEEE,
Portland, Oregon, TTSA , ISBN:978-1-4799-3272-6, pp:
2741-2746.

Mehrabian, A. and K. Khorasani, 2015, Distributed
and cooperative cuaternion-based attitude
synchromzation and tracking control for a network of
heterogeneous spacecraft formation flying mission.
IT. Franklin Inst., 352: 3885-3913.

Roy, 8., I. Misra and I. Saha, 2016. A simplification of a
real-time verification problem. Software Test. Verif.
Reliab., 26: 548-571.

Savitha, A., M. Ravindra, N.P. Kumar, R.R. Chetwani and
K.M. Baradwaj, 2014. Automated verification of
spacecraft telemetry data. Proceedings of the IEEE
International Conference on Computational
Intelligence and Computing Research (ICCIC’14),
December 18-20, 2014, IEEE, Coimbatore, India,
ISBN:978-1-4799-3974-9, pp: 1-4.

606

Shang, Y., . Wang, 7. Gong, X. Liand Y. Pei et al., 2015.
Night vision imaging system design, mtegration and
verification 1 spacecraft vacuum thermal test.
Proceedings of the International Conference on
Optical Instruments and Technology, April 11-12,
2015, SPIE, Bellingham, Washington, USA., pp:
962201-962208.

Stukalenko, N.M., B.B. Zhakhina, A XK. Kukubaeva,
N.K. Smagulova and GXK. Kazhibaeva, 2016.
Studying mnovation technologies in modern
education. Intl. J. Environ. Sci. Educ., 11:
7297-7308.

Tate, I.P., 2016. Handbook for RF ionization breakdown
prevention in spacecraft components. Proceedings of
the IEEE International Conference on Plasma Science
(ICOPS™16), June 19-23, 2016, [EEE, Banff, Alberta,
Canada, TSBN:978-1-4673-9602-8, pp: 1-1.

Tyugahsev, A., 2005. Algebraic models of real-time
spacecraft’s control algorithms and programs.
Samara Tech. Univ. Bull., 1: 19-25.

Tyugahsev, A., 2009. Graphical Programming Languages
and 1its Applications in Real-Time Control Systems.
Samara Scientific Center of the Russian Academy of
Sciences, Samara, Russia,.

Tyugashev, A.A., 2006. Integrated environment for
designing real-time control algorithms. J. Comput.
Syst. Sci. Intl., 45: 287-300.

Zhao, L. and Y. Tia, 2016. Neural network-based
distributed adaptive attitude synchronization
control of spacecraft formation under modified
fast terminal sliding mode. Neurocomputing, 171:
230-241.

	601-606 - Copy_Page_1
	601-606 - Copy_Page_2
	601-606 - Copy_Page_3
	601-606 - Copy_Page_4
	601-606 - Copy_Page_5
	601-606 - Copy_Page_6

