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Abstract: For most drugs there is a minimum concentration below which the drug is ineffective and a maximum
concentration above which the drug is dangerous. This study presents a mathematical model for the effective
medicine dosage and its concentration in bloodstream of a patient. Two mathematical tools, the exponential
decay and geometric series are used to find the dose concentration of a drug in bloodstream of a patient.
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INTRODUCTION

Mathematical models simulate complex systems ina
relatively fast time without the enormous costs of
laboratory experiments and the biological variations.
particularly for oncology, such models can be calibrated
using experimental or clinical data (Wang et al., 2009,
Gao et al, 2013) and competing hypotheses of tumor
progression can be evaluated and treatment options
thoroughly analyzed before climcal intervention
(Powathil et al, 2012; Rockne et al, 2010). The
application of mathematics in pharmacokinetics by
using one and two compartment models is discussed by
Koch-Noble (2011).

One of the physician’s responsibilities 15 to give
medicine dosage for a patient in an effective procedure.
The search considers a model for a diug being given to a
patient at regular intervals. When the drug is broken
dowen by the body, its concentration in the bloodstream
decreases. Also, it doesn’t disappear completely before
the next dose 1s given. Thus there 1s a tendency for the
average drug concentration to mcrease over time.

MATERIALS AND METHODS

Exponential decay model and effective medicine dosage:
An exponentialdecay model for the concentration of a
drug n a patient's bloodstream 1s described mn thus study.
Suppose that the drug is administered intravenously, so
that, the concentration of the drug in the bloodstream
jumps almost immediately to its highest level. The
concentration of the drug then decays exponentially. If we
letbe the concentration at time t and be the concentration
just after the first dose 13 administered then an exponential
decay model would be given by:

where, k is the decay constant and is a property of the
particular drug being used. It 1s usually obtained
experimentally.

Now assume that an additional dose of the drug is
given to the patient. Since, we are assuming that when the
drug is administered it is diffused so rapidly throughout
the bloodstream that, for all practical purposes, it reaches
its highest concentration mstantaneously, we would see
a jump m the concentration of the drug when the new
dose 1s given.

After the additional dose is given, the concentration
again decays over time. A problem facing physicians is
the fact that for most drugs, there is a concentration, m,
below which the drug is ineffective and a concentration,
M, above which the drug 1s dangerous. Thus, the
physician would like the concentration C(t) satisfy:

mgc(t)gM

This requirement helps determine the initial dose of
a drug and when the next dose should be administered.
Note that, many factors could be important in determining
the time between doses that 1s actually used mecluding
practical considerations like hospital schedules and shift
changes.

RESULTS AND DISCUSSION

Equal, regularly-spaced doses: Consider next what
happens if equal doses of the drug are given at regular
time mtervals. Recall that a drug has a maximum safe
concentration and a minimum effective concentration. A
treatment program of equal, regularly-spaced doses is safe
and effective if the concentration of the drug satisfies:

m=C(t)=M
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during the treatment. For the concentration of the
drug after the first dose we presented the expression
C{t) = Cye®. This expression is valid as long as only a
single dose 1s given. However, suppose that att = L a
second dose 1s given and that the amount of the drug
admimstered 1s the same as the first dose. According to
our model, the concentration will jump immediately by an
amount equal to C; when the second dose is given.
However, when the second dose is given, there is still
some of the drug in the bloodstream remaining from the
first dose. This means that to compute the concentration
just after the second dose, we have to add the value C; to
the concentration remaining from the first dose. During
the time between the second and third doses, the
concentration decays exponentially from this value. To
find the concentration after the third dose, we would have
to repeat this process but now we have contributions
from the first and second doses to include. We can
calculate the concentration just before the second dose is
administered by setting t =T, in our equation:

to get:

where, by C(1.-) we mean the:

lim
t%LrC(t)
Now, when the second dose 1s admimstered the
concentration jumps by an increment, so that, the
concentration just after the second dose 15 given 1s:

CytC(L-) = Gyt ™ = (1e™)

The concentration then decays from this value
according to our exponential decay rule but with a slight
twist. The twist 1s that the mitial concentration s att =L,
instead of the more familiar case of t = 0. Our way to
handle this is to write the exponential term as:

erK(t—L)

so that, at t = L, the exponent is 0. If we do this,
then we can write the concentration as a function of
time as:

C(t) = C, (14" e

This function is only valid after the second dose is
administered and before the third dose 1s givenn That 1s,
for L<t<2L. Now, suppose that a third dose of the drug 1s
given at t = 2L. The concentration just before the third
dose is given is C(21.) which is:

C{2L-) = C, (1+e™" je ™"
which, we can also write as:
C(2L-) = ¢, {e™ +e™)

when the third dose 1s given, the concentration would
jump again by and the concentration just after the third
dose would be:

C{2L) = C, (Tre™ + ™)

This can be continued and leads to
the followmg two formulas. The first 1s the
concentration just before the Nth dose of the diug.
This 1s:

Process

M-1

C{(N-1)L-)=C > e™

i=1

The second result, we need is the concentration just after
the Nth dose which is:

Geometric series: We define a parameter r by:

KL

where, O<r<1, k and L. are positive constants. The
properties of the exponential function can be used to
show that:

where, 1 13 a non-negative mteger. We can write our two
formulas for the concentration just before and after the

dose in terms of r as:
N-1

C((N-I)L'):Cn;:ri = cn%

And:
EEY "
C{(N-1)L) = cnﬂr =

where, the formula for the partial sum of a geometric series
has been used to obtain the last equality in each of the
equations above.
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Now, assume a treatment program is to be continued
indefinitely. The formulas above show that C{(N-1) L") and
C((N-1) L) both increase with This means that the
minimum concentration 1s the concentration just before
the second dose or:

and that the maximum concentration occurs just after the
last dose. Thus, we have that:

I lim C 1_rN — %

max —N-—sw 0 1-I' l-I'

Example: A patient is injected a particular dirug. The
concentration 1s 1.5 mg/mL (mmlligrams per milliliter), just
after the diug is injected. After 4 h the concentration has
dropped to 0.25 mg/mL. Here, C(4) =0.25att=4and C, =
1.5att=0.

0.25=1.5¢™ Thus, the decay constant k is 0.4479398673
h'.

CONCLUSION
In this study, the exponential decay model and

geometric series presents m detail the effective medicine
dosage. Also, these techniques have been used for

analysis of dose concentration in bloodstream of a
patient and modeling of minimum and maximum
concentration of a drug administered intravenously.
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