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Abstract: Collecting information from sensors with different physical characteristics increases the

understanding of our surroundings and can provide 3D view. Moreover, 3D color images provide geo-

scientists, environment planners, mapping experts and military officers with easy-to-understand color images
and useful height information which improves the interpretation of the environment of the areas of interest. This
study proposes a novel method to optimize F-transform fused 3D images with feature matching technique based
on Scale Invariant Feature Transform (SIFT) followed by Speed Up Robust Feature (SURF). Quantitative and
visual results show that a more focused and cleared fused image is obtained after applying feature matching
with SIFT followed by further refinement with SURF. The proposed method 1s robust and independent of scale,
light intensity and orientation of camera. Tt shows that, F-transform is a promising 3-D multisensor image fusion

algorithm that surpasses the previous approaches based on Hermite and wavelet transform due to its

computational simplicity.
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INTRODUCTION
TImage fusion is a dominant computer vision
technique that refers to the process of combining multiple
immages of a certain scene to produce a single more
informative composite image. The output fused image
should contam a more useful description of the scene
than provided by any of the individual source images and
have more useful information for human visual or machine
perception (Dong et al., 2009). Lately, data fusion has
been incorporated to different

image processing

techmques such as pattern recognition, visual
enhancement, object detection and area swrveillance
(Dong et al., 2009).

Multiple sensor fusion method used for the 3D
reconstruction of scene geometry remains a highly
The

difficulty of finding multi-view correspondence in case

challenging problem. mam reason 18 the
of complex occlusions or visible sparse texture.
Although, these difficulties could be partially
mitigated by increasing the set of views or resolution
of the images, intrinsic problems still remain such as the
random noise incorporated by the use of Time of Flight
(ToF) active sensors that use laser light to probe the

subject (Kim et al., 2009).

In the literature, image fusion can be categorized
generally mnto two main categories: single sensor image
fusion system and multi-sensor image fusion system
(Dong et al, 2009). Multi-sensor mmage fusion system
surpasses the limitations of a single sensor vision system
by combining the images from these sensors to form a
composite image.

In recent years, several image fusion techniques have
been proposed, they differ according to different
fields:  statistical methods
aggregation operators, such as the Min Max method

mathematical (using
(Dong et al., 2009), estimation theory (Zaver1 and Zavert,
2010a, b), fuzzy methods (Zaveri and Zaveri, 2011;
Kim et al, 2009), optimization methods (e.g., neural
genetic  algorithms) and  multi-scale
decomposition methods, which incorporate various

networks,

transforms, for example, discrete wavelet transforms.
Wavelets allow for the hierarchical decomposition of
a signal or an image as they are a type of multi-resolution
function approximation. As the majority of applications of
a fusion scheme deal with features within the image not
the actual pixels (Zaveri and Zaveri, 2010a, b), it will be
more beneficial to focus on feature information in the
fusion process. Region based fusion schemes initially
transform pre-registered images wsing a wavelet

Corresponding Author: Saad M. Darwish, Department of Information Technology, Institute of Graduate Studies and Research,
Alexandria University, 163Horreva Avenue, El-Shatby, P.O. Box 832, 21526 Alexandria, Egypt
10133



J. Eng. Applied Sci., 13 (23): 10133-10140, 2018

transform. The transform coefficients are then used to
deduce regions incorporating image features. These are
then fused based on a sumple region property such as
average activity.

Similarly, to traditional transforms (Fourier and
wavelet), the F-transform (an abbreviation for the fuzzy
transform) performs a transformation of an original
universe of functions into a universe of their “skeleton
models” (vectors of F-transform components) in which
further computation is easier. In this study, we show that
the F-transform techmque 1s an efficient method for 3-D
multisensor image fusion that could overcome the various
shortcomings encountered in the previous approaches
based on Hermite and wavelet transform such as: their
computational complexity, Spectral content of small
objects often lost in the fused mmages; They are not
shift invariants and consequently the fusion methods
using.

DWT lead to unstable and flickering results.
Moreover, the F-transform can be used as an effective
means to enhance spatial resolution by enhancing the
edges (Zaveri and Zaveri, 2010a, b). This method 1s
computationally simple and can be applied in real time
applications.

Scale Tnvariant Feature  Transform  (SIFT)
method is used to detect and match image feature
point. SIFT features with stand image rotation, scaling,
translation and change in illuminaton (Kaur and
Agrawal, 2016). Its applications range from object
recognition, image mosaic to localization of mobile
robots. SIFT feature points extraction consists of
following four steps:

Detection of extreme of scale-space: The extreme points
of scale space are selected as candidate matching feature
image points in SIFT algorithm. Image I(i, j) scale space is
defined:
S(m, n, ¢) = J(m, n)*G{m, n) (M
Where:
* = The two dimensional convolution
G (m, n) = A Gaussian function
o = The standard deviation of normal Gaussian
distribution. The extreme is detected in image
convolution and Difference of Gaussian
(DoG)

Localization of key points: Taylor expansion is
constructed as DoG function in scale space. In this
process, key-point candidates were produced in large
number, out of which scme were unstable. Then the
detailed fit 1s performed for the adjacent data to compute
scale accuracy, location and the ratio of the principal
curvatures. The computed data is used to reject points
with low contrast, high noise sensitivity and poor

localization along an edge. Lowe mentioned that the
location of the extremes to the accuracy of sub-pixels is
done by fitting a three dimensional quadratic function to
the laplacian based scale space. Taylor expansion based
on the function of scale space D (p, q, 0) whuch 1s shufted
for aligning the origin to the pomnt of interest 1s used in
this approach.

Orientation assignment: Each feature point is assigned
a main direction with magmtude M(m, n) and gradient
direction O (m.n).

M, ) = [(S¢m, n+1)-S(m, n-1))* +(S(m+1, n)-S¢m-1, n))* |

S(m, n+1) - S{m, n-1) (2)
S(m+1, n)-8(m-1, n)

B(m, n) = arctan

Descriptor of key point: The area around the critical pomt
of image is divided into blocks, histogram is calculated for
every block and the vector with 128 dimensions is
generated.

Speeded-Up Robust Features based algorithm
(SURF) (Bay et al., 2006) which relies on scale space
theory, gained popularity due to its computing speed. The
detector is based on the Hessian matrix but uses a very
basic approximation just as DoG is a very basic
Laplacian-based detector. Tt relies on integral images to
reduce the computation time and we therefore, call 1t the
‘Fast-Hessian® detector. The descriptor, on the other
hand, describes a distribution of Haar-wavelet responses
within the interest point neighborhood. Again, integral
images are exploited for speed. Moreover, only 64
dimensions are used reducing the time for feature
computation and matching and increasing simultaneously
the robustness. Also, a new indexing step is presented
based on the sign of the Laplacian which increases not
only the matching speed but also the robustness of the
descriptor.

It generates a stack in order to restore the same
resolution. The local maxima are estimated using Hessian
matrix (H). The Hessian matrix of an iumage at any
point X = (x, y)" 1s:

3

{LXX(X, 6) Ly (x, G)}
H(x, )=

L (x,0) L,(x 0)

where, (X, 0) represents the convolution of middle point
¥ with the Gaussian filter ?°g{0)/2x’. To enhance the
computing speed, the box filter approximation is taken
instead of Gaussian filter. The determinant of Hessian
matrix, AH can be reduced to:

AH=D_D_ —(wD,_)* (4
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The response for each spot can be determined by
assigning @ = 0.9. A threshold 1s set for non-maxima
suppression to detect the extreme points. The stable
feature pomts are chosen by comparing with the
neighboring values followed by the interpolation
operation 1n scale space. Gaussian weighing coefficients
are merged with Haar wavelet responses to extract the
interest points. The Haar wavelet responses in vertical
direction (dy) and i horizontal direction (dx) are
summed up along with the absolute value of the response
as:

V,, = (Zdx, Tdy, 3|dx

. Zldy]) &)

Literature review: Lately, many approaches for 3D image
fusion have been introduced. By Yang er al. (2010),
Qingxiong envisioned a conference room where depth
sensors enabled to record in 3D the position and pose of
users which enabled them to interact with digital media
and contents shown on immersive displays. In this case,
fusing different types of sensors was proposed such that
relying on passive stereo in highly textured regions while
using data from active depth sensors in featureless
regions. A Time of Flight (ToF) active depth sensor
specifies the signal strength received at each sensor pixel.
This allows the computation of a ToF sensor confidence
map in addition to a stereo confidence map which was
also computed based on local image features. Both
confidence maps are then introduced into the cost
function which populates the 3D volume created by a
plane-sweeping stereo matching algorithm.

On the other hand, ToF depth sensors have many
drawbacks as stated by Cahier et al. (2011), namely the
limited resolution and accuracy and the high frame-to-
frame noise they produce off reflective surfaces
specifically.

The proposed scheme by Bind et al. (2013) utilizes
feature based image mosaicing technique. The input
umages are first stitched together using Scale Invariant
Feature Transform (SIFT) and Speeded-Up Robust
Features (SURF). Then the merging process is performed
using Discrete Wavelet Transform (DWT) to extract the
best features from the stitching results. Scale and
rotational invariance property can be reached using
STFT.

The goal of this study is to show that higher quality
3D fused umage can be obtained using the F-transform
technique which has been proved to be a promising and
efficient methed for 3D 1image fusion. Unlike the wavelet
transform which uses a single “mother wavelet” that
determines all basic functions with different shapes, the

F-transform performs a transformation of an original
universe of functions mte a universe of their “skeleton
models” (vectors of F-transform components) in which
further computation 1s easier. The resulted image 1s further
refined using STFT followed by SURF algorithms which
have been proved to mcrease robustness n noisy
enviromment as well as their rotational invariance.

MATERIALS AND METHODS

The mam charactenistic of the F-transform method
is to maintain an acceptable quality in the
reconstructed image even under strong compression
rates. Tt was shown that the PSNR of the image
compressed with the F-transform method gives
PSNR values close to the PSNR obtained using the
standard TJPEG method under high compression rates
(D1 Martino et al., 2009; Darwish and Ghonein, 2015).
Furthermore, robustness against scale, rotational variation
and noisy environment 13 reached by means of scale
invariant feature transform. The following block diagram
summarizes the proposed algorithm. The algorithm can be
summarized as follows: image registration for the wnput
images. Decompose input registered images ¢, ... , ¢ into
F-transforms and error fimetions using the one-level
decomposition. Apply the fusion operator to the
respective F-transform components of the error functions
e;, 1€l and obtam the fused F-transform components of a
new error function. Apply SIFT algorithm for the
transformed 1mages. Apply SURF algorithm for the
transformed images. Reconstruct the fused image from the
inverse F-transforms with the fused components of the
new image and the fused components of the new error
function.

Input images registration: Tmage registration is the
process of overlaying images (two or more) of the same
scene taken at different times from different viewpoints
and/or by different sensors (Wyawahare et af., 2009). The
registration geometrically aligns two images (the reference
and sensed images). Figure 1 and 2 illustrates the four
steps of image registration:

Feature detection: Salient and distinctive objects

(closed-boundary  regions, edges, contours, line
intersections, corners, etc.) are manually or preferably,
automatically detected. For further processing, these
features can be represented by their point representatives
(centers of gravity, line endings, distinctive points),

known in the literature as Control Points (CPs).
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Feature detection

A 4

Feature matching

v

Transform model estimation

A 4

Image re-sampling and transformation

Fig.1: Block diagram of the proposed method

i

Fig. 2: Images registrations steps

Feature matching: Tn this step, the correspondence
between the features detected in the sensed image and
those detected in the reference mmage 1s established.
Various feature descriptors and similarity measures along
with spatial relationships among the features are used for
that purpose.

Transform model estimation: The type and
parameters of the so-called mapping functions, aligning
the sensed image with the reference image are estimated.
of the mapping functions are
of the established [feature

The parameters
computed by means
correspondence.

Image re-sampling and transformation: The sensed
image is transformed by means of the mapping

functions. Tmage values in non-integer coordinates
are computed by the appropriate interpolation
technique (Zitova and Flusser, 2003).

SIFT algorithm: SIFT algorithm is based on feature
spotting n scale space. The four major steps of this
algorithm are: scale space detection (Kaur and Agrawal,
2016), preliminary confirm the key points, location and the
scale as shown in Fig. 3. The middle point is compared
with 1ts neighborhood pomts to detect utmost points.
Using Taylor expansion, the extreme points and location
are carefully determined using the following quation:

e’ 1 @D
D(x)=D+ x+—x" X (6)
% 2 &

By the help of key point neighborhoods, the
gradient m (x, y) and the direction are estimated for an
mage L(x, y). Taking the gradient value and characteristic
into comsideration each sample points 18 added to the
histogram. The direction for the feature points are
estimated from the maximum peak wvalues from the
histogram.

Feature vectors (Kaur and Agrawal, 2016) are
generated which 1s shown in Fig. 3. The arrow 1n each cell
stands for gradient direction along with the amplitude
of pixels. The seed point can be formed by aligning
the unidirectional  gradients followed by  the
normalization.

SURF algorithm: In this algorithm (Kaur and Agrawal,
2016), the detector 1s based on the Hessian matrix but
uses a very basic approximation just as DoG 15 a very
basic Laplacian-based detector. It relies on mtegral images
to reduce the computation time and we therefore, call it
the ‘Fast-Hessian® detector. The descriptor, on the other
hand, describes a distribution of Haar-wavelet responses
within the interest pomnt neighborhood. Again, integral
images are exploited for speed. Moreover, only 64
dimensions are used, reducing the time for feature
computation and matching and mcreasing simultaneously
the robustness. Also, a new mdexing step i1s presented
based on the sign of the Laplacian which increases not
only the matching speed but also the robustness of the
descriptor.

F-transform: Generally speaking, the F-transform
produces an image by a linear mapping from a set of
ordinary continuous/discrete functions over a domain P
onto a set of functions within a fuzzy partition of P. We
assume that the reader is familiar with the notion of the
fuzzy set and how 1s it represented. Below, we explain the
F-transform in more detail. The explanation will be given,
for example, of a discrete function that corresponds to the
lmage u.
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#,

Fig. 3: Feature vector generation

Let u be represented by the discrete function u: P-R
of two vanables, where P = {(1, D1 =1, .. ,N,j=1,..., M}
18 an NxM array of pixels and R 13 the set of reals.
If (4, j)eP is a pixel, then u (i, j) represents its
intensity range. The F-transform of u corresponds u to the
matrix F . (u) of F-transform components:

FQw),, ... Flu),,
E (= . (7

F(u)nl F(u)nm

Each component F[u]y 1s a local mean value of u over
a support set of the respective fuzzy set A, xB,. The latter
is an element of a fuzzy partition of the Cartesian product
of intervals [1, N]x[1, M]. Using the fact that a fuzzy
partition of a Cartesian product is the Cartesian product
of fuzzy partitions, we first introduce this notion for a
single mterval and then for a Cartesian product of
mtervals.

Let [1, N] = {x|<x<N?} be an mterval on the real
line R, n>2, a number of fuzzy sets in a fuzzy partition of
[1, N] and h =N-1/n-1 the distance between nodes x,, ...,
X, €[1, N], where x, =1, x, =x, Hk-1)hb k=1, ... . n

Fuzzy sets A, ..., A [1, N]=[0, 1] establish a h-
uniform fuzzy partition of [1, NJ if the following
requirements are fulfilled:

¢ TForeveryk=1, ..., n, Aux)=0if xe[1,N\x., X ]
where x, = x,, x"'= x;

» Foreveryk=1, ... ,n, A, 1s continuous on [x, |, X ],
where x; = x, X' = xy

¢ TForeveryi=1,.., N, Znk=1 AG)=1

¢ TForeveryk=1,..,n ENi=1 AJi)>0

¢ Forevery k =2, ..., n-l, A, is symmetrical with
respect to the line x = x,

The membership functions of the respective fuzzy
sets in a fuzzy partition are called basic functions. The
example of triangular basic functions A, ..., A, n=2on
the interval [1, N] is given below:

Vdad BAANLNLSANAN
(€K gy [ u] 4]
|| 4K T
> LA NP ’—::
\WNEIRSRALERNP. AR
a4 RA\ANEATEEAR
VAPV e | ] [la
Al Y N[> X | #

T
#

(x—x)
A= g el
0, otherwise
(x—%.)
Aco={ 1 il (8)
0, otherwise
(x—-%x,_,)
P
0, otherwise

Note that, the shape (e.g., triangular or siusoidal) of
a basic function in a fuzzy partition is not predetermined
and can be chosen according to additional requirements.
We now introduce two extreme fuzzy partitions of [1, N]
that will be used in the following.

Largest partition: The largest partition containg only one
fuzzy set, A [1, N]-[0, 1] such that for all xe[1, N],
Ax)=1.

Finest partition: The fnest partition i1s established by
N fuzzy sets, A, .. , Ay [1, N]-[0, 1] such that for
allk, 1=1, .. N, k=1 Ax)=1and A(x)=0.

If fuzzy sets Ay, ..., A, establish a fuzzy partition of
[1, N] and B,, ... , B, do the same for [1, M], then the
Cartesian product {A,, .., A}={B,, .., B.} of these
fuzzy partitions is the set of all fuzzy sets A B, k=
1,..,n, 1 =1, .., m The membership fimction A, xB;:
[1, NI<[1, M]-[0, 1] is equal to the product A, EB,
of the respective membership functions. Fuzzy sets
AB, k=1,..,n,1=1, .., mestablish a fuzzy partition
of the Cartesian product [1, N]x[1, M]. Let u: P-R and
fuzzy sets AxB, k=1, ... ,n,1=1, .., m, establish a fuzzy
partition of [1, N]x[1, M]. The (direct) F-transform of u
{(with respect to the chosen partition) 1s an umage of the

mapping Flu]: {A,, ..., A} ={B, ... ,B,}-R defined by:
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>3 ud, DA, )R G)

e ©)
2 A DB

F[U] (AxB) =

where, k=1, ... ,n,1=1, ..., m. Thevalue Flu](AxB,) is
called an F-transform compenent of u and 15 denoted
by Flu]y. The components Flu]y can be arranged into
the matrix representation as in Eq. 7 or into the vector
representation as follows: (F[ul,, ... . Fluly .

Flul,. ..., Flul,)-

Fusion: We now proceed with a detailed description of
the simple F-transform-based image-fusion algorithm
(SA). The fusion is performed between multiple input
images from different sensors having multiple viewpoints,
which results in a 3D image output. We assume that the
image u is a discrete real function, u = u(x, y) defined on
the NxM array of pixels. P= {(1 ) 1=1, ... . N,7=1,... M},
so that, u: P-R.

Moreover, let fuzzy sets AxB,, k=1,... ,n,1=1, ..,
m, where, O<n =N, O<m = M establish a fuzzy partition of
[1,N]x[1, M]. We begin with the following representation
ofuonP:

ux, y) = u,,, (X, yye(, y) (10)

where, 0<n<N, O<m<M:

elx, y)=u(x, y)-u_(x. y)¥ix, y)ep (1D

Where:
1, = The inverse F-transform of u
e = Therespective residuum

If we replace e in Eq. 10 by its inverse F-transform
eNM with respect to the finest partition of [1, N=[1, M],
the above representation can then be rewritten as
follows:

u(x, y)=u, (X, y)te,, (x, y), ¥(x, y)eP (12)

We call Eq. 12 a one-level decomposition of
u. If function u 1s smooth, then the error function
eNM 1s small and the one-level decomposition Eq. 12
is sufficient for our fusion algorithm. However, images
generally contain various types of degradation that
disrupt their smoothness. As a result, the error function
eNM in Eq. 12 is not negligible and the one-level
decomposition 1s msufficient for our purpose. In this
case, we continue with the decomposition of the error
function e in Eq 10. We decompose e into its
inverse F-transform e, (with respect to a finer fuzzy
partition of [1, N]x[1, M] with n"n<n_<N andm"m<m'

<M basic functions, respectively) and a new error
function €. Thus, we obtain the second-level
decomposition of w:

H(X, Y) = unm (X: Y)+enm (X: Y)+e'(xa Y): (13)
', ¥} = e, y)-e,, (% VIV, y)eP

In our research, we use the simple F-transform-based
fusion algorithm (SA) which is based the one-level
decomposition Eq. 12. The main role in fusion algorithms
15 played by the so-called fusion operator kK RK-R,
defined as follows:

%)) 04

XXy, X )= X, 1f‘xp‘ = max(‘x1

-

Assume that, we are given K=2 inputimages
¢y, ... » O with various types of degradation. Our aim 18
to recognize undistorted parts in the given images and
to fuse them into one image. In this section, we describe
the algorithm for image fusion based on the one-level
decomposition. Each input image ¢, i = 1, ... , K is
assumed to be a discrete real function ¢ = ¢ (%, y)
defined on the N xM array of pixels. P = {(x, y) |x=1, ...,
N,y =1, ..,M}, sothat, c1: P>R. Moreover, the set [1,
NI= [1, M] 1s assumed to be partitioned by fuzzy sets
AxB, where,k=1,..,n,1=1, ..., mand O<n<N, O<m <M.
Denote1= 41,2, ... ,K}.

Inverse F-transform: The mverse F-transform of u is a
function on P which s represented by the following
wnversion Eq. 15:

U )= ST Fluly AL @B () (15)

where,1=1, .., N, j=1, .., M It can be shown that, the
inverse F-transform w,., approximates the original
function u on the domain P.

Performance evaluation: The output image quality
evaluation process consists of objective as well as
subjective performance evaluation. In this study, Root
Mean Square Error (RMSE), Mutual Information (MT),
Normalized Absolute FError (NAE) and Standard
Deviation (SD) are used to evaluate the quality of the final
lumages.

RMSE as quality measure: The (RMSE) depicts the
deviations between the reference image pixel value R(, j)
and the fused image pixel value F(i, j) where, I, j denote
pixel location. Tt is computed as:

RMSE = \/Zi=12j=1[R(l= - F(lal)] (16)

Im=1
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Table 1: Absolute Error (NAE)

Parameters SIFT SURF Final fused image
RMSE(dB) 41.6936 41.962 42.415
MI 1.209 1.264 1.465
EME 8.561 6.332 9.457
NAE 0.147 0.143 0.132
where, mxn is the input image size. The more the

RMSE, the better the quality of the reconstructed image.

Mutual Information (MI): It measures the asymmetry
between the two desired images and the fluctuation from
its mean value MI for two images M (i, j) and N (i, j) can be
expressed as:

MI = H(M)+H(N)-H(M, N) (17)

where, H(M) is the entropy of image M(i, j), H(N) is the
entropy of image N(i, j) and H(M, N) is the joint entropy
of image M(1, j) and N(, j).

Enhancement performance measure (EME): It is a
quantitative method to measure the image enhancement.
In terms of entropy it can be defined with the help of an
image which is divided into k,, k, blocks W, , (i, j):

EME = ggg}(EME(@)) =

1 I k. (@) L K (@) 18}
min 20log o ) min® )
i SR

max; k, 1(&)+ " min; k, 1(&)

where, IV, and ", , are maximum and minimum of
image X (nl, n2).

Normalized Absolute Error (NAE): The normalized
absolute error can be used as a metric for image quality
metric and is formulated as:

72112;1 A - B j|

NAE = L= (19)

Zilz; Ai.j|

where, A-perfect image and B-fused image to be assessed.
The objective evaluation of the fused image is depicted in
Table 1.

RESULTS AND DISCUSSION

In the proposed techniques two three dimensional
rotational images are captured at rotational angle of 10°.
After their fusion, the images are processed through scale
invariant feature transform and speeded-up robust
features algorithms separately in a parallel process.

Fig. 5: Algorithm results: a, b) Input images and c) Final
enhanced image with SIFT and SURF

Figure 4 and 5, respectively show the response of SIFT
algorithm on the fused image and the final fused image
after SIFT and SURF. The generated image is shown to be
of high contrast, robust towards noise as well as
illumination variation. The fused panoramic image is
depicted in Fig. 4. SURF algorithm has the distinctive
property of illumination invariance along with good scale
and rotational invariance property whereas SIFT is more
effective algorithm for scale and rotational image
stitching. But it cannot cope up with illumination
variation. Therefore, the resultant image proves superior
as compared to the SIFT as well as SURF algorithms in
terms of (RMSE), Mutual Information (MI), Measure of
Enhancement (EME) and Normalized Table 1 performance
analysis.

CONCLUSION

This study focuses on the application of SIFT
and SURF algorithms to the previously F-transformed
fused image. After a brief introduction to the theory
of F-transform, detailed description of the fusion
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algorithm was given. The proposed approach can be
successfully applied in cases when input images are
available as multi-sensor input images. Both subjective
and objective results show that the proposed scheme
outperforms other methods based on the wavelet
transform. The F-transform has been proved to be an
efficient model for the representation of signals. The
input images are passed through two robust stitching
algorithms, i.e., SIFT and SURF. The scale Invariant
feature transform 1s mvariant towards scale and
rotational variation. It is also robust towards noisy
environment. Speeded-Up robust features algorithm has
very similar properties as SIFT. However, it has the
properties of illummation invariance and good
computational speed. Therefore, the fusion result of
these two efficient algorithms gives rise to a
panoramic image which carries all the properties of
both.

The performance evaluation of proposed technique
is done in terms of RMSE, MI, EME and NAE. The
proposed method shows superior results as compared to
both SIFT and SURF alone.
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