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Reconstruction of Monotone Surface Using Rational Bi-Cubic Spline Interpolation
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Abstract: This study studies the reconstruction of monotone surface data with continuity by using partially
blended rational cubic spline with twelve parameters. In order to preserve the shape preserving property, the
sufficient condition for the monotonicity 1s obtained through mathematical derivation on all four boundary
curves on each rectangular patch. Root Mean Square Errer (RMSE) and the coefficient of determination R? is

used to estimate the error of the proposed scheme.
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INTRODUCTION

Curve and swrface reconstruction is important in
geometric modeling and scientific visualization. On top of
that, the cuwrve and surface must obey the geometric
shape of the data. For instance, if the given data 1s
monotone, then the resulting curve and swrface also must
be monotonic everywhere.
data interpolation are cubic spline and cubic Hermite
spline. But both schemes suffer from the fact that they are
not capable to produce the desired shape preserving
properties. There may be exist few unwanted flaws that
will destroy the geometric properties of the data sets.

Monotonmicity-Preserving  (MP) 13 important 1in
sciences and engineering. For instance, the surface of
dose-response in biochemistry and pharmacology are
monotone data (Beliakov, 2005). The production of the
growth of economy 1s also always monotone surfaces
data (Stewart, 2012). Furthermore, the approximation of
copulas and quasi-copulas
behaviour of monotone function (Beliakov, 2005).

Carlson and Fristch (1985) constructed the bi-cubic
Hermite spline surface for monotone data. But the main
drawback is that, the first partial derivative need to be
modified if the interpolating surfaces are not monotone on
the mnterval. Furthermore, by using scheme of Carlson and
Fristch (1985), we cannot change the shape of the curve
and surface unless we change the interpolation data.
Abbas (2012) and Abbas et al. (2012) studied the MP for
surface data. From the numerical results, their methods
work well. Perhaps the only weakness is that their scheme

Two common methods for

in statistics shows the

cannot be applied if the first partial derivatives are zero.
Casciola and Romar (2003) have proposed the NURBS
version of the rational interpolating spline with tension
control for rectangular topology case. Costantini (1997)
discussed the boundary-valued shape preserving with
arbitrary constraints by satisfying the separable or
non-separable boundary conditions. Duan ez al (2004,
2006) discussed various type of rational cubic splines
together with bounded property and shape control for the
bivariate spline on interpolating surface. But their
schemes require true function values as well as the knots
must be equally spaced. Hence, Duan et al. (2004, 2006)
schemes may fail if the derivatives are given. Hussain and
Hussam and Hussain (2007) and Hussain ef al. (2012a, b)
have discussed the monotonicity by using rational
bi-cubic spline with eight parameters without any free
parameters. Hussain et al. (2012a, b) discussed the
monotone data visualization by using rational cubic spline
(cubic numerator and quadratic denominator) with 8
parameters without any free parameters. This scheme also
does not provide any extra degree of freedom to user in
controlling the final shape of the mnterpolating surface.
Hussain et al. (2014) studies the use of quadratic
trigonometric spline with two parameters, Hussain et al.
(2014 shape-preserving  trigonometric
surfaces by using the quadratic trigonometric spline of
Hussain et al. (2015). Tbraheem et ol (2012) have
proposed the rational bi-cubic trigonometric spline with

discussed

eight parameters. From graphical results, it can be seen
clearly that, the resulting curve and surface does not
smooth (on some intervals) as well as not very visually
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pleasing for scientific visualization purpose. Liu et al.
(2014) studied the positivity and monotonicity preserving
mterpolation by utilizing the rational quartic Said-Ball with
quadratic denominator. Karim and Kong (2014) has
proposed rational cubic spline interpolation with three
parameters for monotonicity preserving interpolation.
Karim (2017) have extended the umivariate spline to
bivariate cases with 12 parameters where & of it are free
parameters The object in this paper is to use the rational
bi-cubic spline by Karim (2017) for monotone surface
reconstruction. Some contributions are:

The proposed scheme has 12 parameters and 8 of it
are free parameters meanwhile in Hussain and Hussain
(2007) the bivariate spline has 8 parameters and without
any {ree parameters.

The proposed scheme does not require any first
partial derivative modification. But the bi-cubic spline of
Carlson and Fristch (1985) as well as rational bi-quartic
spline of Wang and Tan (2006) require the modification of
the first partial derivative.

The proposed scheme is applicable for both equally
or unequally space data meanwhile, the schemes by
Duan et al. (2004, 2006) requires the data are equally
spaced.

The scheme can also be used if the first partial
derivative is given or not. Meanwhile, the research of
Duan et al. (2004, 2006) requires the true function value
without the first partial derivative value. Thus their
method cannot applicable if the first partial derivative is
given at the knots.

The proposed scheme 1s easy to use and not
mvolving any trigonometric functions as appear in the
work of Tbraheem ef al (2012) and Hussain et al.
(2014). The proposed scheme gives more visually

pleasing compare with (Hussain et al, 2014),
respectively.
MATERIALS AND METHODS

Partially blended rational bi-cubic spline interpolation:
Abdul Karim et al. (2015) has constructed the partially
blended rational bi-cubic spline function over each
rectangular pateh [x, x4y ¥, 170, 1015 7= 0, 1,
.., m-1 and 1s defined as follows:

S(x,y)=-AFB’ @
Where:
0 s(xy;)  S(xv..)
F=| 8(x.y) S(X,,YJ) S(Xlaym)

S(%00y) S(xey,) S(%0y)

Where:

i = Yﬁ-l_y

S, y), S(%, V1) S(Xuy, y) and S(x..,, y) are rational cubic
fumction defined on the boundary of rectangular patch [x,

X ¥, v+, 1=0,1,...,0n-1,7=0,1, ..., m-1 and defined
as follows:
. 34
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Monotonicity preserving interpolation: Let (x, v, I',)) be
monotone data defined over rectangular grid [x, %, v,
Vir b 1=0,1,..,n-1,7=0,1, .., m-1 such that:

Fi:j<F. E <E

i+l j2 1,1 i+l

E<F

i,j+12

E*>0, F >0, A >0, A >0

From Casciola and Romani (2003), the partially
bi-cubic surface patch defined in Eq. 1 is monotone if each
of the boundary curves networl defined in Eq. 2-5 are
monotone. Mathematically, this can be achieved if its first
partial derivatives satisfy the inequalities:

as : OS(x, aSix.

(X: yl) - 0, ( y_|+1) - 0’ (Xp Y) . 0
ax ox oy

And:

aS(XH-l’ Y) >O

By simple algebraic mampulation, the first partial
derivative for each of the boundary cwrves on the
rectangular patch are given as follows:

. 4-i
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We have the following theorem for monotonicity
preserving.

Theorem 1: The piecewise rational partially bi-cubic
function S(x, y)in (1) defined over the rectangular mesh
[, X 4, ¥ 1=0,1, ,n-1;j=0,1, ., m-1 preserves
the monotone surface data if the parameters satisfies the
following sufficient conditions:

o >0, o, >0, B >0, B

1, 1+1 1J+1 1,1 °

G20, Byy20, Buy,>0

v, >Max+ 0,0 [F‘]QB }B {E}i“ 20 }
L > L |PMLg L. >
A, Ay
Vijer = MBX{O @ m{ S 1]+1 1]+1{ — -Za, m}}
1]+1 1]+1
i
9., > Max 0,6, , ” 2[31] , 26,
' . A
di-#l,j]}

Y1+1_| > Max 4 0,8, r Hl ! 2B r Bl ol M 1
1+1_| 1+1.l
(10)

1+1,]

Proof: To prove Theorem 1, we need to consider the first
partial derivative for all boundary curves defined in Eq. 2

until Eq. 5. The boundary curves 1s monotone if and
only if:

(% y) OB, y,,,) 0. BGLY)
ox |
And:
a3
(%, ¥) -0
oy
respectively. Now:
a3
(. y,) -0

If:

4
37(1-0)" 0L, >0

i=1

Since, for ¢, >0, B, 70 the denominator [q,{0)]%=0. Clearly
for o, =0, B, =0, then, L,>0, L;»0. Now, L,;>0, L,>0 and
L.,>0 provide the following derivation:

F*
Y., g 2B, (11)
A, T
B,
o [ L _2%} (12)
1 1 ALJ 1

Inequalities in Eq. 20 and 21 are combined to form the
following sufficient conditions for:

a5(x, y;)
ox

E E,
Yi,j>MaX{O=ai,]{A,J 'QBM}: Bi,]{ AI’J '20('1,J} (13)
1,] L1

Likewise for the remaining three boundary curves
S(x, yqp) and S(x,.,, y), the menotenicity will be preserved
if and only if :

aS(X, y1+1) >0 aS(Xl7Y) >0
ax Coay

And:
380 Y)g
ay
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respectively. For:

20, P2,

u*l

3%, yj+1)>0
ax

If and only if:
3
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i=0
Similarly for:
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Finally, for:
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3 2
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Combining all conditions lead to:

F
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Combining inequalities Eq. 13 and 14 with
Eq. 15 and 16 with Eq. 17 and 18 with Eq. 19 give
the required sufficient conditions for monotonicity
preserving:

&y 20, B, 20, B
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This completes the proof. Condition in Eq. 13 further can
be rewritten as Eq. 20:

1+1, J

&
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=0,p 70, B

Where:
€0, 0.25)

plj’ 1,] 1_| 1]

Theorem 2: The partially blended rational bi-cubic
spline S(x, y) that satisfies the sufficient condition
for monotonicity m Eg. 19 is C' continuous
everywhere.

Proof: Since, all four boundary curves are C' continuity,
from Casciola and Romani (2003), the resulting
meoenotonicity preserving surface interpolation also has C'
continuity.

RESULTS AND DISCUSSION

In this study, a numerical example for monotonicity
by using partially blended rational bi-cubic spline
interpolation are discussed. Two monotone data sets
taken from Abbas (2012) and Hussain and Hussain (2007).
We reconstruct the monoctone surface by using the
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Fig. 1: Bi-cubic Hermite surface; a) Bi-cubic Hermite surface; b) xz-view and ¢) yz-view

sufficient condition given in Eq. 20. RMSE value and the
coefficient of determination 1s used to calculate the error
of the reconstruction surface.

Example 1: A monotone data from the following function
is truncated to two decimal places (Abbas, 2012). The
function is a Cobb-Douglas production to model the
growth of the American economy during the period
1899-1922 (Stewart, 2012):

F(x, y)=101x"¥y"" 0<x, y<300 (21)

Figure 1 shows the default bi-cubic Hermite spline
(Farin, 2002) for the monotonicity data given in Table 1
above. Figure 1b shows the xz-view and Fig. 1c shows the
yz-view for Fig. 2, respectively. The bi-cubic Hermite
cannot preserves the monotomcity of the monotone data
as shown clearly from Fig. 1b. Figure 2a shows the
monotonicity preserving by using the proposed rational
bi-cubic spline with =4 =34, =}, =3 Meanwhile, Fig.
2b, ¢ show the xz-view and yz-view for Fig. 2a,
respectively. Figure 2a shows that the monotonicity of the
data is preserved with continuity.

Table 1: Monotone surface data from function

yix 0 100 200 300

0 0 0 0 0

100 0 101.0000 112.07 119.09
200 0 182.05 202 214.67
300 0 25697 285.12 303.00

Table 2: Positive surface data from function

yix 1 100 200 300

1 0.6931 9.2104 10.5967 11.4076
100 9.2104 9.9035 10.8198 11.5129
200 10.5967 10.8198 11.2898 117753
300 11.4076 11.5129 11.7753 12,1007

Example 2: A monotone data from the following function
is truncated to five decimal places from Hussain and
Hussain (2007):

F,(x, y)zln(x2+y2), 1<x,y<300

Figure 3 shows the default bi-cubic Hermite
spline (Farin, 2002) for the monotonicity data given in
Table 2 with xz-view and yz-view shown in Fig. 3b, c.
Figure 4 shows the monotonicity preserving by
using the proposed rational bi-cubic spline with
w,; =B, ;=65 &, =P, =65 The xz-view and yz-view is given
in Fig. 4b, ¢, resepctively.
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Fig. 2: Monotonicity preserving; a) The proposed scheme; b) xz-view and ¢) yz-view
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Fig. 3: Bi-cubic Hermite surface; a) Bi-cubic Hermite surface; b) xz-view and ¢) yz-view
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Fig. 4: Monotonicity preserving surface; a) The proposed scheme, b) xz-view and ¢) yz-view

Table 3: RMSE estimation and R? value

Parameters Example 1 Example 2
RMSE 0.0325 0.02099
R? 0.9200 0.9000

From numerical results, clearly the rational bi-cubic
spline by Abdul Karim et af. (2015) and Karim (2017)
preserves the monotonicity of the surface data with
degree smoothness attained is C'. The proposed scheme
1s applicable even with the first partial derivative F;, and F,
18 zero as shown in Table 1. In constrast, the rational
bi-cubic spline from Abbas (2012) and Abbas et al. (2012)
could only be used if the first partial derivatives are not
equal to zero. Otherwise, their schemes fail. Comparing
with the research of Hussain and Hussain (2007), the
proposed scheme has eight free parameters, meanwhile in
{(Hussain and Hussain, 2007) there is no free parameter for
shape modification.

Table 3 summarized RMSE value and the coefficient
of determination for surface reconstruction by using the

presented schemes. Overal the proposed scheme is
capable to reconstruct the surface with the coefficient of
determination R” more than 0.90.

CONCLUSION

The partially blended rational bi-cubic spline from
Abdul Karim et al. (2015) is use to reconstruct monotonic
surface. The sufficient condition for the monotonicity are
derived on four parameters meanwhile the remaining 8
parameters can be used to changes the shape of the
interpolating surface without the need to change the data
points. One possible extension to the presented scheme
is the application in real life situation such as in medical
image interpolation and image resizing.
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