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Abstract: Moduli of smoothness are tools for peoples working in approximation theory real analysis, numerical

analysis, differential equations, functional analysis and statistical estimation. Differentiating the functions many

times to know the number of its derivative is a too groud method. In approximation theory, A sutable tool for

measuring smoothness of function is the modulus of smoothness. In Ditizian and Totik the failure of the

elassical moduli of smoothness to solve some problems in characterizing the behavior of the degree of best

approximation, make Ditizian and Totik introduced a tool for measuring smoothness. Called Ditizian and Totik

modulus of smoothness in our paper we introduce some versions of moduli of smoothness and then we show
that they are equivalent to Ditizian-Totik (DT) modulus of smoothness of function in L [-1,1] spaces for O<p<1.
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INTRODUCTION

Let us start with a simple example. Suppose that
is the space of of all functions in L,[-1.1], 0<p<l, t,(f, (t..)),,
15 finite whenever q<p. How can we characterize this
approximation spase? The answer is very well known by
now. There are several approaches but the ones that
became most that popular in recent decades nvolve
Ivanov moduli of smoothness T,(f8(t..)),, (introduced in
1980-1981) and Ditzian-Totik ef(f ), (introduced around
1984). The Ditzian-Totik (DT) modulus is defined in Eq. 2:
by letting r = 0 (Remark 1.1.1) and the Tvanov modulus for
example, (Bhaya and Ahmed, 2018, Bhaya and
Fadel, 2018; Bhaya, 2010; Bhaya and Al-Sammak,
2018, Bhaya and Anocor, 2018; Bhaya and Madlool, 2018,
Kopotun et al., 2015) is given by:

L d(t)),, = o, E..dt..) |
Where:

1 dtx)
o, (£, %8048 = (1/ 28,0,
0<qg<l

A () dw)",

It tums out (Ditzan, 2007)) that @i 0, ~nEa(ty,
with 4G )=rO+* but in Ditzian (2007), “The [Ivanov]

moduli, . are complicated method to describe
smoothness than, ... , [DT moduli] with difficult
computation”.

MATERIALS AND METHODS

As alluded to above, we are interested in the
constructive characterization of the functions in L,[-1,1],
O<p<l and c(-1,1) when p = 1. The first section are
devoted to introducing the above mentioned DT moduli
of smoothness in a new, equivalent form which is more
transparent and simpler. We prove the equivalence
via K-functionals. For p = 1, these moduli of smoothness
were introduced by Theorem (1.1.4), however, no relations
to weighted DT moduli were discussed. In the sequel, we
will have constants C that may depend only on some of
the parameters involved (p, k, 1) but are independent of
the function and of as the case may be. The constants ¢
may be different even if they appear in the same line
Define:

L, ={f:(jjf(x)|p dx)é <oo},0<p< land

For, keN,, h>0 an mnterval j and £:7-R let:

Af(fx,T)= {Zk;,[lj(-l)k" f{)ﬁ[i-ijhj,ifxikzh el

otherwise, be the kth symmetric difference and let
ARCE,x) = A, x,[-11]
Let, O<p<] and reN. Then forr>1, let
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5, = it FofT

£ ¢ AC,,, (-1,1)and|

< oo} (1)

and setﬁg =L, [-1,1]

(Recall that AC,, (-1, 1) denotes the set of functions
which are locally absolutely continuous in (-1, 1)):

For, fe %, define:

(2

wi_r(f(f),t)p;:supushst WL ()AL (19,)

Where:

e (LX'&I)(X% ](1+X_B(P(X%}}”2

For 60, let:

i

D, = {x

={X

1-5‘P(X%z|x|}\{il}

4.8
4+ 8

x| <

}= (14 p(8).1-u(8) |

Where:

H(B) =28 (4+52)

Observe that,D; =6 if 8>2 and note that Al fx) is
defined to be identically O if xeDy and that W, is
well defined on D; (in fact if <2 then Dom (W&) = D, U{=1)
(Kopotun et al., 2015).

Hence:

mzr(f(r),t)p =8Py L,

And:

wfir(f(r),t)p = coff_r(f(r),zk

2 3
)p ,fort = (. (3)
Remark 1.1.1: When, r = 01in (1.1.3) «f¢.n, reduces to
the well known kth DT modulus of smoothness of (£ t), :

Definition 1.1.2: Let keN, reN; and fe 3 O<pzl.
Then, the averaged modulus of smoothness is defined
as:

. OV
o (f (’),t)p = [tj [[ws (x)as, (f(r),x)‘ dxdt}

0 Dkt

While, the modulus wf, 1, 13 obvicusly a non-
decreasing function of t, the averaged modulus «? (t%,1),

does not have to be non-decreasing. At the same
time, it immediately follows from definition 1.1.2 that:

!
s(120), <[ () o<1, 0

The above moduli of smoothness are equivalent to
the following K-functional.

Definition 1.1.3 (K-functional): For k, reN, reN;, O<p<1
and fe =, :
)

The following weighted DT moduli are defined in
(Ditzian and Totik, 1987) (with D = (0,1)). For any O<p<1:

k+r) fe+r

Kir(f(r),tk) :infgesm(H(f(f)-g(‘))qa' +tng( 0
? f P

wi(f,t)m:p = SUP, e c-)/_\.fwa

L, [tg,l-ﬂ +

ok

Ay

_k

o An T

sup, <hs) +Supn<hsq

"
L,[0.126)]

"
L1124, 1]

where, if w:m, then t;=t; =k . In Ditzian and
Totik (1987) there is a result for such | and w
o, (f1),, 15 equivalent to the followmng weighted K-
functional:

K, ( ft* ) = infgtk-n ctiy, (”(f-g)@”LP ) t* H(mxpkg v HLP (D))

B

With a simple me dification we get:

+

Lp[-1+t*,1-t*]

g (), , = SUPoaus [OALF

(3

k

— <k
sup,_, o [[¢"An T @ Anf

+Supn<h5t1*

L, [-1-1+4£"] Ly [1-82"1]

where, t* = 2k*t'and A is an absolute contant and note
that we can prove that K-functional defined in Defimition
1.1.3, satisfies:

Ke, (L t* )p = Ky (6 1F )wx:p =inf 4,

(H(f g7 At lio"g® Hp)

€AC),

Theorem 6.1.1 1n Ditzian and Totik (1987) implies:
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M 'of (£ ty,
M=1 and O<t<t,

A similar proof of 6.1.9 in Ditzian and Totik (1987), we
have for t* = 2I°t™

1

o, (f, t)m’p = Gjﬂtjz; @(X)AI;P(X) (f, x)‘pdxdt ]A +
[ J.t*jl SALF

T

A“ (£x)

dxduJ p + (7)

J
A“ (£ x) dxdu]

where, O<p<1
As aproof of a result in Ditzian and Totik (1987), we have
for t=0 that:

ke (f tk) <Moi (L), &)
Theorem 1.1.4:

cKEr(f(f),tk) ga);f*’r(f(f)’t) Smir(f@,t) <
? P

oK, (£, ¢ )p

C 18 constant depends ink, r and p.

Remark 1.1.5: Note that with an additional restriction
that t<t, in the case r = 0, Theorem 1.1.4 becomes [3,
Theorem 2.1.1 ] (with ¢(x)=+1-x* ) and that t, can be taken
tobe (2k)"! as was shown in [1, Theorem 6.6.2].

RESULTS AND DISCUSSION
Auxiliary results: In this section we shall mtroduce.

Proposition: (properties of Wy(x) and D;) (DeVore and
Lorentz, 1993):

¢ W, (x)<(u),forxe D, andu [ -x|-3p(x)/ 2, |x[+3p(x)/ 2 |
. W, (x)=@(x),forxeD,
. @(x) 2 2W, (x), forxeD,,
. 8|(|)'(X)|S1,f0rz)(ED6
. I y{u)=x+8qx)/ Zand‘Sl‘ <§,then1/2 <y'(x) <
3/2forall xeD,
. Its, = &,,then D, D,

< Kﬁr(ﬁtkllshﬂwi(ﬂt)dm (6)

Lemma 1.2.2: For any O<ps<1, reM; 4>0 such that A>r-1.
If ge =7, then:

=

o r+1

Proof:  Suppose that when ge3;

9{u) 2 (s forlu| ||, we have:
— ! Ap

= ot
Lo

P el
i L(plp'r'l (x)dx=c,

Smce,

Iy o

val
_[_11 (p’“”'1 ( ! du]A dx <

")

r+1 (r+1) P

P g

1+ (r+1)

P g =

c (pr+1g(r+1)

p

1
< o0
b

As a direct consequence of above lemma we get the
following corollary.

Corollary 1.2.3: For any O<p=<],relN, if g € 55 .
Using a method as in (Kopotun ef al., 2015)), we can
prove the following:

Lemma 1.2.4: For any ke, O<p<1, reN; and fe 3} . Then

m;k(f(’),t)d‘p <¢, (k,r)mk_r( (),c(k)t) ,

b4
0<t=<clk)
Proof: We estimate each of the three terms m Defimtion
(1.1.7) separately. First, recall that t* = 2k* and
note that [-1+t*, 1- t *]cy,, and so using (i11) of
Proposition 1.2.1 to get

H:ﬂ (£, )‘pdxdrg
= fl;* (A (7)<
_.[ jDZlct kt )(f(‘) )rdXdrS

mk . (f t)ﬂ

Let us now take the second term and the third term 1s the

same If t =(2k/A+K /2" | then using the fact:

Ply-khoiy) / 2) < V2W,, (y)if 0< h<
2(y+1) / (ko y)yand y < -1/ 2
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4>

@ (x)AL{F?, )p dxdu =

jt*j 1+aL¥
jt*j 1+Ar*
tF w-l+ (A 2Ot
AT
AR 22y
g

(9 x+ku/2)‘ dcu <

ykulz)Ak(f(r),y)‘ dychy <

o (yku/ 2)A5(£9, y)‘p dudy =

].'-,1+(A+kf1t*.'-2(y+1)f(1«p(y))
0

of (ykhopty)/ 2)A% (19, y) dndy <

1 I T W () (7. ) dndy <

J- 1+ (A+kA1E jz(yﬂ)f(k:p(y))

[WE, (A%, (9. )| dhay =

ol

ot
J_.‘. J‘thm[l 14 (k)]
owkr(f c(k), (54

WL (AL, (17, )| dydn <

Proof of Theorem 1.1.4: We have:

“)fir(f(r): t)p <ol P K{, (f(’), t“)p Jforallt=0

Using (1.1.3) and sinc K-functional is monotme with
respect to t, we may assume that t<2/k. Take any g<3"
Corollary 1.2.3 implies that g3}, so:

o, (f(f)’ t) <@f, (f( 1) 29, ) o, (g(r), t)
! P
Let O<h<t:

Let 0<ick, vi(x) = x+(1-k/2)he(x). Using (v) proposition
1.2.1 toget Y, (x)z1/2forxeDy, andso, we have:

Ly (Dia)

@ (Yi )(f(r) (Yi )'g(r) (Yi ))

(Lo (.00 (6080 (3,00 dx]% .

S1/P [j‘ " (y)‘(f(r) (v)

zlfp ¢ (f (r)
P

ol ey -

For the term o (gm,t) using the relation:
13
Ai(ﬂ X} =j:i, hfzf( )(X+ul+, Loty )du, . duy

We obtaimn:

Ly ©)

he#2 phai2 kﬂ
Lt jdu, L da
m‘jhwzjhaz oo uk) 1Ptk

%Aiw(g['l-)

of, (g".1] =sup,.ye

Supu<h<t
Ly Cya)

For any u Satisfying -1= x+u-hf (X)/Z <xtuthgpx)/2<1 gnd

using (ii) of Proposition 1.2.1, we get:

(q(fr(g[r): t)p =
hep g2 hiz
. L@m’ ,jwch g™ (e, +, 2, )du, .,duk‘ dx<

I s

2  hegti)i2 hegti)i2

m,...,dlk‘@g
hq33 b 2 b2
%, r k]|
j%c{gj jwz, ,jwch g™ (3,4, o, )du,, .,duk‘ dx<

C(m]kfmmfw@(x)g (xu,) dukdx<c[ ]

e

P8

2 beple)/ 2

It O<p<l:
hf /2 B hf{z)/2 hf (x)/2 hf z)/2
.[hffz 7j—hf(x)12+j—hf(x)f2+J‘rhf(x)f2+""’
I{p)=1L(p)oLi{p)wL(piU...
Hence:

of (. t)p <ok, 1, pKp, (£, ¢ )p

Now show:
oK, (£, 1) <w (1) ,
» »

Estimates (1.1.6) and (1.1 .8) with Lemma 1.2.4 imply that,
for fe 3, O=<p=1:

Kﬁr(f(r),tk )p < cm,” (f(r),clt)10 L0 <t=c,,

where, ¢, = ¢,(k) and ¢, = ¢,(k) are positive constants

Suppose, 0<t<2/k and let p = max {1, ¢,, 2/(c,)}. Then,
since, t/lLl<c, using (1.1.4), we get:

k
Ky £ ¢ S},Lqu’r[f(r),(t ) J Scw*‘i[f(r),clt ] <
g ( )p A : = K,
12
K *op f(f) t
C(A) 031“( > )p

Thus:
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CONCLUSION

We can define new modulus of smoothness for
functicns in L [-1,1] quasinormed spaces for O<p<1. This
modulus of smoothness equivalent to Ditzian-Totik
modulus of smoothness.
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