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Abstract: Trying all the optimization sequences manually to find out a one that give the best performance is
not practical solution. Therefore, it i1s essential to layout a schema which 1s able to mtroduce an optimization
sequence with better performance for a given function. In this research, multi-levels genetic algorithm has been
used to find a good optimal sequence. Our method has three levels. In the first level, the programs search space
1s divided into three groups and try to find a good sequence for each program in group. These good sequences
for each program will be used as mitial seed to find good sequence for all programs in that group. This process
will be repeated for all three groups to find good sequence for each one. Then, these good sequences from
three groups will be used as a seed for initial population to the third level. Genetic algorithm will use the
resulting sequences to find out one good optimal sequence for all these groups. LLVM compiler framework has
been used to validate the proposed method. Experiments that have been implemented on the generated good
sequence for different benchmarks show the effectiveness of the proposed method. Overall, it achieves better

performance compare with the -O2 flag.
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INTRODUCTION

Modern compilers introduce a massive number of
optimization passes targeting different code segments of
an application. These optimization passes can transform
the code segment which might be a basic block, a function
or the whole program to optimize one (Purini and Tain,
2013). The optimization can be applied through the whole
life of the program in another word, at different
compilation stages (Almagor et af., 2004). Although, the
purpose of optimization is producing better code (speed
or code size), however, there is no grantee that the
resulting code 1s doimng better than the original one.
Typical optimizer 1s made up of a set of analysis passes
followed by transformation passes. The analysis passes
responsible for collecting information about the program
and the transformation passes are transforming the code
segment to a new version. There 1s standard optimization
level provided by compiler developer such as-O1, -O2,
-Os. Through the execution of the program all the
optimization flags will be turn off by default and the expert
can turn some or all of them on according to the program
needs. For example, the GCC has more than 200 passes
while the LLVM Clang and Opt have more than 100
passes (Ashouni et af., 2017). The sequence of these

passes called optimization sequence. Choosing the right
sequence can make the program give better performance
according to it is execution time or code size.

Genetic Algorithm (GA) 13 a well-known algorithm
that is adopted depends on theory of evolution. Several
researchers are successfully applied tlus algorithm n a
phase ordering of compiler optimization (Cooper et al.,
1999; Purini and Jain, 2013). In this research, Multi-Level
Genetic Algorithm (MLGA) 1s introduced. In this method,
the programs search space 1s divided into three groups.
GA work on each group alone to find a good sequence for
that group. Then, these good sequences that are resulted
from these three groups will be used as a seed for mitial
population n the next level. Genetic algorithm will use the
resulting passes in these good sequences to find out one
optimal sequence for all groups. The propesed method 1s
implemented using the Low Level Virtual Machine
(LLVM) compiler framework (Ashouri et af., 2017, Latiner
and Adve, 2004). LLVM uses a combination of a low level
virtual instruction set combined with high level type
information. An important part of the LLVM design 1s its
Intermediate Representation (IR). This has been carefully
designed to allow for many traditional analyses and
optimizations to be applied to LLVM code and many of
them are provided as part of the LLVM framework.
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Literature review: Finding the right set of optimizations
for each application is easy task, since, the search space
15 extremely large. Recent research has focused on
mtelligent space exploration
effciently search for the nght optimization sequence. In
Kulkarmi ef al. (2006) exhaustive search strategy has been
mtroduced to find optimal compilation sequences for each
of the functions in a program. This technique used to
reduce the number of sequences to be tried. This method
may be not practical, however, it is gave good information
about optimization sequence. A Thighly
strategy for iterative compilation was proposed by
Parello et al. (2004). They worked to employ performance

search mnm order to

innovative

counter at per stage of the tuning process to mtroduce
further optimization sequence. These sequences are
evaluated and based on the new performance counter
they would prefer new optimization to investigate. Pan
and Eigenmamn (2006) proposed an algorithm called
combined elimination which remove the optimization that
have poor interact among each other and in turn have a
bad impact on the execution time of a program. Multiple
subsequences may falsely interact with each other and
affect the potential program speedup achieved. The
algorithm tries to find a near optimal solution. Cavazos
et al. (2007) applied supervised learning to predicting
good compiler optimizations. Compiler heuristics have
been automatically generated to predict good compiler
optimization by using performance counters. In this
method, there 13 no need to do manual experimentation.
Moreover, they can generalize the resulted heuristic for
unseen program. The researches by Sanchez et al. (2011),
JTantz and Kulkarni (2013) introduce a novel approach.
They wuse heuristic techmiques to design quickly
feature-vector suitable for ndividual function through JIT
compilation.

Multi-Level Genetic Algorithm (MLGA): The modern
compilers provide many optimizations techniques applied
m  predetermined ordering to program
performance. Although, these sequences look globally
optimal with respect to the program space, sometimes
they are producing corrupted codes or their performance
are bad for an mdividual program. Moreover, it can
contain optimization that does not contribute in the
program speedup or have a poor impact on the program
speedup. To achieve significant improvement an
approach to find a good global optimization sequence is
proposed. The good sequence which covers all programs
characteristics in the program space that has a better

mncrease

performance than O2 15 comstructed. The selected
program space which contains a large set of programs 1s

chosen from many benchmarks. This set provides a wide
range of scientific applications that cover different
program’s characteristics.

In this study, Mult-Levels Genetic Algorithm
(MILLGA) which is composed of three levels is proposed.
In the first level, the search space is divided into three
groups. The proposed algorithm starts with randomly
chosen 1mtial population. It iteratively applied selection,
crossover and mutation for a given number of
generations. The fitness function computes the execution
time of the program that results from the optimization
sequence. Finally, disable some optimizations that did not
seem to improve the running time of the optimization
sequence by using reduction sequence as shown in
algorithm 2.

An optimal sequence recorded that 1s corresponding
to fitness value with minimum execution time
compared to other sequences. The proposed genetic
algorithm 15 applied to all other programs in the
benchmark to hold the best sequence for each one. The
given sequence of this level is called Sub-Optimization
Sequence (SOS).

To optimize a sequence for a sub-group of programs
which belong to one benchmark, the proposed genetic
algorithm is rerun again. Consequently, the fitness
function is calculated by taking the average for the
sub-group of programs. Moreover, the evaluation process
will continue until reaching to the stopping criteria as in
SOS algorithm. One optimal sequence has been recorded
per sub-group. The sequence that output of this level is
called Sub-Global Optimization Sequences (SGOS’s).

In the third level, the SGOS’s that resulted from the
previous level is used as a seed of initial population to
MLGA. Periodically, the genetic operators, selection,
crossover and mutationare applied for each iteration.
Offspring fitness’s function is calculating by taking the
average of the execution time of three benchmarks from
munning the optimization sequence over them. Each
program 1s executed three times to get accurate value and
the average 1s calculated for these executions. The
algorithm stops its generations when reaching to a
specific condition. The sequence that results from this
level 13 a general optimal optimization sequence which 1s
called Global Optimization Sequence (GOS) (Fig. 1).

Details of the multi-level Genetic algorithm: The initial
population is generated randomly by selecting a set of
optimization passes from 63 passes available in the LLVM
as in Table 1. The size of each chromosome set
optimization passes) is variable with maximum length of
60 passes. Proposed Genetic algorithm starts its search
from 1mitial population of size 100 chromosome. Each
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Table 1: List of LLVM 63 machine-independent optimizations
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List of optimizations

-adce -always-inline -argpromotion -codegenprepare
-constimerge -constprop -correlated-propagation -dee
-deadargelim -die -dse -early-cse
-globaldce -globalopt -gvn -indwvars
-inline -instcombine -instsimplify -intermalize
-ipconstprop -ipscep -jump-threading -licm
-loop-deletion -loop-idiom -loop-instsimplify -loop-reduce
-loop -rotate -loop-simplify -loop-unroll -loop-unswitch
-loops -lower-expect -loweratomic -lowerinvoke
-lowerswitch -mermcpy opt -mergefine -mergeretium
-partial-inliner -prune-ch -reassociate -scalarrepl
-scep -simplify-libcalls -simplifycfg -gink
-tailcallelim -targetlibinfo -no-aa -tbaa
-basicaa -basiccg -functionattrs -scalarrepl-ssa
-domtree -lazy-value-info -lcssa -scalar-evolution
-memdep -strip-dead-prototy pes
Stage 1 Group
l Stage 2
o g
End of sub-group
[ Pool = initial population | No
| Initial population = pool 1| Yes
Select corssover
mutation (evolution average
fitness value)
Stage 3
Yes No
End of group >— No —
O Reducing sequence
Yes
v
Pool_1 = update (SOS stage 1]| . L 5
SGOS stage 2| GOS stage 3) Initial population = pool_2
Pool 2 = append (SGOS)|«+—
—— No End of programs
T
Yes
L
Fig. 1. Overview of the multi-level Genetic algorithm
chromosome 13 encoded by using integer values from 11 |00 |23 60 34 100 12 10 [ 06 | 00
0-60. Each value corresponds real optimization passes inline dic |instsimplify| -gvn basicaa | no-aa | liem

while the zero gene used to implement a null gene.
However, variable chromosome length 1s obtained by
using the mull genes. Moreover, each chromosome
represent a sequence of optimization passes which is
used to compile a program and calculates the execution
time as shown in Fig. 2 and 3. The fitness function
(execution time) 1s attached with each chromosome.

In order to keep high diversity of population and
prevents early convergence on poor solutions. Multi-level
genetic algorithm 1s implemented with a rank selection for
more detail about this selection method see reference

Fig. 2: Execution time

(Reeves and Rowe, 2002). The algorithm stops its
evaluation when the standard deviation of the overall
18 <0.01, otherwise, it continues its
evaluation for the second round.

The uniform crossover operator (UJX) uses to
generate two different children from two selected parents.
The UX operator scans all the genes of the two parents
with probability of 0.4 to swaps genes. The probability of

chromoesomes
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Pg 1 0 1 1 1 0 0 0 1
Parent1 | 34 | 14 | 00 | 61 | 00 [ 12 | 54 | 00 | 01
Parent2 | 00 | 56 | 30 | 28 | 17 | 40
Child 1 00 | 14 | 30 | 28 [ 17 | 12 [ 54 | 00
Child 2 34 | 56 | 00 | 61 [ 00 | 40 01

Fig. 3: Fitness function

applying this operator is equal to 0.9. Consequently,
one-point mutation of probability 0.02 1s applied over the
two children that results from the UX operator

In general, after reaching the stop condition, the
algorithm retrieves the sequence with minimum fitness
value. Then the reduction algorithm is applied to remove
harmful passes. The steps form 2-4 are repeating on the
rest of the programs until the sub-group 18 completed.
S08’s are assigned to pool 1 which are in turn used as
new seeds to mitialization population m the second level
of the MLGA.

In the second level, the SOSs that are resulted from
the first level as initial see to find good optimization
sequence for all the programs in that group. The output of
this stage will be one good sequence for each sub-group
of programs which are called SGOSs.

The best individual of SGOS algorithm from each
sub-group 1s assigned to seed pool, this pool 1s referred
pool 2. MLGM algorithm in its tun depends on the
mdividuals of pool 2 as imitial population. At each
generation in the ML.GA algorithm, selection, crossover
and mutation are produced new mdividuals where each
one represents a candidate solution for the best global
sequernce. Fitness fimetion of each new cluld 1s calculated
by taking the average of the execution time when the child
sequence is applied over all the programs in the group.
The best mdividual 1s selected with mmimum average
execution time. The output of thus level 15 GOS. Algorithm
1 shows the details of MLGA.

Algorithm 1; Multi-level Genetic algorithm:
Input: a set of sub-group, set of optimization sequence
Output: general global optimization sequence

Group ~ []

Sub-group - []

While not end of the group
‘While not end of sub-group
Size ofpop - []
Prog - []
Forl=1toprog
Create new pop
Fitness ~  time(execution-prog)
L: selection.
Crossover
Mutation
If stop condition is not met go to L
Reduction SOS
Pool =808
Init-pop = pool

L: selection
Crossover
Mutation
For I =1 to prog
Fitness average time(execution -progs)
If stop condition is not met go to L
Pool 1 =8GOS
Else
Init - pop =pool 1
L: Selection
Crossover
Mutation
For T=1 to sub-group *progs
Fitness - average time(execution-progs)
If stop condition is not met go to L
Return GOS

Algorithm 2; Sequence reduction:
Input: SOS and program

Output :reduction SOS

opt-seq - S08

Best-time - execution (prog,SOS)

While not end of opt-seq
opt-seq -1~ execution (prog, opt-seq)
If (opt-seq)time < = best-time
SOS = Opt-seq
Else do not change
End of while

Return SOS

MATERIALS AND METHODS

The experimental setup: The experiments in this study are
carried out over Core 17 processor model and LLVM-3.2
compiler mfrastructure 1s used to validate the proposed
method. LLVM Intermediate Representation (TR) is the
most important aspect of its design. The C language
frontend Clang can convert the ¢ source code program
mnto IR code which can be stored m machine-readable
bitcode format. We applied machine independent
optimization option (like -O1, -02, -O3) chosen by the user
on this middle end (IR) representation. Opt and llc are
tools provided by LLVM infrastructure. When we get the
optimize sequences, opt tool will use this sequence as an
input on the command line and applied on the bitcode file
format (LLVM IR bitcode file format). After we get the
optimize version of LLVM bitcode format, this file will
be converted to target assembly code using the llc
translator. In this study, we focus on the interactions
between machine-independent optimizations acting on
the LLVM IR

Our  experiments set of LLVM (63)
optimizations passes in order to find a sequence that will
give near optimal execution time for each group. For our
proposed method (MLGA), we set the imtial parameters to
the following values, population size = 100, probability of
crossover 15 0.9, mutation 0.02, rate of occurrence gene
0.4, stop criteria of the standard deviation 0.01. Finally, we
used one metric to evaluate the performance of our
algorithm which is:

use a
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baseline runtime
speedup = new_runtime

where, the baseline runtime represents the execution time
of program without optimization:

improvement = ((speedup 31 ) %100

RESULTS AND DISCUSSION

The experimental evaluation: This section discusses the
results obtained from the implementation of the proposed
method that we presented in this study. Several programs
from three benchmarks have been used as case studies.
These benchmarks are polybench from polybench 3.0 suit,
shootout and standford from TLTVM suit. Moreover, they
cover different kind of programs which are involving
floating point arithmetic operation programs, programs
containing tail recursive, data mimng, image processing,
linear algebra, etc.

As mention previously, MLGA 15 used that
composed of three levels. Script file has been used to
extract programs from a benchmark and carried out on
MLGA to construct optimization sequence. Figure 4-6
llustrate the output of the second level for the proposed
method where they clarify a comparison between 02 and
the proposed method (MLGA) for three benchmarks
polybench, shootout and Standford respectively. Figure
demonstrate that the MLGA outperformed O2 for all
benchmarks. Whereas O2 ignores the interaction between
optimization passes, MLGA 1s able to detect the relation
between them and pruning the non-affective ones.

Sequence reduction algorithm is used to eliminate the
unnecessary optimization passes. Tables 2 and 3 illustrate
the optimization sequence before and after reduction
process, respectively.

Table 4 shows the SOS’s best optinization
sequences for each benchmark separately. These
sequences represent the output of the first level and will
be the seed of initial population for the second level. The
final sequence that will be produced 1n final step 1s Global
Optimization Sequence (GOS) where it is resulted after run
1t on all the benchmarks. Figure 7 shows the comparison
between the O2 and GOS performance. The comparison
llustrate that the resulted sequence of GOS overcomes
the O2 with ratio of 10% in the execution time. Table 5
shows passes of the discovered global optimization
sequence.

Passes of the discovered GOS: Functionattrs-sumplifycig-
inline-codegenprepare-early-cse-indvars-loop-deletion-
instcombine-functionattrs -basicaa -inline -loop-rotate-
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Fig. 4: Optimization sequence before reduced
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Fig. 7: Comparison between O2 and GOS

indvars-loop-unroll-instcombine-licm-gvn-loop-rotate-
loop-idiom-loop-deletion-inline-loop-rotate-inline-
memepyopt -tailcallelim -loop-rotate s-inline-mstcombine
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Table 2: the optimization sequence before reduced it

Programs Optimization sequence

2. ¢ -basicaa-argpromotion-simplify cfg-memcpyopt-inline-gvn-globaldce -adce-loop-rotate-loop -unswitch-globalopt-licm
3mm.c -loop-rotate-licm-basicaa-gl obalde e-basic aa-die-loop-rotate-lower-expect-lazy -value-info-gvn

adi.c -instcombine-loop-rotate-loweratomic-indvars-loop s-reassociate-functionattrs-gvn-targetlibinfo

atax.c -basicaa-lazy-value-info-correlated-prop agation-loop-instsimplify -gvn-indvars-dce-scep-lazy-value-info

doitgen.c -instsirnp lify-loop-rotate-basicaa-instcombine-indvars-indvars-instcombine-licm-gvn-gvn

jacobi-1d-imper.c -basicaa-instcombine-inline-loop-rotate-indvars-loop-idiom-loop-deletion-loop -unroll-gvn-instcombine-indvars-memdep
seidel.c -simplify cfg-loop -rotate-instc ombine-gvn -loop-simplify -constprop-die-loweratomic-loop -idiom

syr2k.c -basicaa-loop-rotate-indvars-loop-rotate-loop-unswitch-lowerswitch-gvn-licm-correlate d-prop agation-targetlib info-instcombine

Table 3: the optimization sequence after reduced it

Program Optimization sequence

2mim. ¢ -basicaa -simplifycfg-inline-loop-rotate-licm

3. ¢ -loop-rotate-licm-basicaa

adi.c -inste ombine-loop rotate-indvars-gvn

atax.c -basicaa-gvn

doitgen.c -loop-rotate-basicaa-instcombine-indvars-licm

jacobi-1d-imper.c -basicaa-instcombine-inline-loop-rotate-indvars-loop -idiom-loop -deletion-loop-unroll-gvn-instcombine
seidel.c -loop-rotate-instcombine-gvn

syr2k.c -basicaa-loop -rotate-licm

Table 4: SOS°s sequences for each benchmark

Benchmark SGOS

Polybench
Shootout

-basicaa-simplifycfg-inline-loop-rotate-licmn-loop-rotate-lic-basicaa -instcombine -indvars-gvn-loop-idiom-loop-deletion-loop-unroll
-functionattrs-simplifycfg-inline-codegenprep are-early-cse-indvars-loop-deletion-instc ombine-functionattrs-basicaa-inline-loop-rotate-

-indvars-loop -unroll-instcombine-licm-gvn-loop-rotate-loop-idiom-loop-deletion-inline-loop-rotate-inline-memcpy opt-tailcallelim-loop-rotate-

inline-instcombine-loop-deletion-tailcallelim
Standford

-early-cse -jump-threading -inline-instcombine-targetlibinfo-tailcallelim-indvars-sink-functionattrs-alway s-inline-loop -otate-basicaa-scalarrepl-ssa-

-loop-idiom-loop-rotate-loop-unroll-lessa-lowerinv oke-always-inline-scalarrepl-gvn -scalarrepl-ailc allelim-dce-licm-prune-eh-instcombine-loops-
ipscep-loops-basicaa-scalarrepl-ssa-globalopt-argpromotion-mergefunc -loop-deletion -correlated-propagation-gvn

loop-deletion-tailcallelim-basicaa-simplifycfg-inline-loop-
rotate-licm-loop-rotate-licm-basicaa-instcombime-ndvars-
gvn-loop-idiom-loop-deletion-loop-unroll.

CONCLUSION

In this study, MLGA has been mtroduced to make a
right choice of compilation optimization passes. MLGA
have been evaluated on different instances of real-world
benchmarks. Our MLGA used rank selector, UX crossover
and LLVM infrastructure has been used to validate the
proposed method. Many experiments have been
implemented on generated sequence and they show the
effectiveness of this sequence. Overall, it achieves better

performance compare with the -O2 flag.
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