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Abstract: The purpose thus of this study 1s to introduced a new concepts of generalized n-tupled comncidence
pomt and generalized mixed gT-monotone property. Also, we established the generalized n-tupled coincidence
point theorems and we study the existence and uniqueness of generalized n-tupled coincidence point theorems
without continuous condition for mappings having generalized mixed gT-monotone property in generalized

metric spaces.
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INTRODUCTION

Bhaskar and Lakshmikantham (2006) introducedmixed
monotone and established coupled fixed point theorem for
mixed momnotone in partially ordered metric spaces. After
their research, many researchers studied about coupled
fixed point and fixed point in partially ordered metric
spaces (Aydi et al, 2011a, b, 2012a-c, Berinde, 2011,
2012; Choudhury and Maity, 2011; Saadati et al., 2010,
Samet, 2010, Shatanawi et al., 2011). Mustafa and Sims
(2006) introduced the notion of a G-metric spaces as a
generalization of the concept of a metric space, many
researchers discussed research on the fixed pomnt theory
i par partially ordered G-metric space (Agarwal and
Karapmar, 2013; Alghamdi and Karapinar, 2013;
Bilgili and Karapinar, 2013; Ding and Karapinar, 2013;
Jleli and Samet, 2012; Karapinar and Agarwal, 2013;
Mustafa et al., 2008, 2009, 2011, 2012, 201 3; Roldan et af.,
2014; Samet et af, 2013; Shatanawi, 2010, 2011;
Tahat et al., 2012).

Aydi ef al. (2011) established coupled coincidence
and coupled common fixed point results for a mixed
g-monotone mapping in aipartially ordered G-metric space.
As a continuation of this trend, many researchers have
studied coupled coincidence point an coupled common
fixed point results for a mixed g-monotone mapping in
partially ordered G-metric space, for example (Aydi et al.,
2012a-¢; Chandok et af., 2013, Cho et al, 2012,
Choudhury and Kundu, 2010; Karapinar et al., 2012,
Shatanawi, 2011a, b; Chugh and Rami, 2016). In this study,
we introduce the concepts of generalized n-tupled
comcidence point and generalized mixed gT-monotone

property and we prove the existence and uniqueness of
generalized n-tupled coincidence point theorems without
continuous condition for mappings having generalized
mixed gT-monotone property in
spaces.

generalized metric

Now, we recall some definitions and properties
introduced by Mustafa and Sims (2009) which are useful
for the main results in this study.

MATERIALS AND METHODS

Definition (1.1): Let X be a non empty set, G: X=X =X-R,
be a function satisfying:

Gl.G(x,y,z)=0if x=y=z
G2.0<G(x, x, y) forallx, ye Xwithx # y
G3.G(x,xy)<G(x Y, 2)
forallx, y,ze X withy # z
G4.G(x,y,2)=G(x.zy) =Gy, zx)=....
(Symmetry in all three variable)
G5.G(x,y,2z)<G{x,aa)+
Glay,x zjforallx,y, z ac X

Then the function G 1s called generalized metric and
the pair (X, G) 1s called a generalized metric space or more
specially G-metric space.

Definition (1.2): Let (X, G) be a G-metrici space and let (x,)
be a sequence of points of X. We say that (x,) is
G-convergent tox if lim, . G(x, X, x,,) = 0 that is for any
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e>0 there exist NeN such that G(x, x,, x,,)<€ for alln, m>N.
We call x the limit of sequence and write x,-x or
lim,_..x,=x.

Definition (1.3): Let (X, G) be a G-metric space, a
sequence (x,)is called G-cauchy sequence if for any £>0
there exist NelN such that G(x,, x_, x,)<¢e for alln, m, 1=N
that 15 G(x,, X, x)~0asn, m, [-e"

Proposition (1.4): Let (X, G) be a G-metric space. A
mapping is called G-continuous at xe3{ if and if it is
G-sequentially continuous at x that is whenever (x,) is
G-convergent to x then (f(x,)) 1s G-convergent to {(x).

Proposition (1.5): A G-metric space (X, 3) 15 called
G-complete if every G-cauchy sequence is G-convergent
mx, G.

RESULTS AND DISCUSSION

Now, we introduce the concept of generalized
n-tupled coincidence point and mixed gT-monotone
property as follows:

Definition (2.1): Let (X, <) be a partially ordered set.
If £ X-X, g X-X are there mappings. An element
(x;, %, ..., %, )6 X" 18 called generalized n-tupled coincidence
point of f, g and T if:

fx, %, ... %, ) =gT(x,)
f(x,,x,, .. ,xn,x) gT(x,)

12

f(x,.x,...%,,)=gT(x,)

Remark (2.2): If g 15 the identity mapping then (x,, x,, ...,
x, is alled n-tupled concidence point of f and T
(Imdad et al., 2013). If g and T are the identity mappings
then (x,, %, ..., %) is called n-tupled fixed point of f
(Imdad et al., 2013).

Definition (2.3): Let (X, <) be a partially ordered set. If f:
X*>X and T, g0 X-X are three mappings, we say that f
have mixed gT-monotone property if:

o f(x, %, ..., X,) 18 monotone gT-increasing if n is odd
o f(x, %5, ..., X,) 18 monotone gT-decreasing if n is
even

That 1s for each x,, x,. ..., x,€X:

v.zeX, gl(y)<gl(z)=

P (Y0 X0 Xy X, ) S F( 7, %5 X, X, )
oo 21 X ET(7) < 8T (21}
f{x.y,.%,...% )2 (%, 2,.%,, ... %,)

Yoo 7 €% gT(yn)SgT(Zn)=>
fx. %, ...y, )=f(x.x,,..., 2, ){f nis 0dd)

Yoz eX. gTi{y.)<eT(z)=

f{x, %,,..., v, )2 f(x, x,, ..,z )(if nis even)

Remark (2.4):

o If T is the identity mapping then f has mixed
g-monotone property (Chugh and Rani, 2016)

» If T and g are the identity mappings then f 1s said to
have the mixed monotone property

Now, we considered the following 1s the set of all
mappings 2: [0, «)-[0, «) ncreasing mapping such that o
() <tvt>0:

s 2(0) =0and lim,_, *(t) = 0 where 2" denotes the n the
iterate of o

K is that set of all mappings f: 3-Xand g, T: X-X
such that:

o gT(X)is complete subspace of X containing (")

¢« f T and g are commute and the only g, T are
continuous mappings

»  fhas mixed n-tupled gT-monotone property

Theorem (2.5): Let (X, G, <) be a partially ordered
generalized metric space, f: X*-Xand g, T: X-X are three

mappings les m K and satisfy the equations
conditions:

VX Xy Xoo ¥is Yoo o Y, E X and =0

G(f(xl,xz,..., X ) E(Yn oo Yo e )

- @{M{QG@T(&): gT(v,).1).@,6(gT(x, ). gT(y,) it)H

-G (eT(x, ). Ty, ). 1)

(1
gT(xUI) Sf(xul, xuz, s XU")
gT(xUZ) > f(xuz, X s X0 Xul)

(2)
gT(XD") = f(xn", %%, X, 1)1fnis odd
gT(xD") > f(xn S XKy s s X '1)ifnis even
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If the following conditions hold:

*  Every mereasing sequence <x,> converge tox implies
X, <xXVneN

¢+ FHvery decreasing sequence <y,> iconverge to y

implies y,>yvneN

Then f, g and T have an generalized n-tuplet
coincidencei point.

Proof: We can constructi sequencesi lies in gT(X)
<gT(xk‘ )>, <gT(xk2 )>, . <gT(xkn)> egT(x)

Such that:
eTix, ) =1 = gTix" ) egT(X)
gT(x,") =1’ = gT(x")e gT(X)

gT(x," )= 1" = gTx")egTZD)

Congidering the hypothesis 1 and 2 give in the
theorem, we get:

gTix,') < gT(x‘) =1
gTix, )= gT(X2 ) =r

gT(x,") <gT(x") = r"(if nis odd)
gT(x,")=gT (x“) =1"(if nis even)

Since, g and T are continuous mapping then, we have:

gT(,c:‘gT(xk1 )) —gT (rl)
,c:‘gT(gT(xk2 )) —>gT(r2)

gT(gT(an )) - gT(rn )
And hence:

gT(rn)ifnis odd

aQ
—
—
aQ
—
—
el
W
=
—
P
14

gT(r”) if nis even

aQ
—
—
aQ
—
—
w
o
—
~
I

Choose t satisfy:

er(ar(s. ) >eT(r). erer(s.)) > er(r)
And:
gT(gT(xk" )) — gT(r")

Which is implies by definition G-convergent in G-metric
space:

G(gT(rl), f(rl, ..,

Also, choose t” satisfy:

rn),t) =0= f(rl,rz, s

r"):gT(rl)

GlgT(r) (e, e <al (e e,

=G(f(rz, T f), gT(gT(xlmz)), t”)
e

r“),tu, gT(gT(xmz)))

gr(r'),
@iG(eT(r), gTET(x). V). @G
1l emetlx). ) [gT(gT(XkB),t”}

... G(eT(r ). eTieT(x, 1 ')
gi(r’),
GlgTir*), gTET(x, ), "L G
(g ( ) g (X ) ) [gT(gT(ij)),tu}
, .,G(gT(rl), gT(gT(xkl)), t”)

But:
gT(gT(Xkl)) —>gT(r‘), gT(gT(xk2 )) —>gT(r2)
And:
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gT(gT(xkn j) — gT(r”)

Which 1s mmplies by defimtion G-convergent in G-metric
space:

G(gT(r2 ), f(rl, ,.,r ),t) =0= f(rz,rj, s rl) = gT(rz)

Continue these processes: Choose t* satisfy:

!

(1), f(r, v, ), ¢4
f(r“,f, . I’U'l),t*, gt(gT(xbln)))
£, o ), gt(gT(xmn)),t*)

T(x," ), gT(x, ), -
=GP, . ) E gT(x). T(x/)
gT(anrl)), t*

- o QG(gT(rn), gt(gT(Xk“)), t*), G
. ¢nG(gT(r“'1), gt(gT(xk“'l)), t”‘)
gT(IJ),
a{eT(x). t
s G(gT(r‘”), gt(gT(Xk“")), t*)

G(gT(f‘), at{g1(%7), t*), G

< Jmax

But:
gT(gT(xkl)) is G-convergent to gT(rl)

gT(gT(sz)) is G-convergent to gT(rz)

gT(gT(Xﬁ'1 )) is G-convergent to gT(rn'l)

gT(gT(xk“)) is G-convergent to gT(r")

Which is implies by definition of G-convergent in
(G-metric space:

GleT(r), £{r, ¢, .. e, t¥)=0

hence, f(r", ', ., ") =gl (™). So (", ', ., ") is a
generalized n-tupled coincidence point of f, G and T.

Corollary (2.6): Let (X, G, <) be a partially ordered
generalized metricispace, f: X"~X and g, T: X-X are three
mappings lies in K. Under the same assumptions of
theorem (1) but:

G{I" (3% %0 %) (¥ ¥0 0 Y2 ) 1)
1 /GG (x,). 81 (3, tHAG(ET (). €1 (37), 1) -
n H2G(gT (%), gT (%, ). )

Then f, G and T have an generalized n-tupled
concidence point.

Corollary (2.7): Let (X, G, <) be a partially ordered
generalized metric space, £ 3*-X and g, T: X-X are three
mappings lies in K. Under the same assumptions of
theorem (1) but:

G(fr (%1 Kgn oo X ) T (YL V00 o0 Vo) t) <
1{le(gT‘(xl), eT{y,). t) H{zG(gT(XZ), eT{y,). t)+, -
k, G{gT" (x,). 2T°(v,). 1)

il
Such that, ke(0, 1] foralli=1,2, ..., n Thenf, g and
T have a generalized n-tupled coincidence point.

Remark (2.8): If T = I (identity map) and f has
mixed g-monotone property then, we get, f and g have
n-tupled comeidence pomnt. If T = g = I (1dentity map)
and f has mixed monotonei property then, we get f has
n-tupled fixed pomt.

CONCLUSION

In this study, we mtroduce the concepts of
generalized n-tupled comcidence point and generalized
mixed gT-monotone property and we prove the existence
and uniqueness of generalized n-tupled coincidence point
theorems without continuous condition for mappings
having generalized mixed gT-monotone property in
generalized metric spaces.
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