Tournal of Engineering and Applied Sciences 13 (3): 557-563, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

Model Checking Auto-Concurrency

'Zine El Abidine Bounab and *Salim Benayoune
'Department of Mathematics and Informatics, Research Laboratory RELA (CS)Y,
Oum EL Bouaghi University, Oum, El Bouaghi, Algeria
*Laboratoire Allianstic, Groupe Efrei Paris Sud, Villejuif, France

Abstract: This study defines a new operational semantics for a subset of CSP dedicated to express
concurrency. We have defined formally the translation from a specifications expressed in CSP to a true
concurrency semantic model called CLTS (Concurrent Labeled Transition System). CLTS is the unification of
two semantic model the multi-set labeled transition system where transition are labeled with a set of actions
mstead of a single action and causality semantics where the dependences between actions 1s considered. The
main contribution of this research is to demonstrate that the algorithms for model checking suggested in the
literature which are based upon the interleaving semantics can be customized easily to the true concurrency

semantics for the verification of the new type of properties associated with the simultaneous execution of

actions in various transitions.

Key words: True concurrency semantics, process algebra, model checking, CTL, execution, transitions

INTRODUCTION

There 1s an mcreasing need for reliable software,
which is especially, critical in some areas such as
distributed systems, medical equipments, highway and air
traffic control, railways, electronic commerce and many
others. Because of their critical character like high degree
of concurrency, these application are often subjected to
austere requirement reliability, aiming “zero error” quality.
There are predictions that in the future the main problem
for the application of information technology will not be
the lack of raw computational power but our inability to
develop complex systems with sufficient confidence in
their correctness.

The traditional engmeering techmques for validation,
like simulation and testing have often proved inadequate
and too expensive to avoid errors m nformation
processing artifacts. One reason for this is that they
explore only a part of the possible behavior of the system.
As a result some erroneous behavior often escapes
undetected. Hence the need for formal verification
approaches. There are two mam approaches to the
verification problem:
¢+ Proof-based methods which attempt to carry out
verification at the source program level using
theorem provers

Model-based methods or model checking technique
which translate the source program into a (possibly
finite) model, then comparing this model with the
specifications

The formal verification approach concerned by our
study 1s based on models. The reasons for this
choice is that this approach is fully automatic and has
proved its efficiency in the industry for more information
on the advantage of this approach we refer the reader to
(Clarke et al., 1999).

In model checking approach the system to be verified
1s described using some specification language and then
this specification 18 translated to some specific semantic
model (state transition graph) and the desired properties
to be verified on the model are described using temporal
logic. Formally, the problem can be stated as follows:
given a desired property, expressed as a temporal logic
formula p and a Model M with 1initial state s, decide 1f M,
s=P (Clarke et al., 1999).

The model-checking algorithms can be classified into
global and local algorithms. Global algorithms require
that the underlying transition system 1s completely
constructed while local algorithms compute the necessary
part of the transition system on-the-fly. Global algorithms
typically compute the fix points mn an mductive manner
while the local algorithms decide the problem by
depth-first-search (Clarke et al., 1999). In the approach,

Corresponding Author: Zine El Abidine Bounab, Department of Mathematics and Informatics, Research Laboratory RELA (CSY,
Oum EL Bouaghi University, Oum, E1 Bouaghi, Algeria

557

J. Eng. Applied Sci., 13 (3): 557-563, 2018

the application to be verified firstly specified by means of
the Process Algebra CSP. This specification will be
translated using the operational semantics of CLTS to a
graph called Concurrent Labeled Transition System
(CLTS) to the best of owr knowledge this concurrency
semantic model is original. The desired properties of the
system are written in CTL logic and they are verified by
means of the model checking tool. The underlying
algorithm of our model checking 13 classified as a global
algorithm. A tool called CSP has been developed using
CLTS semantics.

The semantics of a concwrrent system can be
characterized by the set of states of the system and
transitions by which the system passes a state to
another. In the approach presented by Mukund (1992),
Mukund and Nielsen (1992) and Beek et al. (2007)
transition can carry a set of action instead of single
action. In standard LTS a transition represent the atomic
execution of a single action. Consequently a transition
with a set of actions represent there parallel executions.
Hence, we can distinguish sequential executions and
parallel executions of actions. we assume that the reader
is familiar with CSP (Roscoe, 1998).

CSP allows the specification of data and concurrency.
The following grammars describe the process expressions
which are gomng to be taken into account in the structural
operational semantics and which define the subsets which
can be translated to the concurrent labeled transition
system semantic model. The CSP syntax taken into
account is as follows:

p:: = stop|skip|a—p|p{lp|p|[pp|pp:p
pAp|p/ia}

Concurrent labeled transition system

Definition 1: M being a countable set of event names , a
concurrent labeled transition system or CLTS of support
M is a 5-tuple (&, X, A, @,).

where:

Q (S, I, 8, , P) a transition system

S = Asetofstate ranged over by s, s,

leS = Animtial state

& = A transition relation defined as 6: & x 2", -8

0576

two functions from t € 8: & (t) is the origin of the
transition and [() is its goal

(Q, Z) a transition system labeled by an alphabet %
which 1s a set of actions ranged over by a, b,...

A S-28 is function which associates to every state
a finite set of causal event names present at this state
corresponding to actions started their execution so
that their termmations allow the start of enabled
actions in this state

558

o @ 24 is function which associates to every transition

a fimte set of event names represented the parallel
execution of the associated actions

1 dxM-% 1s function which associates to every
event name in a transition the corresponding action

The following conditions are fulfilled:

ViLt2e S if BN =P{2)= p(tH=p(t2)
Vil ed, Ve (A(a(t) —A(Pt))=er ¢(t2)
V118 = AP elt)

The first condition ensuring that the resulting Kripke
structure from CLTS is consistent

The second conditions ensuring that the causal
events in the state should be started in the previous
transition, 1t means don’t waiting for the termination
of a not yet started action

The third condition means that the causal completed
actions of the state of source in a transition must be
non-existent on this transition

MATERIALS AND METHODS

CLTS Model based logic verification
Class of properties to be verified: Several model checkers,
based on mterleaving semantics were developed mn the
literature. For our part, the use of CLTS as semantic
model where the information included in the transitions
represents the actions that are potentially in execution.
For this fact, one can express belonging properties such
that mutual exclusion in a more natural way as well as from
new properties that concern actions and their parallel
execution. The expression of these properties does not
require the use of new logic or the introduction of new
operators, since, one can use CTL temporal logic and
consider actions on transitions as being atomic formulae.
However, what changes is the intuition behind formulae.
For examples, the formula EF(p/Aq) where p and g are
names of actions means that there is at least a path which
leads to state where parallel execution of p and q can take
place. In similar way, one can explain intuitively all the
formulae of the CTL logic that may be checked using
CLTS model as follows:

piq on the state S means that p and q can be
executed in parallel in the state S of CLTS where S = ()
and {p, q}c@(t).

—p in state S means that vted, s = B (1) pFo (1), ie.,
the execution of p n the state S cammot take place. EXp in
state means that there is at least a path (3,;, 5,, ...) where

J. Eng. Applied Sci., 13 (3): 557-563, 2018

p will be able to be valid in transition lead to state S, .
AXp m a state S, means that for any path (S, S, ...)
starting from sate S;, p is executed at all the transitions
lead to the next sate of S;. E(pUq) in state means that
there is at least a path (S;, S, ..., Sy ...) where q will be
valid in the state and p will be valid in every state of this
path that precedes the state S,.

A (pUq) 1n state S, means that for any path starting
from the state, S, there is a state in this path where ¢ is
valid and p will be valid in every preceding state.

(a: n) in state S; means that n action of name a may be
n execution simultaneously on the precedent transitions
of 5, This is due to the fact that every action is associated
with an event name that allows distinguishing between
several parallel executions of the same action at any
transitions, this properties 13 called auto-concurrency. It
is obvious that such properties cannot be expressed
using interleaving models. For mstance p:3 express the
fact that there is three parallel execution of the action
P p:3 will be considered as being an atomic proposition;
what will avoid the introduction of new operator in the
considered logic.

Furthermore, specify actions
mcompatibility we may express that a and b are
incompatible by AG—(ab) which means that they will
never be able to be executed concurrently. In a similar way
to verify that actions can be executed concurrently may
be expressed by EF(a’\bic, ..., Az) where a, b, ..., z are
action names.

if we want to

CLTS construction from CSP

Definition 2: The set of events names 13 a countable set
noted M. M, N, ..., denote fmite subsets of M. The
elements of these sets is ranged over by x, vy, ..., 2 is the
power sets of M. for Me 28 | xeM and a ce Act. Choosing
an event name can be done by a determimstic manner
using any function get: Actx2] -M satisfying get (a,
M)eM for each Mez2¥ . The main condition for the
function get is the avoidance of divergence in the call of

fno»

Process.

Definition 2: The set C of configurations 13 defined by
induction as follows where B is the set of behavioral
expression of CSP:

vEeB YMe 2
operator

if eeCvM €2} [E],, then &/MeC

if ecC and FeB then g, FeC

if eeCand FeC thene op FeC op e {[]. |||, ||l. A}

[E]4C,; [y 18 called the encapsulation

Definition 3: A configuration 1s canomical if it camnot
be reduced by the distribution of the operation of

559

encapsulation over CSP operators. As an example the
configuration [stop]||[stop],, ,;, is not canonical but the
configuration [stop],,||[stop],, , is canonical.

Proposition 1: Bvery canonical configuration 1s m one
of the followmng forms (Where E and F are canonical
configurations):

[Stop]m [Shp]m ’[a - E]M ? S[]QE;*S H| Ta €
e F, eAF ek

7,

Given a configuration €, if € is a configuration
obtained from € by the distribution of the encapsulation
operator on the other operators, we denote by £-¢” this
transformation. The only cases to be studied are the
configurations of the form [G],, we list the different cases
of figures:

G =E Op F: [G],, —[E],; Op [F],, »eO0pFOp
{1 Il II: A}; G =E; F: [G], —[E],.. F—>&F

In what follows all configurations are assumed
canonical, transforming configurations to the canonical
form is assumed to be implicit.

Definition 4: The function A: C- 2§ return the set of
causal or dependent event names 1n the configuration C
is defined by induction as:

A([stop],,)= M; A([stop],)= M; A(a—E), = M
A(eop#) = ey A {#)ope {[LIILI.AL:
A(e#F) =A(e), A(e/x) =A(¢)

Example 1:
l([stop](x, ll[stop],,) = oyl

A([stop]{x} = {x})
Proposition 2: For all configurations:
e[l 7, A(e) = (#)

Proof: We know that the configuration £[f behave either
like £ or ike ¥ The only way to obtain this configuration
[E[1F]y whereas [E[JF]y~[Ely [1[Flu-el] ¥ such that ¢
and ¥ are canonical configurations with [E]y,-e and [F]y~
F because A(e) = Mand A # =M hence, the result.

Definition 5: The function : Cx 2 -C 15 defined as
follow:

w([El]MP MZ) - [El]mmMz III(EOp Z M) -
W(e M) Opw(F, M)

J. Eng. Applied Sci., 13 (3): 557-563, 2018

This function 1s used for the elimination of terminated
actions in certain configuration.

Definition 6: The function £: 2} = 2% x2¥ - 2% is defined as
follow:
E(MLM2,M3)=M2/(M2n(M1/M3))

This function calculates the remaiming parallel actions
1n certain configuration.

RESULTS AND DISCUSSION

Definition 1; “CLTS based structural operational
semantics of CSP”: The operational semantic rules are
defined on configurations and the whole rules define the
transition relation. The transition relation ~Cx 2§ xC 15
defined as the smallest relation satisfied the followmg
rules.

Rule 1 implies that the successful termination carmot
start until all actions referenced by the set M have
completed execution

Rule 2 characterizes the semantics of the prefixing
operators as the start of execution of the action a depends
on the termmation of the actions m M only action a
represented by the event name x has appeared m the
causal set of the configuration E.

Rules 3a, b characterize the semantics of the
operator of choice which is a direct adaptation for
configurations of the inference rule defined for the
structural operational semantics of mterleaving of CSP
behavioral expressions.

Rules Sa-c characterize the semantics of the parallel
composition operator. To better explain these rules we
consider the behavioral expression.

G [a~c~d-stop] || plb-c-e-stop] in the
configuration [G]e, actions a and b are enabled to start
their execution, a possible derivation when a start first:

[G], 2 [csd—s stop], I[b—>c—>e—stop],

At this state ¢ cannot start their execution, since, it
must be synchronized , so, we can launch the execution of
b, we get:

[G], fix 3} [c—d— stop]{x}H [b—c—e—stop],

flox). (o3 [C—d—stop]{X}H [coe— stop]{y}

now we can execute ¢ we have :

[c—>d—>st0p]{x} H [c%e%stop]{y}

M[d%stop] ‘ [e%StOp]{Z}

iz} ‘

560

Fig. 1: CLTS corresponding to the behavioral expression
G

in the state [d-stop]||[e-stop],, either d or e can start their
execution after the termination of the execution of the
action ¢ represented by the event name z, a possible
transition 1is :

d,w
[d—>stop]{z} [e —>st0p]{z}u [stop]{w} H

[e%stop]ww [stop] o)

[stop] -

The CLTS corresponding to the derivation of the
configuration [Ge 1s depicted in Fig.1.

Rule 6a, b 1s direct translation of the sequencing
operator of processes. in fact, rule 6a mmplies that the
behavior of €, F is that of £ as long as € has not
successfully complete its execution. Whereas the rule &b
states that once € finished successfully, the process F can
start its execution only when the operation skip of the
process € has totally fimished, this fact 1s represented by
the configuration [F]6.

The Rules 7a-c give the semantics of the interrupt
operator. To better understand the mechanism of
interruption, it is necessary to distinguish the different
strategies of mterruption which may be deemed in the
presence of the non-atomicity of actions which are:

The first strategy is to stop the process, including
actions that are underway. The second strategy is to
prevent the execution of the actions that have not started
while leaving the cwrent actions continues their
execution.

The third strategy is to authorize the mterruption
only when actions underway has fimished. The drawback
of that strategy is that it may never be able to interrupt the
process in the case where there is an overlap between the
beginning and ending of actions.

This 13 the second strategy that was taken into
consideration. In the semantics of CLTS, the set of causal
events assoclated with states 13 of vital importance
because it represents the actions that are started
execution and may still be trying to run in this state and
other action are waiting for it . Therefore, when one of the
process € or f fimshes running, either voluntarily or after
an interruption, it 1s replaced m the resulting configuration
by the process that no longer offers new actions but track
any action that may still be in execution. This implies,

J. Eng. Applied Sci., 13 (3): 557-563, 2018

Fig. 2: CLTS corresponding to the behavioral expression
G of interruption

under assumption that actions are not atomic that the
interruption of a process only affects actions that have
not yet started their execution, furthermore current
executed actions will terminate their execution (Fig. 2) for
illustration consider the example:

G =a —[b — SKIPAc — SKIP]

The mmitial configuration 1s Ge from this configuration
we can derive:

Gy L b SKIP] , A[c—SKIP],,

In the case the action a finished its execution and left
process execute b without interruption using the Rule 7a,
we get:

{053}
[b—sKIP] | Alc>sKIP], B2 [sKIP] Ale>sKIP] |

In the other case when the action a finished its
execution and right process execute ¢ and mterrupt the
left process using the Rule 7¢, we get:

— SKIP|, ,A[c— SKIP SKIP
b » ile.2)

&} =t

For the case the right process interrupt the left
process after its execution of the action b and before its
termination, using the Rule 7¢, we get:

i

[SKIP],, A[c—skip], Leotalisrop] , afskIp]

{z}

561

In the case the left process finish its execution before
interruption, using the Rule 7b we have:
[SKIP], Ale—SKIP] ®[STOP]
This operational semantics take in consideration
auto-concurrency due to the notion of events associated
to actions. The function get 1s defined based on the set M
this last is defined based on the context of the prefix
operator which 1s the basic constructor for the generation
of the state space (transition relation), from an
implementation point of view this set can be passed as
parameter to the semantics rules and represent the parallel
events. Furthermore this way can reduce the temporal
complexity of state space generation and avoid complex
computation for getting this information from transitions.
The event b represent the successful termination after the
execution of the SKIP action. The function n(x) return the
action ¢ associated to the event x, in our implementation
1s just the function first. The last semantic rule 8 1s the
semantic of call for process which is similar to the «
reduction of A calculus.

Case study: In this study, we present the railway level
crossing example, the problem of this example 1s defined
as follow: One road and one railway line cross each other
and as a usual there is a gate which can be lowered to
prevent cars crossing the raillway. If the gate 1s raised,
then cars can freely cross the track. A tramn can cross the
road regardless of whether the gate is up or down. There
1s a safety and a liveness property that can be checked in

this model wiich are:

Mutual exclusion: there should never be a train and
a car on the cross point at the same time

Starvation free: whenever a car or a train approaches
the crossing they should eventually be able to cross

CSP specification: System railway (car-run, car approach, car-enter,
car-leave, train-run, train-approach, train-enter, train-leave, gate-raise,gate-
lower, crash, crash2) ;==

vehicule(crash, car-run, car-approach, car-enter, car-leave, train-run, train-
approach, train-enter, train-leave

pl

gate (gate-raise, gate-lower)

where,

Process gate (a,b) =b->a->gate (a,b) EndProc

Procces svehicule (crash, car-run, car-approach, car-enter, car-leave,
train-run,train-approach, train-enter, train-leave) ::=car (crash, car-run, car-
approach, car-enter, car-leave)

|[crash]|

train (crash, train-run, train-approach, train-enter, train-leave) EndProc
Process car (crash, car-run, car-approach, car-enter, car-leave) ::=
(car-run- > car-approach- > car-enter car-leave >car (crash, car-run, car-
approach, car-enter, car-leave))

[I¢crash- > 8STOP) EndProc

Process train (crash, train-run, train-approach, train-enter, train-leave) ::=
(train-run- > train-approach- > train-enter- > train-leave- =

train (crash, train-run, train-approach, train-enter, train-leave))

[1 (crash- = STOP) EndProc

EndSystem

J. Eng. Applied Sci., 13 (3): 557-563, 2018

{(crash, 1)(gate_raise, 1)} {(crash, 1)(gate_raise, 1)}

Fig. 3: CL.TS corresponding to the specification of the
railway system state 40 violate the mutual
exclusion properties

This specification of the railway system can be found
in (https://github.com/bzinel 9/model-checking -csp/tree
fcode) it is the exact translation of the specification from
RSL (Lizeth Tapia and Chris George, 2008) to CSP. After
compiling this specification using the tool, the CLTS
corresponding to the specification of the railway system
has 240 transitions and 78 states.

Mutual exclusion for our examples when there 13 no
crash, since, this action is the synchronization of the
process car and the process train. We can specify this
property using CTL logic as follow: AG—(crash).

Here, we can see that we have specifying the
properties on actions with natural way. After the
verification using our model checking tool we have
founding that the system violate the mutual exclusion
properties and as a counter example we have the state
number 40 which has the crash action i execution, see
the part of the system depicted in Fig. 3.

For the case of the starvation property we can
express it by CTL formulae for example for the case of car
as follow: car-approach=AF (car-enter).

It means each time when a car is approaching and
want to cross the railway it will be able to do it in the
tuture. This property is satisfied by the specification. The
main difference between owr approach and the approach
presented by Tapia and George (2008) 1s that in there
technique of verification they use the refinement
approach where the system is specified by CSP and the
properties also are specified by CSP process. All
equations are discussed as:

[skip]M {ﬂ[stop]mr (1)
[a%E]M{—X}[E](X} x=get(a,M) 2
eMe!
£ (3)
g[] #¥e'
e ()
e[]#=#"

efe M =h(e) (5)
&[] # M e'|||#

7 =W (F,E(MLM2,M")),
M1 =A(e),M2 = A(7),
M" =A(#F")Ur{e')

e¥e M = A(e) 6)
F||e ¥ |’

F =Y FE(MLM2,M'),
M1 = L(e),M2 =L{7),
M"=A(F)oh(e)

E{X}UMI e’ gp(x}UMZFI

(7)

g||F L e || F

acoEmaF,a=mn(x)
M'=r{F)on(e")

eMe M =AEN (®)
Flet e

Fr=W(#E(MLM2 M),
M1 =%(e),M2 = A(),
M"=x(F)un(e)

eMe' M = Ae) ()
Flle™ F|le

F'= {7 E(MLM2,M")),
Ml = A(e), M2 = A(F),
M" = A(FHIUA(ED

EME',Sg M (10)
geFY¥enF

)
g Bg

. F E,F{B}

(11)

EMEF,SEM (12)
eAFL e AF

M' = A(F)uk(e)
Fr= W E(M1, M2, M)),
M1 = A(e), M2 = A(g)

J. Eng. Applied Sci., 13 (3): 557-563, 2018

gBer

(13)
chre
M

e E,ISQM (14)

eAFEEAF

M' = M3UM?2,
M3 = Lie) /(L&) A #)) /0 (F)

PZZ:E,EMMT (15)
[Pl % 7

CONCLUSION

In this study, we have shown an operational manner
for generating concurrent labeled transition system from
a subset of the process algebra CSP with a few examples
we have shown the subtleties of this semantics which can
verify auto-concurrency, a similar research has been
done in the literature Costa and Courtiat (1993) and
Saidouni and Courtiat (1993) this last is state based
semantics versus our semantics which is a transition
based semantics for more information on this subject we
refer the reader to Smith (2013), Hansen et ol (2003) and
Nicola and Vaandrager (1990). Another things to mention
is the way the properties are verified in our approach
the properties can be verified directly by model checking
versus the approach of the behavioral equivalence
between the properties and the semantic model
(Tapia and George, 2008), it means the refinement
approach. For perspective we will enhance this model with
real time concepts thanks to the event notion which can
be naturally transformed to clocks and mimic timed
automata.

REFERENCES

Beek, T M.H., A. Fantechi, S. Gnesi and F. Mazzanti, 2007 .
An action/state-based model-checking approach for
the analysis of communication protocols for
service-oriented applications. Proceedings of the
International Workshop on Formal Methods for
Industrial Critical Systems, Tuly 1-2, 2007, Springer,
Berlin, Germany, pp: 133-148.

563

Clarke, EM., O. Grumberg and D. Peled, 1999. Model
Checking. MIT Press, Cambridge, Massachusetts,
Pages: 309

Costa, D.R.C. and I.P. Courtiat, 1993. A Causality-Based
Semantics for CCS. In. NAPAW 92 Workshops
in Computing, Purushothaman 5. and A. Zwarico
(Eds.). Springer, London, England, UK. pp:
200-215.

Hansen, H., H. Virtanen and A. Valmari, 2003. Merging
state-based
Proceedings of the Third International Conference on

and action-based verification.
Application of Concurrency to System Design,
June 20, 2003, TEEE, Gumaraes, Portugal,
ISBN:0-7695-1887-7, pp: 150-136.

Mukund, M. and M. Nielsen, 1992. CCS, locations and
asynchronous transition systems. Proceedings of the
International Conference on Foundations of Software
Technology and Theoretical Computer Science,
December 18-20, 1992, Springer, New Delhi, India, pp:
328-341.

Mukund, M.,
concurrency. Masters Thesis, Aarhus University,
Aarhus, Denmark.

Nicola, D.R. and F. Vaandrager, 1990. Action versus state
based logics for transition systems. Proceedings of

1992, Transition system models for

the Semantics on Systems of Concurrent Processes,
April 23-27, 1990, Springer, Posay, France, pp:
407-419.

Roscoe, A'W., 1998 The Theory and Parctice of
Concurrency. Prentice-Hall, Upper Saddle River, New
Jersey, ISBN:9780136744092, Pages: 565.

Saidouni, D.E. and I.P. Couwrtiat, 1993. A comparison
of the semantics of maximality and causality
of basic LOTOS. Toulouse Cedex,
France.

?0¢eitame,

Smith, T., 2013. State/event based versus purely action or
state based logics. Allen Institute, Tthaca, New York,
USA.

Tapia, L. and C. George, 2008 Model checking
concurrent RSL. with CSPM and FDR2. Masters
Thesis, The United Nation University, Shibuya,
Tapan.

	557-563 - Copy_Page_1
	557-563 - Copy_Page_2
	557-563 - Copy_Page_3
	557-563 - Copy_Page_4
	557-563 - Copy_Page_5
	557-563 - Copy_Page_6
	557-563 - Copy_Page_7

