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Abstract: The problem of the steady two dimensional stagnation-point flow of an incompressible electrically
conducting nanofluid caused by a stretching/shrinking surface is studied. The effect of an induced magnetic
field 1s taken into account. The nonlinear partial differential equations are transformed into nonlinear ordinary

differential equations via. similarnty transformations. The transformed governing equations are solved
numerically using the shooting method which built-in function in Maple Software. The effects of governing

parameters on the skin friction coefficient, the local Nusselt number, the local sherwood mumber and the

velocity, temperature and concentration profiles are also presented in this study. It is found that dual solutions
exist for the shrinking case. Therefore, a stability analysis 1s performed to verify which solution 1s stable and
it is found that the first solution is physically stable while the second solution is unstable.
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INTRODUCTION

The theory of nanofluid was first introduced by Choi
(1995} where it refers to the dilution of nanometer-sized
particles (= 100 nm) in a flud. Nanofluid gains many
attractions from researchers these days because of their
extremely good in improving thermal conductivity
property (Ishak er al, 2006). Recently, the study of
convective heat transfer in nanofluid becomes an active
research area due to its heat transfer enhancements
characteristics. The fact that cooling is one of the
techmical challenges faced by many mdustries including
microelectronic, transportation, solid-state lighting and
manufacturing is the reason why the idea of nanofluid has
been proposed. Choi (1995) has conducted the pioneering
experimental research on conductivity
enhancement of nanoflnd. The result showed that a very
small amount of nanoparticles would double increase the
thermal conductivity of the fluid. Due to this interesting
characteristic, many investigators studied the nanofluid
flow both theoretically and experimentally.

Later, Kuznetsov and Nield (2010) studied
analytically the natural convective boundary layer flow of
nanoflmd past a vertical plate. They extended the
study of the Pohlhausen-Kuken-Bejan problem to the
case of nanofluid using the model of Buongiormo (2006).

thermal

Mustafa ef al. (2011) solved analytically the problem
of nanofluid near a stagnation-point towards a
stretching surface using homotopy analysis method.
Later, Bachok ef af. (2011) studied the stagnation-
point flow over a stretching/shrinking sheet m a
nanofluid and found that for the shrinking case the
solution is non-unique (dual solutions). Zaimi et al. (2012)
solved numerically using a shooting method the problem
of a steady two-dimensional boundary layer flow and heat
transfer past a permeable shrinking sheet in a nanofluid
with thermal radiation and suction effects. Their results
also show that dual solutions exist in a certain range of
suction parameter. The study of the stretchmng/shrinking
sheet problems under various physical conditions have
been studied by several authors such as Nandy and
Mahapatra (2013), Aman et af. (2013), Makinde et al.
(2013) and Mansur et al. (2015). Little works have
been done on the problem of boundary layer flow
with the effect of the induced magnetic field,
namely, Kumari et al (1990), Takhar et al (1993)
and Al et al (2011a-c). Therefore with the above
motivations, the present study is to study the problem
of a stagnation-point flow of an incompressible
electrically  conducting  nanoflmd  towards a
stretching/shrinking surface m the presence of mduced
magnetic field.
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MATERIALS AND METHODS

Mathematical formulation: We consider a steady two
dimensional stagnation-point flow of an mcompressible
electrically conducting nanofluid cauwed by a
stretching/shrinking surface with the effect of the induced
magnetic field. The coordinate system 1s selected in which
axis 1s m horizontal direction and axis 1s i vertical
direction. At the plate (y = 0), the temperature and the
concentration take a constant value T, and C_,
respectively. The ambient values as for temperature and
concentration are T, and C,, respectively.

According to the boundary layer approximation
(Davies, 1963; Kuznetsov and Nield, 2010), the governing
equations related to the problem can be written as:
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Where:

uandv = The velocity components along the x and
axes

v = The kinematic viscosity of the flud

:= EE Z;P = The ratio of nanoparticle heat capacity to the
base fluid heat capacity « - p%

Where:

k = The thermal conductivity

t- 41— = The magnetic diffusivity

o = The electrical conductivity

Pr = The density of the fluid 1s the magnetic
permeability

Dy = The Brownian diffusion coetficient

Dr = The thermophoretic diffusion

The equations are
conditions:

subjected to the boundary

u=u,(x)=cx,v=0,H =H,=0,T=T,,
C=C_aty=0
u=u,(x)—»axH =H, (x)>HxT->T,

9

C—C_ asy—>w

Where:
¢and ¢ = Constants with ¢>0 and ¢>0 for stretching
sheet and c<0 for shrinking sheet
H, = The value of the uniform magnetic field at
infinity upstream
ux)and = The x-velocity and x-magnetic field at the
HJx) edge of the boundary layer
Thus, we introduce the following similarity
transformations:
1z
. v
w= (o)), = ) 5, =11, 2| i,
T-T,) (c-C.) (aJ‘”
0 :(7‘”, = el a2
B A R N O A

(8)
where, P 1s the stream function, winch 1s defined as u =
dY¥/ 9y and v = -d¥/Ix, hence, Eq. 1 and 2 are satisfied. By
substituting Eq. 8 mto Eq. 3-6, we obtam the following
ordinary nonlinear differential equations:

£ M (h'2 —hh"—l) =0 &)
yh"+fh"—f'h = 0 (10)
1 g b g N = 0 (11)
Pr
Nt
"lefp+—0"=0 (12)
® LA

And the boundary Eq. 7 reduce to:

Prime denotes differentiation with respect to 1):

Where:

Pr = The Prandtl number

M = The magnetic parameter

v = The reciprocal magnetic Prandtl number
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Nb = The Brownian motion parameter

Nt = The thermophoresis parameter

Le = The Lewis number

A = The stretching (4>0) or shrinking parameter (A< 0)

These parameters are defined as follows:

: Dy (C,-C
pr=" p= Hall :E,szis 5(C. W),
4mp av v v (14)
D, (T,-T.
o= np=Lellemle) o
D, vT, a

The quantities of interest are the skin friction
coefficient, the local Nusselt number Nu, and the local
Sherwood number Sh, which defined as:

Mo (15)
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where the wall skin friction or the shear stress, the wall
heat flux q, and the mass flux q,, are given by:

adu oT oC
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(16)
By using nondimensionless variables in Eq. 8, 15
and 16, we obtain:

Rel”C; =£"(0), Re;"" Nu, =-6'(0), Re;"*Sh, =—¢'(0)

(17)
where, Re, = ux/v is the Reynolds number.

Stability of solution: Tn order to perform a stability

analysis, the unsteady problem i1s considered. Equation
1 and 2 hold, while Eq. 3-6 are replaced by:
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where, t denotes the time. Based on the variables in Eq. &,
we introduce the following new dimensionless variables:

12
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ch 12
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So, that Eq. 3-6 can be written as:
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And subject to the new boundary conditions:

£(0,1)=0,f'{0, ti=2, h{0,1)=0,h'(0, 1) =
0,000, 1)=1 (0, 7)=1 @7
f'(nt)=Lh'{n, 1)=16(n1)=1 ¢(n 1)=0asn—w

To test the stability of the steady flow solution:
f=f,(n), h="h,1), 6=8,(n)and 6= ¢, (n) (28)
Satisfying the boundary-value Eq. 1-7, we write:

f(n,t)=f,(n)re "F(n.t), h(n,t)=h,(n)+e "H(n.x),
0(n.7)=0; (n)+e "G(n,7). p(n.7) = @y (n) +e "I(n,7)
(29)
where, ¥ 18 an unknown eigenvalue and F(n, ), H(n, T),
G(n, T) and I(n, T) are small relative to fi(n), hy(m), B,(n)
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and ¢y(n), respectively. Solutions of the eigenvalue
problem in Eg. 23-27 give an infinite set of eigenvalues vy,
< ¥, <, ..., If the smallest eigenvalue v, 1s negative, there
15 an 1mtial growth of disturbances and the flow 1s
unstable, however, when <, is positive, there is an
initial decay and the flow is stable. Introducing Eq. 28 into
Eq. 23-27, we get the following linearized problem:
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Along with the boundary conditions

F(0,1)= o,;i(o,r): 0,H(0, 1) = o,%H(o,r): 0,
G(0,1)=0,1(0,7)=0, 34)
oF oH

o (PE)=0: 5 ()= 0.6 () =0,

Jn,t)=0asn—e0

The solutions f = fi(n), h = hy(n), 6 = B,(n) and
& = () of the steady Eq. 9-13 are obtaimned by
setting T = 0. Hence, F(n) = Fy(n), H(n) = Hy(m), G(n) =
Gy(m) and I(n) =T4{n) and in BEq. 29-32 identify initial
growth or decay of the solution (Eq. 28). Tn this respect,
we have to solve the linear eigenvalue problem:
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Along with the boundary conditions:

Fy(0)=0, F(0)=0, H; (0)=0. H,(0)=0, G, (0)=0.
I, (@=0
F(n)—=0, H; (n)—0, G, (n)—=0, J;(n)—>0 as n—>w

(39)

The stability of the steady-state flow solution is

based on the smallest eigenvalue, y,. Therefore, the

condition ()= 0 ag M=% has been put at rest as

suggested by Harris et al. (2009) and for a fixed value of

eigenvalue, v. Equation 34-38 are then solved by
introducing a new boundary condition that is F1{0)=1.

RESULTS AND DISCUSSION

The nonlinear ordinary differential Eq. 9-12 with
respect to the boundary Eq. 13 are solved numerically
using bvpde solver in MATLAB Software. In this
study, for a numerical computation, we
considered the non-dimensional parameter values such as
M=01,%x=1.0,Pr=62,Nb=001,Nt=001,Le=10and
A =-1.1. These values are fixed in the entire study except
the varied values as shown in respective figures and
tables. In order to validate this present study, we have to
make a comparison value of the skin friction coefficient
with previous published studies by setting
parameters as shown in Table 1. From Table 2, we
obtained a good agreement with the present results.
Table 1 alse shows non umque solutions (dual solutions)
exist when shrinking sheet is considered.

The influence of the non-dimensional parameters
such as magnetic parameter M reciprocal magnetic
parameter Prandtl number Pr,
parameter thermophoresis parameter Lewis number and
stretching/shrinking parameter A on the velocity,
magnetic, temperature and concentration profiles are
llustrated in Fig. 1-7, respectively. These profiles satisfy
the far field boundary Eq. 13, asymptotically which
support the validity of the results obtamned. From all
Fig. 1-7, it can be seen clearly that the boundary layer
thickness for lower branch solution always thicker than
the upper branch solution. Figure 1-7 also display dual
profiles to support the existence of dual solutions.

have

s0me

Brownian motion
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Table 1: Comparison valie of the skin friction coefficient for different values of A

Present result

Aman et . (2013)

Bhattacharyya et af. in 2013

A Upper branch Lower branch Upper branch Lower branch Upper branch Lower branch

-0.25 1.40224 1.4022 1.402240

-0.3 1.42757 1.4276

-0.4 1.46861 1.4686

-0.5 1.49566 1.4957 1.495669

-0.615 1.50724 1.5072 1.507240

-0.75 1.48929 1.4893 1.489298

-1 1.32881 0 1.3288 0 1.328816 0

-1.15 1.08223 0.11670 1.0822 0.1167 1.082231 0.116673

-1.18 1.00044 0.17836 1.0004 0.1784

-1.2465 0.55429 0.55429 0.5543 0.5543 0.554285 0.554285
1 T -~

Table 2. Smallest eigenvalues v, with various values of 1

First solution

Second solution

A (Upper branch) (Lower branch)
-1.1 1.1980 -0.6478
-1.15 0.4594 -0.4270
-1.18 0.1346 -0.1316
-1.182 0.0744 -0.0735
-1.1828 0.0235 -0.0234
e
-
5
g /s M=00,010.2
N

— Upper solution
--- Lower solution

1 2 3 4 5
(h)

6

7 8

9 10

Fig. 1: Velocity profiles for different values of M
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Fig. 2: Magnetic profiles for different values of ¢

Further, Fig. & shows the variation of the skin friction
coefficient with the stretching/shrinking A for varicus

M =0.0,0.1,0.2

h' (h)

M =00,0.1,0.2

! !
0.2 ; ;
4 / .
0.1 » — Upper solution
0 _ ..~ --- Lower solution

0o 1 2 3 4 5 6 7 8 9 10

Fig. 3: Magnetic profiles for different values of M

— Upper solution
--- Lower solution

a' (h)

Fig. 4: Temperature profiles for different values of Pr

values of magnetic parameter M. From Fig. &, it can be
observed that the skin friction coefficient decreases as M
increases, meamng that the surface shear stress decreases
1n the present of the magnetic field due to an merement in
Lorentz force. Figure 9 indicates the variation of the local
Nusselt number with the stretching/shrinking A for
various value of magnetic parameter As the value of
increases, the temperature gradient at the surface
decreases. Thus, the heat transfer rate at the surface
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Fig. 7: Concentration profiles for different values of

decreases with the existence of magnetic field. Figure 10
displays the variation of the local Sherwood number with
the stretching/shrinking A for various value of magnetic
parameter M. It shows that the mass transfer rate at the

43 11 09 -07 05 03 -01
Fig. 8 Variation of the skin friction with 1 for different
values of M
) 10.99
— Upper solution
--- Lower solution
Lo.79
M =0.1,03,05
g Lo.59
ki | .=-0.8829
| o =-1.0437 039
I .=11.1828
Lo.19
T T T p2 T T -0.01
-1.3 -1.1 -0.9 -0.7 -0.5 -0.3 -0.1
")
Fig. 9:  Vanation of the local Nusselt number with | for
different values of M
—105
— Upper solution
--- Lower solution
L0.4
103
g
o
0.2
Lo
, % K ‘ ‘ . 0
13 11 09 07 05 03 -01

O]
Fig. 10: Variation of the local Sherwood number with 1 for

different values of M

surface decreases as the value of M increases. From
Fig. 8-10, dual solutions exist for certain range of 4 and
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we can figure out that no solution exists beyond
certain value where is the critical value and unique
solution is obtained when Therefore, the boundary
layer separation becomes faster when the magnetic field
1s applied.

To determine the stability of the dual solutions, we
solve the Eigenvalue Eq. 33-37 and find the smallest
Eigenvalue Positive value of gives an initial decay and
thus the flow is stable while negative value implies
the growth of disturbance and the flow 1s unstable. Table
2 presents the smallest Eigenvalues for selected values
of A The results indicate that the upper branch
solutions have positive smallest eigenvalue while all
the lower branch solutions have negative smallest
eigenvalue Therefore, the upper branch solution is
stable physically while the lower branch i1s unstable
over time.

CONCLUSION

The problem of the steady two dimensional
stagnation-pomt flow of an mcompressible electrically
conducting nanofluid caused by a stretching/shrinking
surface with the effect of mduced magnetic field 1s solved
numerically. The existence of dual selutions is clearly
shown in the figures. Tt is also found that the magnetic
parameter induces earlier the boundary layer
separation from the surface. The stability analysis is
performed via. bvpde function m MATLAB Software to
determine which solution 1s physically stable and it 1is
found that the first solution (upper branch) is stable and
valid physically while the second solution (lower branch)
is unstable.
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