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Abstract: The concept of visible submodule of a module X over aring R 1s introduced (R 1s commutative ring
with identity and X 1s umitary R-module) where 13 a new concept not previously presented. As well as the
description of the visible radical submoule and many of the results own this concept has mad. Also, we have
presented a concept of V closure operation. Through this study we have been able to obtain many of the
results and characteristics that belong to those concepts above.
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INTRODUCTION

In this study the concept of visible submodule has
been presented as this concept is new and has not been
addressed by anyone before us. A proper submodule K
of a module X over a ring R is said to be visible, if K = UK
for every a nonzero ideal U of R. Section 2 has been
introduced a visible submodule and several properties
with important characterization of such a submodules.
Section 3 has been defined a visible radical of a
submodule K and which 1s defined as the mtersection of
all visible submodule of X containing K and we dented by
Vrad,(K). The defimtion of Vrad,(K) 1s gotten from the
generalization of visible radical of an ideal G of R is
denoted by a.

The concept of V closure operation (for pithiness, V.,
operation) has also been provided m thus study, where
q:3-5, 8 is the set of all visible submodules of a module
X over R 13 called V operation if Ucq()U, q(q(1)=q(U)
UcK implies g(TcglK).

(V)Aq(U) = q(AU for all nonzero ideals A of R and
submodules 1, K of X. This concept is stranger than the
concept of closure operation i Lu (1990), where we can
make the 4th condition in the concept of Vo operation to
achieve equality rather than containment, thanks to the
use of the concept of visible submodule. Resulted in this
emergence of the concept of V, operations which a more
general of the concept is located in Ali (2005).

In this study we have demonstrated a lot of important
properties and characteristics, we have also provided
several important and useful results m this search.

In owr study, we need to the following fundamental
concept. A module X 1s called faithful if ann(X) = {reR; 1x

=0, xeX 1s the zero ideal of . We call that a module X over
15 a multiplication module, if for every submodule U
of ¥, then U is written as U = LX for some ideal L. of R
(Azizi and Jayaram, 2017).

According to Tu (1990) a proper submodule Uof X is
said to be rreducible when X,nX, =2 then X, = Uor ¥,
for every submodules X| and X, of X. If S 15 a
multiplicative set of R and U 1s a submodule of X,
then TJ(S) = {meX:jeS such that jmeU} is a submodule of
X contain U.

A cancellation ideal of R is an ideal J of R such
that XT = YT for all ideals X, Y, then X =Y (Al1, 2003) and
a module X over R 1s called strongly cancellation module,
if for eachideals X, Y of Rsuchthat XU=YU then X=7Y
for every submodule U of X (Elewi, 2016).

Visible submodules: In this study a new type of
submoule was defined and named as visible submodule.
Many essential properties and some characterizations a
round this concept have been bult (Anderson et af.,
2017).

Definition (2.1): A proper submodule K of an R-module
X 13 said to be visible whenever K = AK for every a
nonzero ideal A of. A proper ideal of a ring R 1s named
visible ideal if A = JA for every a nonzero ideal ] of R.

Remarks and examples (2.2):

s+ A zerosubmodule of any R is always visible

»  Consider Z, as a Z-module. A submodule of @ 1is
not visible. Since, for every a nonzero ideal A of Z,
implies @) zA @

s+  Twosubmodules ) and &) of the Z-module Z, are

not visible for the same reason of No. 2
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+  All anonzero proper cyclic submodule of the module
Q as a Z-module is not visible

+ Let, L be a submodules of anR-module X such
that K = L. ThenK 1is visible submodule =L is visible
submodule

*+ Let X, and X, be two R-module and . X~ X, be an R-
homo. Then

« if K is a visible submodule of X;, then yr'(K) is also
vigible submodule of X,

+  TfKis avisible submodule of X, then Y(K) is visible
submodule of X,

Proof (4): Let L be a cyclic submodule of Q, generated by
an element e/g, where e.g., are two nonzero element in 7.
Let (8) be an ideal of Z, where s 15 a positive mteger and
x>1. Then (s)g = (g), that 1s (s)(e/g)#(e/g). Therefore, L 1s
not visible submodule (Atam, 2005).

Proof (5): Let :K~L be an epumorphism. Then (K) =L.
Assume that K 18 a visible submodule which implies K =
AK for every a nonzero ideal A of R. Therefore, T = i(K)
= (AK) = AP(K) = AL. Thus, L is visible submodule.
Suppose that L is visible submodule. et A be a nonzero
ideal of P(K) =1 = AL Ay(L) = y(AL) but y is (1-1) then
I. = AL produce L. is visible submodule.

Proof (6): For every ideal I of R and #0 we have IK =K
where K 1s proper submodule of X,. Then:

o IYK) = K = )
o IY(K) = w(IK) = W(K). Therefore, I(K) is visible
submodule of 3,

Proposition (2.3): Let D be a proper submodule of an R-
module X. Then the coming are equivalent:

+ D is visible submodule

¢+ D =1D for each a nonzero finitely generated (briefly
FG)ideal I of R.

* D =(a)D for each O=acl and 0#I 15 any ideal of R

Proof:

¢« ={2)Let D be a wvisible submodule of X
Consequently, V0 #I, I 1s an ideal of R, we have D =
1D, we can take T is finitely generated ideal

¢ =(3)LetD be aproper submodule of X and 0#I be a
FG ideal of R. Therefore, directly from (Eq. 2) we get
D = (a)D where O#acl

¢ ={3)Let 0 #acl and 0+#I be an ideal of R. Then acl
which implies that (a)DcID. Therefore, by (Eq. 3) we
get DcID and so on ID<D. Thus, ID =D and hence,
D 15 visible submodule

Proposition (2.4): Let X be an R-module and E be a visible
submodule of X If L is a submodule of E, then E/L is a
visible submodule of 3/L..

Proof: Let 0#A be an ideal of R. Now, A(E/A)= AE/.. But
AE =E (since, E is visible submule of X). Then (AE+L)/.
= (E+LYL. Therefore, E/L 1s visible submodule of M/L.

Proposition (2.5): Let x be an R-module and L. be two
submodules of X. If D, L are visible submodule, then D+L
1s visible (Dauns, 1980; Kasch, 1982).

Proof: Let A be a nonzero ideal of R and L be two
submodules of X. Then A(D+L) (since, D and I are visible
submodule). Therefore, D+L is visible submodule of X

Remarke (2.6): As a generalization of proposition (2.5),
we get: if {N,}°_, is a finite collection of a submodule of
an R-module X and N, is visible submodule for all K, then
the sum of all these submodules is visible submodule ofX.
Proposition (2.7): Every submodule of a visible
submodule 1s also visible.

Proof: Let N be a visible submodule of an R-module X and
let K be a proper submodule of that is KcN.
Therefore, N = IN for every a nonzero ideal T of. Then
KcIN which implies that:

IN+K = IN (1

Also, from the above inclusion, we get IKcIN. And
hence:

IKAIN = IN 2)

Form Eq. 1 and 2, we get IN+K = IN+K and
hence, K = IK. Therefore, K is visible submodule.

Corollary (2.8): If either N, or N, is visible submodule of
an-module, then N ,imN, is also visible.

Proof: Tt is clearly that N,rIN,cN,; and Ny;mN,cN, but N, is
visible, then by proposition (2.7), N;nN, 1s also visible.
Similarly with N, 15 visible, we get NN, 13 visible
submodule. As a directly result of corollary (2.8) , we give
the following generalization.

Corollary (2.9): Let {N}"._, be a family of submodules of
an R-module X such that at least one of them is visible,
then

i=1

N, is visible submodule. The converse of
proposition (2.7) need not to be true, for example:
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The module Z,, as a Z,-module. Since, (© is
contains in any submodule of any R-module X and @ is
visible submodule by remarks and examples (1). But a
submodule & of module Z,, is not visible, since, there
exists @) is a nonzero ideal of 7., such that &)+ @) =) .

Therefore, ) is not visible submodule in Z,,.
However, under a certain condition the converse of
proposition (2.7) holds: The module X over 1s named fully
cancellation if for each submodules W, K and for each
ideal C of we have CW = CK implies W = K (Ali, 2005).
Next, we can use above concept to present the coming
result.

Proposition (2.10): Let be a ring which all nonzero ideals
are idempotent. Let D be a visible submodule of a fully
cancellation R-modules. If K is a proper submodule of X
containing, then K 1s a visible submodule of X.

Proof: Suppose that, T be anonzero ideal of R. To prove
that K = K, we have DK, then IDcIK which implies that:

IK = ID+IK (3)

Also DcIK (since, D 1s visible submodule), then
IK = ID+HK. Therefore,

IK = ID+T’K. )

Now, form Eq. 1 and 2, we get ID+IK (since, D 1s
visible submodule) and hence, TK = D+T°. But X is fully
cancellation module, then IK = K hence, K 1s visible
submodule.

Proposition (2.11): Let D be a visible submodule of a
strongly cancellation R-module. Then nn(ID) = ann(T), for
every a nonzero ideal T of R.

Proof: Let xcann (). Then xI = 0 and hence, xID = 0 which
implies that xcann(ID). Therefore, ann(T)cann(ID). Now,
let yeann(ID). Then ID = 0 but D is visible submodule,
then yD = 0 and hence yD = 0D, we have X 1s strongly
cancellation module. Then y = 0 thus, ¥T = 0 and hence,
eann(l), we obtain ann(ID)cann(T). Therefore, ann(ID) =
ann(l).

Proposition (2.12): Let D be a visible submodule of
strongly cancellation R-module. Then every a nonzero
ideal T of R is cancellation.

Proof: Let 0 # I be an ideal of R s.t Al = BI where A, B are
two ideals of let D be a submodule of X. Then AID = BID,
but D is visible submodule which implies that AD = BD
and hence A = B (since, D 18 strongly cancellation
submodule).

Proposition (2.13): For each a nonzero ideal A of R and
for each nonempty collection {W=} of visible submodule
of an R-module X. We have A(N.W,) = Nn«AW .

Proof: It is known that for each meW_cW _but W _is
visible submodule for each o and hence, AW _ for each «
also by proposition (2.7), we get Ne<W_ is visible
submodule of N=W_ of X.

Implies N AW, = NeW = A(Ne=W.,) (since, W, 1s visible
submodule for each «).

Proposition (2.14): T.et N be a visible submodule of an R-
module X. Then, N is pure submodule of X.

Proof: Let N be a proper submodule of a module X. Then
N = 1IN for every a nonzero ideal T of R. Since, cX, then
INcIX. Therefore, NnIX = NnIX and hence, NnIX =
(NMX) = IN by proposition (2.13). Which completes the
proof.

Proposition (2.15): Let X be a multiplication cancellation
R-module. Then every proper submodule N of X is visible
submodule if and only if (N:X) is visible ideal of.

Proof: Suppose that (N:X) 1s visible ideal of X. Let xeN.
Then (x)cN and hence, ((x:X)=(N:X). Therefore,
((x):  X)=(N:20) = I(N:X) and hence, ((x:; X)Xc1(N:; X)X
which implies that (x)cIN (since, X is multiplication
module).

Therefore, €IN and hence, Nc=IN also, it is known that
INcN. Thus, from twoe above mclusion, we have N = IN,
that is N 1is visible submodule. Let N be a visible
submodule to prove that (N:X) 1s visible ideal. Let xe(N:;
X). Then (x)XcN, mmplies (x)XcIN (since, N 1s visible
submodu). Then (x)XcI(N:X). But X 1s cancellation
module. Therefore, (x)X=I(N:X) and hence, (x)XeI(N:X).
Then (N:X)cI(N:X). Conversely, I(IN:X)c(N:X). Therefore,
(N:X)cI(N:X). This end the proof.

Corollary (2.16): Let N be a proper submodule of a (F.G)
faithful multiplication R-module 3. Then N is visible if and
only if (N:X) is visible ideal of R.

Proof: From Al (2005), we get X 13 cancellation and by
proposition (2.15) we obtain the result.

Proposition (2.17): Let X be a FG faithful multiplication R-
module and T be a proper ideal of R. Then the following
hold:

o If I 1s wvisible ideal of R then IX 1s wvisible
submodule of X
s TfNis visible submodule of then ann(N)
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Proof: Let T be a visible ideal of R. Then IT =T for each
ideal T of RO =] and hence, JIX = IX. Therefore, IX 1s
visible submodule. Suppose that IX 15 visible submodule
of X then JIX = IX (since, X 1s cancellation module
because X is FG faithful multiplication module). Therefore,
IT =T and hence, T is visible ideal of R let xcann(N:X).
Then x(N:X) = Owhich implies xN = x(N: 3N = 0, therefore,
xeamm(N).

Now, let N be a visible submodule of X. Then N =IN
for every 1deal 0 # I of and by proposition (2.14) , we have
N is pure, from this fact, we write N = NnIM for every
ideal T of R. But N is visible, therefore, IN = NnIM.
Taking T = anng(N) and hence, mn(N)N = Nmann(N). 0 =
Nram(N)X. This lead us (0:X) = (Nnann(N)X:X) =
(N2 nam(NHKX) = (N:X)N(IXX) = (N: X (since, X 1s
faithful FG and multipli. module) = (N:X)mann(N) =
(N:X)ann(N) by proposition (2.15) and proposition (2.14)
Then ann(X) = (N:X)ann(N). But X is faithful which
implies that 0= (N:X)ann(N). Therefore, ann{N )cann(N: X).
Which completes the proof.

Proposition (2.18): A visible submodule of an R-module
X is an idempotent submodule.

Proof: N is visible submodule of X, then N = IN for

every O # I, I1s an 1ideal of R thus, N is an idempotent
(choose I = (N:; X)).

Proposition (2.19): Assume X is (F.G) faithful
multiplication R-module and K is visible submodule of
then N J K = (N, J K for every a nonempty collection
I(kel} of visible ideal of R.

Proof: K is visible submodule of X, then by corollary
(2.16), we have (K:X) 1s visible 1deal of R. Suppose that
T kel) 18 any collection of visible ideals of R. Now,
(MK =K = (K:X) by proposition (2.18) which is equal
(KX) (N K = (N0 ) (KXOK = (M) ) (KEZOAX for
some 1deal A of. (since, X 13 multiplication module), we
want to show that (N,J K X) = NI, (K5 X) obviously,
M KX e J K X). Conversely, let, ye(m, J K X).
Then ¥Xcn JK = m JJK:X) but we have X is
cancellation module Therefore yer, J(K:X).

Now, (M J ) EKXAX = (N d K XAX)

:A(kr_\IJkK:X)M
- A kTIKK

But J, is visible ideal for all ke, then by corollary (2.9), we
get My J, 18 visible ideal also by proposition (2.17) we
obtain that M, J.K is visible, that is (n, I K) =, J K and
hence, (N JK = Nl

The visible radical of a submodule: During this study, the
concept of visible radical of a submodule has been
described. Also, we proved that the equality of the fourth
condition of the concept of V., module 1s achieved with
this type of module and without condition. Many
properties and results of these concepts are given.

Definition (3.1): A visible radical of a submodule K
of an R-module X, denoted by Vrad(K) is defined as the
intersection of all visible submodule of X which contain
K. If there exists no visible submodule of X containing, we
write Vrad,(K) = X. If X = and D 1s an ideal of R then
Vrad, (D) 1s the mtersection of all visible ideals of R
containing D.

Definition (3.2): If D is an ideal of, then ¥D is represent
the intersection of all visible ideal containing D. The
following results give some fundamental properties of
visible radical.

Proposition (3.3): If 6:X-X be an epimorphism from an R-
module X into R-module X, and H be a submodule of X
with ker OcK, then:

o O(Vrad H)= Vrad, O(H)
s 0 (Vrad H) = Vrad 8'(H), where H is a submodule of
X

Proof: We have (Vrad H) = "W where W is visible X with
cW, therefore, B(Vrad H) = 6(nW). Since, skerff cHCW,
and by Kasch (1982) we get 8(Vrad H) = nO(W) where
intersection over all visible submodule 6W of X (the
harmomorphic image of visible submodule is also visible.
With 0(H)c=0(W) and hence, (1) 1s verified.

Let H be a submodule of X. Then Vrad (H) = nW
where N 1s over all visible submodule W of X with HCW,
then by proposition (2.14), 87'(VradH) = 0'("W) =
MB'(W) where N is over all visible submodule 68'(W) of X
with 87'(H)=6'(W). Hence, 6" (Vrad II) = Vrad (6(ID)).

Proposition (3.4 ): Let, W be two submodule of R-module
X Then:

s kcVradK

s IfcW, then Vrad KcVrad W

s Vrad(Vrad K)= Vrad K

s Vrad KnWcVrad KnVrad W

s Vrad K+W = Vrad (Vrad K+Vrad, W)

o Vrad (W)= Vrad,(AW) for every visible submodule
W of X and for every anonzeroideal A of R

*  Vrad,(W) for every a nonzero ideal A of R

s Vrad (AW) = Vrad (A Vrad, W)
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Proof: Since, Vrad K = NP, where the intersection is taken
all visible submodule P of ¥ with KcP, also KovradK. Let
P be a visible submodule of Xwith P but we have
KcWcP, therefore, Kc=P that is Vrad KcVrad, W. Since,
Vrad,(Vrad K) = NP where the intersection is taken on all
visible submodule Pof X with Vrad KcP and from (Eq. 1),
KeVrad K, then directly Viad(Vrad K)cVrad K. Also by
(Eq. 1) we obtain VradKcVrad(Vrad,K). Thus, the
equality holds.

Tt is clear that KnWcW and nWcK, then by (Eq. 2),
we obtain Vrad/KnW)cVrad K and Vrad (KnW).
Therefore, Vrad(KnW)cVrad KnVrad,W. We have
Kcvrad K and Wovrad W. Then
K+Wovrad K+vVrad W. Also by (Eq. 2), we get
Vrad (K+W)cVrad (Vrad +Vrad,W).

Now, to prove another inclusion, let P be a
visible submodule of X such that K+WcP from this
step with K-P we get WcP. Therefore, Vrad KcP
and Vrad WP, Thus, VradK+Vrad WP and
consequently, Vrad (Vrad K+Vrad, W)cP. Thus,
Vrad,(Vrad, K+Vrad W)cVrad (K+W). Therefore,
Vrad,(Vrad K+Vrad, W) = Vrad (K+W).

Tt is clear that WEW, then by using No. (Eq. 2), we
get Vrad AWCVrad,W. Another inclusion:let Vrad W =
My Where P is a visible submodule of X. Therefore, by
proposition (2.7), we have also My is visible submodule
of X implies W = AW for every a nonzero ideal A of R,
therefore, AwcP hence, the intersection over visible
submodule of X containing AW which gives the
visible radical of AW that is Vrad(AW) = rnyP and
hence, Vrad(W)cVrad(AW). Thus, Vrad(W) =
Vrad (AW). ViadW = n B where P is visible
submodule but W is also visible by proposition (2.7) and
hence, W is pure submodule by proposition (4), we get
AW = WnAX for every ideal A of R. And hence,
Vrad, (AW) = Vrad (WnAX). And form No. (6), we get
Vrad (AW) = Vrad (WnAX). By depending on (Eq. 1), we
get WcVrad W, implies AWCA Vrad W and hence,
Vrad (AW)cVrad (A ViadW).

Conversely: We have AVrad,cVrad (AW) (since, W is
visible submodule this leads to use ( ). Therefore,
Vrad (AVrad W)cVrad,(Vrad (AW)). Thus, the equality
holds. Immediate form proposition (3.4), we get the
coming corollary.

Corollary (3.5): Let K be a submoduleof an R-module X.
Then we have:

¢ Vrad KcVrad K(S)
¢ Vrad KcVrad [K: ] for every ideal T of R

Proof: Since, K (S) is asubmodule of X and cK(S) also for
every ideal T of R we have Kc[K: I]. Then the result

follows directly by proposition ((3.4), No. (Eq. 2)). In the
following proposition we give a condition under it the
equality f proposition ((3.4) (Eq. 4)) holds.

Proposition (3.6 ): Let, W be two submoduleof an R-
module X if every visible submodule P of P which contain
KnW 13 completely mreducible. Then Vrad (KnW) =
Vrad KnVrad,W.

Proof: From proposition ((3.4) (Eq. 4)) we obtain
Vrad (KnW)cVrad KnVrad, W. Now, to prove another
side, if Vrad (KnW) = ¥, then Vrad K = VradW = X If
Vrad (KnW)#X, then 3 a visible submodule P of X s.t
KnW but P is completely irreducible submodule, then
either KcP or WcCP and hence Vrad KcP or
Vrad, WcP. Simce every visible submodule contaming
KW is completely irreducible then Vrad KcVrad (KnW)
or Vrad, WcVrad, (KnW) and hence,
Vrad KnVrad W Vrad (KnW). Therefore, Vrad (KnW) =
Vrad KnVrad,W.

Proposition (3.7): If X is a (F.(3) faithful multiplication R -
module and T 1s visible submodule of 3{, then T = T X3 T

Proof: Let F be the set of all visible ideals P of R that
contain (T:M). Therefore, (T:M). And hence by
proposition (2.19), we get fiT i X1 T = (N P)T = rpPT.
Now, for each visible ideal P of R we can write T = PT
(since, P 1s visible) also for each PeF, T = (T:X)T=PTcT.
Therefore, K = npPT (since, Ny P 1s visible ideal of ),
then it is equal to VT ¥) T Hence, T=+T ¥ T

Proposition (3.8): If S is a visible ideal of a ring R,
then S = S&).

Proof: We have SC+®. then S.8 = S5 but S is visible,
then S is an idempotent. Therefore, S+

Conversely: Sv©® <Sn(® = S (since, =v® ) that is
S V3 S and hence, S = S 4.

Proposition (3.9): Let T be a submodule of FG faithful
multiplication R-module. Then T = J(T: %) X = Vrad,T

Proof: When Vrad,T = X, the results 1s end. Otherwise, if
P 1s any visible submodule of X which contains T, then
(T:X)=(P:X) but P 18 visible submodule, then proposition
(2.15), (P:M) is wvisible ideal of R and hence by
proposition (2.7), we get (T:M) is visible ideal of R.
Therefore, (T:X) = T %) T:%) form propesition (3.8).
Which implies that X3/ %) is equal to (T:M) which
contains in (P:M). And hence, T X)'\(T' %) swhich
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inclsion in (P:X) (T:X), (since, every visible ideal is
idempotent). Therefore, ~T:X)(T:X) which contains in
(P:X) (T:X)X. Since, (T:X)X 15 a submodule of X and by
(Blewi, 2016) we get T % £(P:X) and hence, T 0%
which containg in (P:X)X = P. Since, P is any arbitrary
visible submodule containing T, then we obtain

NT0% cVrad, T.

Conversely: We have X 13 multiplication module,
Vrad, T = (Vrad, T:X)X. Since, T 1s visible submodule
hence, by proposition (2.15) we have (T:X) is visible ideal
of R. To show that (Vrad,T:X)=+T %1 Let P be any
visible ideal such that (T:3)=P. Look, P is visible ideal ,
then from proposition (2.17) PX is visible submodule of X
containing T = (T:X)X. To prove thus let x€T. Then
xe(T: X)X, Therefor, (T:X)x=(T: X)X =(TX)X. And hence,
P{T:X)x=(T:30)X = PAT:X)PX which implies that xcPX
(since, P(T:X) is an ideal of and X is fully cancellation
module). That is TcX. Thus, (Vrad, T: X)X = Vrad, TcPX.
Hence, (Vrad, TX)c(PX:X) = P (since, X 1s cancellation
module). Consequently, (Vrad, TX)cVT:X The result
end.

Proposition (3.10): Let X be a (F. G) faithful
multiplication-module. T be a visible submodule of X
Then:

e T= T X

o (T:X)WVrad,T=T=(Vrad T:3X)T

¢ If (T:X) is (F.G3) (principle ideal generated by
idempotent element ), then Vrad,T is a visible
submodule of X and moreover, T = VradT

Proof: K is submodule of then by proposition (2.18), we
get that, T 15 an i1dempotent 1deal of R, therefore, T =
(T:3)T, hence, T 3T = T 2@ 30T And by proposition
(3.7)we obtain (T: 30T = T 0T = T. Tt follows from No. (Eq.
1) and proposition {3.7) we get T =T ©) T is equal to
NTENT 0K = (THYT XX 15 equal to (T:X)VradT.
Suppose that (T:X) 1s (F.G) ideal of R.

Therefore, (T XJT:X)  by” [on radicals of
submodules of FG modules|”, hence,
(T:30X = JiT 0% = VradT. Now, we will introduce the
concept of Velosure operation (for short Vi operation).
Let X be an R-module and S be the set of all visible
submodules of q:5-3 we call Ha V., operation if:

* qeg(@)

* q(q(G=q(G)

*  GcK, mmplies q(G)cq(K)
*  Ag(G)=qAG)

For all nonzero ideals A of R and submodules G, K of
X. Next, we give a characterization for V., operation

Proposition (3.11): A mapping ;S-S is a V., operation if
and only if q(X):q(B) for all X, B=S.

Proof: Suppose that q 18 Vo operation. Since, —q(B),
then q(X):qBcqX)B for all X, BeS. Another
inclusion  q(X)2(q(X)B)iB)z((qZ):B)q(B)).  Thus,
((X)a(B)=(((X)B). Therefore, (q(X):q(B)) = ((X)B)
On the opposite side: for all, BeS we have (q(X):h(B)) =
(q(X):B). To prove q 1s V., operation. Put = B, then
(q(X):q(X)) = R. Therefore, Xcq(X) for all Xe5.

Now, put = q(X), then (q(X):q(q(X)) = (q(X):q(X))
Therefore, q(q(X)) = q(X) for all Xe8. Next if =X, then
(@X)aB) = QX)(XrB)3(XB) = R and hence,
q(X)z2q(B). In the last, we have Xcq(X) but X is visible
submodule, then IX = q(IX) for each a nonzero ideal I of
R. Therefore, (q(IX).q(X)) = (qIX):X) = (X X)a(X.X) =
R (since, X is visible submodule) form (Eq. 1), thus,
(q(IX):q(X) = R. And hence, q(X)cq(IXH(X is visible
submodule, then q(X) is also visible submodule). This
lead to Iq(X)=q(IX).

Conversely: From (Eq. 1), we get (X)cq(X). Then
I3X)cq(X). For each a nonzero ideal T of R. And hence,
ATX)=g(q(X)) = q(X). Therefore, q(TX)=T(X) (since (q(X)
is visible submodule). Thus, we obtain a(IX). Finally, we
get his V; operation.

Proposition (3.12): Let h,:S~S where (Ac/) be a family of
Vo operation and h(W) = m,_h, (W) for all WeS. Then
h:S-8is a V operation.

Proof: We have Wh, (W) for all, then W = m, ., (W) and
hence, W(W). In particular h{W)ch(h{W). And the
opposite:

h, (W)=h,(h,(A)2 hx({;\hl) =

B (h(W)S b, (W) = h(h(W)

Therefore, hth(W)ch(W). And hence, h(h(W = h(W).
Now, if cK, then hy(W)ah,(K) implies, h(W)zh(K). In the
end Th(A) = Tn, i (A) = NI hy(A) by proposition (3.12)
but Ihy(A) = h AYh (A) 18 V  gperation. Therefore,
Th(A) = Ny oy (IA) = h(IA). This complete the proof.

Proposition (3.13): Let h:5-S be a V. operation.
Then:

*  him . A)e(myh(Ay) = hing . h(Ay)

s Y,h(A)ch(,A) =h (3 ,h(A)
s hiA:Dch(A)I =h(h(A)I)

Proof: Since, nW, for all, so, h(m,W,) for all A and
h(ﬁlw;l)gﬁlh(w;l)Eh(ﬁ;lh(Wl). Then h(ﬁlwl)gﬁ;lh(w;l)) =
M h(W,). WY Wy, so, W gh(W )ch(y W) for all A
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And YW, ey h(W)ch(Yy, W, ). Therefore,
h(}, Wych(3 h(Wy )ch(h(} ;W) h(},W,). Since,
oI(A:I), then h{A)oh(I(A:). Now,

h(A:De(h(A:Dchth{ Ay Ic(h(h(A)):I) = (h(A)I. Therefore,
(h(A)D=th(A)T) and (h(A)T) = (h(A)xT) and (Eq. 3)
follows.

Proposition (3.14): Let X be an R-module and h: S-S such
that h(N) = VradN for every NeS and N is visible radical
submodule of X. Thenh is V. operator.

Proof: Form proposition (3.4), we get (Eq. 1-3) whuch are
conditions of definition of closure operation. It remains to
achieve the last condition we have Vrad N = Vrad (AN)
for every a nonzero ideal A of R but N 1s visible radical
submodule that is VradN = N. Then Vrad(AN) =
Vrad N =N = AN = AVrad N. Therefore, his V__operator.

Corollary (3.15): X 13 amodule over R and h 15 defined in
proposition (3.14). Let, L be submodule of X and A 1s a
nonzero ideal of. Then:

¢ (Vrad N:Vrad.L) = (Vrad N:L)
¢ Vrad(N:A)cVrad N:A =

Proof: We have h(N) = Vrad N. Then (Vrad N:Vrad L) =
h(N):h(L) but from proposition (3.13), h(Nxh(L) = h(N):L.
Therefore, (Vrad N:Vrad,L) = h(N):L. = = (Vrad N:L).
Vrad (N:A) =h(N:A)ch(N): A = Vrad N:A. And h(N):A =
h(h(N):A) = Vrad (Vrad (N): A). Therefore, (Eq. 2) holds.

CONCLUSION

During this study, we are dealing with commutative
rings that contain an identity element as well as all the
modules here are unitary.
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