Tournal of Engineering and Applied Sciences 13 (23): 9889-98%91, 2018

ISSN: 1816-949%
© Medwell Journals, 2018

High Performance Matrix Inversion for Solving Linear Equations System

Hussein A. Latta and Farah Abdul-Hassan
Department of Computer Science, College of Science for Women,
University of Babylon, Hillah, Tragq

Abstract: The linear algebra for solving a system of linear equations has an important role in many fields of
science like Engineering, Physics, Statistics and Computer Science, etc. Matrix inversion play a primary role in
solving these equations. A main challenge task 1s to invert a large-scale matrix with several thousands or
millions of rows and columns about 2n’ floating-point operations. We aimed to solve the system of
linear equations based on matrix inversion in a way that achieves a high performance and reduces the
time-consurming. In our research, we implement a matrix mversion on programmable Graphics Processors (GPUs)
using MATLAB language for programming and Nvidia video card. The results of our method gain a higher
performance than the sequential methods with simplicity of coding.

Key words: Matnix inversion, linear algebra, parallel computing, graphical processing units, coding, sequential

INTRODUCTION

Solving the linear equations system has an important
role 1 many fields of science like Engineering, Physics,
Statistics and Computer Science, etc. The general formula
of the linear equation system is: Ax = b, where A is
a non-singular matrix, x is unknown values that satisfy
every equation m the linear system for the given matrix A.
The b 1s a vector of right hand side values. The essential
problem in solving linear equations is to find the unknown
values of solution vector x (Murthy et al., 1998).

Linear equation systems can be solved using two
methods: Direct methods such as (matrix inverse method,
LU-decomposition by Gaussian elimmation, Gaussian
elimination with partial pivoting, cholesky algorithm and
Tterative methods such as (JTacobi method, Gauss-Seidel
method) as a comparison, the direct methods research
best with dense matrices whereas iterative methods are
working with sparse matrices.

Matrix mversion 1s one of the direct methods for
solving linear equation systems, it plays a significant role
in solving these systems. The inversion of matrices
appears in many fields of scientific applications such as
model reduction, image processing, social network,
recommendation systems and optimal control. The
fundamental challenge of linear equation systems is to
find the mnversion of a large-scale matrix with thousands
or millions rows and columns about 2n’ floating-point
operations where n is the number of rows and columns. In
practice, the analytical solution for this systems of

equations are quite computationally complex and taking
a lot of time, especially as the dimensions of the system
matrices increase (Jamil, 2012).

The matrix inversion can be used to reduce the
computational efforts required to solve the systems of
equations and acquire very accurate solutions in a short
time. Our main purpose 18 to implement the matrix
computations on GPUs (Graphics Processing Units), the
performance 1s the major reason of using GPUs in matrix
computations. The wuse of GPUs has mcreased
considerably over the last few years because they
improve the speed of graphics-related computations due
to the dozens or even hundreds of cores they made of
(Davies et al., 2007). The results of our method gain a
higher performance than the sequential methods with
simplicity of coding and efficient utilization of memory.

Literature review: This study presents some previous
researches n mmplementing matrix mversion method for
solving lmear equation systems.

Ares et al. (2013), present a GPU-based matrix
inversion algorithm for distributed memory contexts they
used Gauss-Jordan elimmation algorithm.

Sharma et al. (2013), redesign for matrix inversion by
the Gauss Jordan algorithm ona CUDA platform they take
advantage of the characteristic of large scale
parallelization of a massively multithreaded GPU.

Thearughulem et al. (2014), present an iterative
method for computing determinants and for solving
eigenvalue which is one of the linear algebra problems
they use a MATLAB iterative code and use a trial
eigenvalue is to compute the determinant in their program.

Corresponding Author: Hussein A. Lafta, Department of Computer Science, College of Science for Women,

University of Babylon, Hillah, Traq

9880

J. Eng. Applied Sci., 13 (23): 9889-9891, 2018

Abbas (2014) suggests a new parallel algorithm that
is finding the determinants of block matrices in the order
of (WxW), using Gauss elimination method.

Shirazi et al. (2015) propose a new version of the
Gauss-Jordan matrix inversion method accelerated by
Graphics Processing Units (GPUs). The results show that
the proposed method 1s faster than baseline method. Gray
(2016), uses multiple processors n parallel to find the
inversion of a dense symmetric positive definite matrix.

MATERIALS AND METHODS

Parallel matrix inversion using Laplace expansion: Our
method depends on using determinants and Laplace
expansions to find the matrix inversion to solve the linear
equation system. Laplace exparnsion 1s a method for
finding the determinant by expanding each matrix
recursively to (sub-matrices) until reaching a base case of
2x2 matrix. Laplace expansion expresses a determimant |A|
of the matrix A that has a n*n dimensions, it is
representing the summation of all determinants of its
-1*n-1 sub-matrices. Given an nxn matrix A such that:

A=t (1)

where, a; 1s the value of the pivot element that 1s lying in
the ith row and jth column. Laplace can be calculated by
the following Eq. 2:

C, = (D" *M, (2)

where, M; is the minor of a; in matrix A and ¢ is the
cofactors. And the determinant is computed by the
following Eq. 3:

Al = zn‘lau.cu (3)
1=1

Algorithm 1 shows the steps of calculate |A|, depending
on Laplace expansion method and then compute the
matrix nversion.

Algorithm 1; Laplace expansion method for computing
|Al:

Step 1: find M;;, Create a sub-matrix recursively by eliminating the
elements of each row and column in the a;;

Step 2: find the cofactor, ¢;; = (-1)%. M, ;

Step 3: if n =2, Dy= (ay; *axn)-(ay *a;2)

Step 4: a,5.= a;Dy5

Step5: D0 =3 ;_la”, ci, i

Compute matrix inversion:

Step 6: Adj = transpose(c) where Adj is the Adjoint of a;;

Step 7: A = Adj/D

Inverse of a matrix can be calculated only if the matrix
1s nonsingular and the determinant should not be zero.
The linear equation system can be solved by multiply the
matrix inverse by the absolute values vector to infer
unknown values such that:

Ab=x “

In our research, we execute the iterative code using
MATLAB language to evaluate the inverse of a square
and nonsingular matrix by calculating its determinant
through TLaplace expansion method, we use a three
dimensional dynamic array to compute the determinant of
the matrix and the final result of our code 1s the solution
of the linear equation system. Then we applied
{(gpuArray) and (gather) build-in classes to run our code
on the GPU which is supported by Nvidia video card.

RESULTS AND DISCUSSION

The implementation: We use Parallel Computing in
MATLAB Language which support the Nvidia video card
(GPU) Intel HD Graphics GT 620. We use a two
dimensional matnx of integers and a vector of the absolute
values that represents (b) vector of the linear equation
system Ax = b. The experimental results are as follow:

The original matrix is:

1 4 9 8 3 5 8 7 2

The vector of absolute values:

1 2 3 -1 0 3 5 6 2 3

9890

J. Eng. Applied Sci., 13 (23): 9889-9891, 2018

The inverse of the matrix and the value determinant is: -93336855

0.078039 -0.116 0.019654 -0.00964 0.0318%94 0.037287 -0.06912 0.020453 -0.038

0.150279 -0.05778 -0.12769 0.153558 0.085834 0.010618 -0.01433 0.074317 -0.23279
0.075895 0.049811 -0.11623 -0.00101 -0.00829 0.131579 0.074269 0.098009 -0.03805
0.070713 0.046697 0.027475 0.053212 0.041671 -0.05798 -0.09159 -0.06845 -0.02942
-0.15768 0.132315 0.03034 -0.05699 -0.13875 -0.00602 0.06462 -0.07692 0.159701
0.02933 -0.20145 0.1456502 -0.04009 -0.00989 -0.03679 0.023168 0.0089 -0.03743
-0.02909 -0.09442 -0.03667 0157237 0.031013 -0.00122 -0.03759 0.038061 -0.06689
-0.04468 -0.00509 0.029523 -0.10826 -0.00088 -0.06805 0.075313 -0.05148 0.137254
-0.20369 0.327893 -0.01303 -0.12248 -0.0852 -0.00237 0.044824 0.052563 0.252922
0.050145 -0.13034 0.16092 -0.02743 0.089953 0.04189 -0.08541 -0.1647 -0.08874

The solution vector which represents the value of unknown values (x):
-0.54856 -0.437 -0.7099 0.4247 0.9599 -0.1047 -0.1681 0.1249 1.0101 0.0773

* Elapsed time in the sequential mode 1s: 0.007170 sec
¢ FElapsed time using GPU is: 0.006114 sec

CONCLUSION

We implemented an efficient solution for a large
system of linear equations which would provide a
solution for many fields of science, 1.e., Physics, Statistics,
Computer Science ete. We focused on the implementation
of matrix inversion method by Laplace expansion which
solves scaled systems in multiple levels. Graphics
Processing Unit (GPU) was use to implement our
equation. Results prove that our method gain faster time
from the traditional method.

REFERENCES

Abbas, SH., 2014. Computing the determinants in the
multiprocessor computer. Intl. J. Innovative Res. Sci.
Eng. Technol., 3: 15523-15530.

Ares, G., P. Ezzatti and E.S. Quintana-Orti, 2013. Towards
a distributed GPU-accelerated matrix inversion. High
Perform. Comput. Latam, 2013: 80-88.

Davies, R., P. Shi and R. Wiltshire, 2007. New lower
solution bounds of the continuous algebraic Riccati
matrix equation. Linear Algebra Appl., 427: 242-255.

Gray, A., 2016. Invertastic: Large-scale dense matrix
wwversion. ARCHER Whitepaper, 2016: 1-7.

Ibearugbulem, O.M., E.S. Osasona and 11T, Maduh,
2014, Tterative determinant method for solving
eigenvalue problems. Intl J. Comput. Eng. Res.,
9: 28-31.

Tamil, N, 2012. A comparison of direct and indirect
solvers for linear systems of equations. Intl. T.
Emerging Sci., 2: 310-322.

Murthy, K.B., K. Bhuvaneswari and C.R. Murthy, 1998. A
new algorithm based on Givens rotations for solving
linear equations on fault-tolerant mesh-connected
processors. TEEE. Trans. Parallel Distrib. Syst., 9 825-
832

Sharma, G., A. Agarwala and B. Bhattacharya, 2013. A fast
parallel Gauss Jordan algorithm for matrix inversion
using CUDA. Comput. Struct., 128: 31-37.

Shirazi, M., M. Kargaln and F. Khumush, 2015.

inversion speed-up using

power

Gauss-Jordan matrix
GPUs with the
consumption. Proceedings of the 5th International
Conference on Advanced Communications and
Computation (INFOCOMP), June 21-26, 2015,
TARTA, Brussels, Belgium, ISBN:978-1-61 208-416-9,
pp: 20-25.

consideration of

9891

	9889-9891 - Copy_Page_1
	9889-9891 - Copy_Page_2
	9889-9891 - Copy_Page_3

