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Abstract: The professional sports league has been one of the biggest busmess mdustries. And both each team
manager and league manager have interested in good game schedule for the benefit. Sports League Scheduling
Problem (SLSP) study had started in operation research and many researchers have been worked over the last
two decades. The traveling tournament problem is recently proposed by Goeriglk and Westphal which is a
well-known combinatorial optimization problem aimed at developing optimal schedules for sport leagues. The
TTP is considered a difficult problem in that its constraints appear to be simple but are difficult to satisfy and
the objective of mimimizing the total travel distance 1s difficult to achieve. Thus, it has been considered a
challengeable combinatorial optimization problem for both theoretical and practical reasons. In this study, we
present a hybrid heuristic algorithm using the Tabu search and simulated annealing procedures for solving the
traveling tournament problem. Computational experiments using a hybrid approach on benchmark sets give
results comparable to or better than current best known solutions.
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INTRODUCTION

Professional sports leagues form a huge global
industry and popular teams make huge profits. In the US,
television networks can pay more than $400 million per
year for nationally televised baseball games. For example,
Manchester United, a publicly traded British soccer team,
commands more than £100 million for overseas
broadcasting rights alone. Sport league scheduling has
received considerable attention in recent years because
these applications involve sigmficant television networks
and generate challenging combimatorial optimization
problems. As shown in Table 1, feasibility constraits
imposed by rules, venues and other regulations applied to
the sport male the resulting combinatorial optimization
problem a very difficult one.

In manufacturing, having and following an
appropriate production schedule 1s critical. Similarly,
optimal game schedules are of critical importance to
sports leagues in that they allow teams to maximize
profits, strike a balance between matches and venues,
maximize/minimize breaks and minimize the travel time. The
Traveling Toumament Problem (TTP) 1s an important

Table 1: Elements of sports scheduling
Match rules Venues
Round-Robin Neutral venues

Other regulations
Limnits the number of
consecutive games
Break-time regulations
Prevention of repeat
gaimes

Double round-Robin
Double round-Robin
mirrored)

Home/away venues
Special venues
for events

research topic which developed for requirement of major
league basketball in the United Status. The problem is to
minimize distances traveled by league which each sport
team takes. In research years, some methods have been
presented for solving the TTP. However, such studies
have had considerable difficulty developing optimal game
schedules because of diverse objectives and complex
constraints.

Anagnostopoulos et al. (2006) presented an
advanced simulated annealing algorithm for the TTP that
include strategic oscillation and reheats to balance the
exploration of the feasible and infeasible regions and to
escape local minima at very low temperatures. Lim et al.
(2006) used a interaction strategy between simulated
annealing and hill-climbing method to divide the search
space into a timetable space and a team assignment space.
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In their research, the timetable space is explored by a
simulated annealing algorithm while the team assignment
space is explored by a hill-climb algorithm. Di Gaspero and
Schaerf (2007) have proposed a Tabu search for the TTP,
focused on the defimition of the neighborhood. The
neighborhood employed m the search 18 a composition
that has been designed starting from basic neighborhood
structures, according to an analytical study of the
cardinality, the overlapping and the average quality of
the components. Irnich (2010) proposed a fast solution
method for the TTP on the decomposition into master and
pricing problems. He has showed that this problem can be
reformulated as an ordinary shortest-path problem over an
expanded network and the proposed algorithm can
mnprove many lower bounds of knowingly hard TTP
mstances from the literature. Yamaguchi et al. (2011)
proposed an approximation algorithm for TTP with
constramts such that both the number of consecutive
away games and that of consecutive home games are at
most k. A key of the proposed algorithm 1s to construct an
almost shortest Hamilton cycle passing all the venues and
finds a permutation of teams such that the above cyclic
order comresponds to the obtamned Hamilton cycle.
Easton et al. (2001) defined the TTP’s objective as the
minimization of the total travel distance for all teams in the
league. In addition, Easton et al. (2002) presented optimal
solutions for leagues composed of 4, 6 or 8 teams by
using a branch and price algorithm based on integer and
constraint programming. Benoist ef al. (2001) examined
some hybrid algorithms combimng Lagrangian relaxation
and comstraint programming with round-Robin
assignment and travel optimization. Russell and Urban
(2006) considered the problem of scheduling sports
games through several venues not associated with
any of the teams by using constraint programming.
Anagnostopoulos et al. (2006) achieved good results with
a simulated annealing algorithm for the TTP that explores
both feasible and infeasible schedules and searches for
large neighborhoods with complex moves. Lee et al.
(2006) suggested a heuristic algorithm based on the Tabu
search procedure, mtroducing better solution features
(alternation and intimacy) and proposing a strategic
search method.

In this study, we present a heuristic algorithm based
on Simulated Annealing (SA) and Tabu search (TA)
procedures, for solving the practical as well as large size
problems that face many teams.

MATERIALS AND METHODS

Problem description

Definition of traveling tournament problem: The TTP 1s
generally defined as a problem that 13 presented in the
form of round-Robin tournament among teams, so that,
every team plays ever other team. Such a tournament has

Table 2: Characteristics of the TTP in spoits scheduling

Matching rules Venues Other regulation

Double-round-Robin Home/away venues Consecutive limit no.
Repeat game regulation

n-1 slots during which n/2 games are played. For each
game, one team 1s denoted the home team and its
opponent 1s the away team. As suggested by the name,
the game 1s held at the venue of the home team. A double
round-Robin tournament has 2 (n-1) slots and has every
pair of teams played twice, once at home and once away
for each team (Easton et al., 2001).

In the TTP, d, represents the distance between the
homes of teams 1 and j given by a nxn symmetric matrix d.
Each team begins the tournament at its home site to which
it must return at the end of the tournament. In addition,
when a team plays an away game, the team travels from
one away venue to another directly. The cost to each
team 1s the total distance traveled over the tournament.

Constraints of the TTP: The conditions which the TTP 1s
assumed are categorized by elements of sports league
scheduling. As shown in Table 2, the match rule which
determine the number of games is the double-round robin.
And the TTP assume that each team has a own home
venues. And 1t contains special regulations optionally
witch are consecutive limit generally, 3 home/away game
and 2 team make a game each home venues continually.
These characteristics become constraints of TTP. These
constraints seem to be simple but it is hard to satisfy, so,
1t has been known a difficult problem to solve even for
very small cases.

There are two basic requirements for solving the TTP.
The first requirement is to find the feasible game
schedules. The second is the minimization of the total
travel distance for all the teams in the league.

The key to the TTP is a conflict between minimizing
travel distances and feasibility constraints on the
home/away pattern. A solution to the TTP must satisfy
the following representative constraints:

Double round-Robin constraints: Each pair of teams, for
example, a pair of teams, A and B, play exactly twice-once
at A’s home site and once at B’s home site. Thus, there 1s
the exit total 2(n-1) rounds and n/2 games are played in
each round.

Consecutive constraints: For each team, no more than
three consecutive home or three consecutive away games
is allowed. In other word, more than three consecutive
home stands or road trips are forbidden by these
constraints.

No-repeat constraints: For any pair of teams, for example
a pair of teams, A and B, after A and B play at A’s home
site, A and B cannot immediately play at B’s home site in
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Table 3: Example of the above constraints for the TTP

TR 1 2 3 4 5 6 7 8 9 10
1 3 3 4 5 -4 -5 -6 -2 6 2
2 6 4 -5 -4 3 -6 5 1 -3 -1
3 -1 1 -6 6 -2 4 -4 5 2 -5
4 5 2 -1 2 1 -3 3 -6 -5 6
5 -4 6 2 -1 -6 1 -2 -3 4 3
6 -2 3 3 -3 3 2 1 4 -1 -4

Row 1 satisfies no-repeat constraint. Row 3 and 4 satisfies double round-
robin constraint. Row 5 and 6 satisfies consecutive constraint

next round. The example of above constraints 1s
shown in Table 3. A schedule is represented by a
timetable indicating the competing teams. Each row
corresponds to a team and each column, a round. The
opponent of team 1 in round t is given by the absolute
value of the element (I, t). If (I, t) is positive, the game
takes place at I's team home and at the opponent’s
home otherwise. Anagnostopoulos et al. (2006) designed
this representation of schedules. In Table 3, the blocked
square of team 1 and 6 is an example of violating
consecutive constraints and the blocked square of team
3 and 4 is an example of viclating no-repeat constraints.
Finally, the blocked square of team 5 means double
round-robin constraints.

Mathematical model for the TTP: This study’s proposed
mathematical model 1s as follows:

Decision variable:

Y. __§1 ifteamimoves fromteam j'shometoteamk'shomein roundt
i,0.k,t~ {0 otherwse

2n-2

Minimize ) > > > d, =Y, )
1=11=1k=1t=1
n 2n-2
Subjectto 3> iy =01 v, ()
j=1t=1
n 2n-2
STV L=l Vo kik=D) (3
1=11=1
Zn: 3 YeS2 Voitd#ED) )
i=1j=1
Y53V, Vekt (5)
i=1 i-1
PIR ARG 30 A vkt (6)
j=1 i=1
ZY;,],t,lzl \v/i (7)

1=1

n

Y1 i, 2n-1 =1 Vi (8)
=
DR AN | ik, ti=k) e
t+3
YY,,.53  V.t=Ll2..n5 (10)

Yot=L2..,05 (1)

The objective function 1 is the same as formal
models. Equation 2 is the constraint for the number of
(n-1) games that must be played at the home site and
Eq. 3 necessitates that each team must play only once
against all the teams at their home sites. Equation 4
represents that no more than two teams can make use of
one venue simultaneously and equation 5 means that if an
opponent visits, the home team must be at its own home
site. Thus, according to Eq. 4 and 5, a venue must
accommodate either two teams simultaneously or no team.
Equation 6 is a moving sequence constraint indicating
that if team 1 15 at team ;s home site in round t then team
1 must start at team j’s home m round t+1. Equation 7 and
8 are the constraints indicating that all teams must start at
their home site at the beginning of the tournament and
return to their home site at the end of the tournament.
Equation 9 1s the no-repeat constramt ensuring that a
match between a pair of teams does not immediately
follow a match at the home site of one of the two teams.
Finally, Eq. 10 and 11 are the “no consecutive games”
constraints preventing more than three consecutive home
or away games. This mathematical model does not provide
optimal solutions even for a small number of teams. That
15 the model can find an optimal solution for up to only
four teams. In this regard, the present paper proposes a
heuristic method that can address this size problem.

Proposed SA-Tabu search algorithm: A simulated
annealing algorithm (TTSA) of Anagnostopoulos ef al.
(2006) defines an effective neighbor mechanism and
shows good performance in terms of solution quality.
However, 1t 1s slow because of random searching. In this
regard, this study proposes a hybrid algorithm based on
the simulated annealing and Tabu search procedures that
can perform well in terms of both solution quality and time
consumption

The search process 15 based on SA which has a
random search process. On the other hand, random
searching can produce a feasible solution. Then a local
search based on the Tabu search procedure i1s started by
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Simulated annealing

Searching for various feasible solutions

Mid-term memory

Instantly stores a solution as an initial solution

g
+

Short-term memory

to the Tabu search procedure

Long-term memory

v’ Storesinitial Tabu solutions

and local optima

Searching for various feasible solution

Fig. 1: SA-Tabu search process

using a feasible solution from simulated amnealing. It 1s
expected that additional feasible solutions can be found
through the Tabu search procedure. That 15, SA 1s
designed for shallow and global searching and TS
15 for further local searching. In other words, SA 1s
for diversification whereas TA is for intensification
(Fig. 1).

Over all searching process is based on Siumulated
annealing. Simulated annealing has random search
process. While random searching, a good feasible
solution may be founded. Then local search based on
Tabu search process is started with a feasible solution
founded by simulated annealing. It 13 expected that more
good feasible solution is founded by Tabu search. That
15 simulated annealing derives Tabu search processes.
And each process performs their searching in parallel.
Simulated annealing 15 designed to have shallow and
global searching and Tabu search is designed to have
further local searching. In other words, Sumulated
annealing performs diversification and Tabu search
performs intensification.

Each process has some memory, including short-term
memory. Short-term memory prevents each process from
re-visiting a visited solution. On the other hand, long-term
memory provides a solution that 15 used as the initial
solution for TA procedure. Long-term memory is shared
by SA and Tabu and thus, a solution visited or mitiated

by one process 1s never visited by another which
allows each process to escape the local optimum.

Neighborhood generation: The neighborhood generation
mechanism 18 based on the TTSA. The neighborhood of
a schedule S is a set of (possibly infeasible) schedules
that can be obtained by applying one of 5 types of moves.
The first 3 types have a sinple intuitive meamng whereas
the remaining two generalize them. In this regard, the
present paper suggests a process for resolving infeasible
solutions.

Swap homes (8, T;, T;): This move swaps the home/away
roles of team T, and T, In other words, if team T, plays at
home against team T, in round k and away at team T,’s
home in round 1then swap homes (S, T,, T,) is the same as
the Schedule (S), except that team T, now plays away
against team T, in round | and at home against team T, in
round 1. Table 4 illustrates swap homes (3, T,, T,).

Swap rounds (S, R, R): This move simply swaps
round R, for round R,. Table 5 illustrates swap rounds (S,
Ri, Ro).

Swap teams (8, T;, T)): This move swaps the schedules of
team T, and T, (except, of course when they play against
each other). Table 6 illustrates swap teams (3, T,, T;).
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Table 4: Swap homes

Table 7: Partial swap rounds (8, To, Ry, Ro)

R 1 2 3 4 5 6 7 8 9 10 TR 1 2 3 4 5 6 7 8 9 10
6 -2 4 3 -5 -4 -3 5 2 -6 6 -2 2 3 -5 -4 -3 5 4 -6

5 1 -3 -6 -4 3 4 -1 -5 5 1 -1 -5 4 3 6 -4 -6 -3

-4 5 2 -1 6 -2 1 -6 -5 4 -4 5 4 -1 6 -2 1 -6 -5 2

3 6 -1 -5 1 5 2 -6 -3 3 6 -3 -6 -2 1 5 -1 -5

-2 -3 6 4 1 -6 -4 -1 3 2 -2 -3 6 2 1 -6 4 -1 3 4

-1 < -5 2 -3 5 -2 3 4 1
4 3 -5 -4 -3 5 2 -6

5 1 -3 -6 4 3 6 -4 -1 -5
-4 5 2 -1 6 -2 1 -6 -5 4

3 6 -1 -5 -2 1 5 2 -6 -3
-2 -3 6 4 1 -6 -4 -1 3 2
-1 < -5 2 -3 5 -2 3 4 1

o LV R P S N = T . S P
(=2}
'
[

-1 -4 -5 4 -3 5 -2 3 2 1
6 4 2 3 -5 -4 -3 5 -2 -6
5 -6 -1 -5 4 3 6 -4 1 -3

-4 5 4 -1 6 -2 1 -6 -5 2
3 -1 -3 -6 -2 1 5 2 6 -5

-2 -3 6 2 1 -6 4 -1 3 4

-1 2 -5 4 -3 5 -2 3 -4 1

[ R S N N VA S

Home/away role is swapped for teams 2 and 4

Table 5: Swap rounds

Partialty swaps schedule for rounds 2 and 9 of team 2 and updates the rest

Table 8: Patial swap teams (S, T2, T4, R9)

R 1 2 3 4 5 7 8 9 10 TR 1 2 3 4 5 6 7 8 9 10
6 -2 4 3 -5 -3 5 2 -6 6 -2 4 3 -5 -4 -3 5 2 -6
5 1 -3 -6 4 6 -4 -1 -5 5 1 -3 -6 4 3 -4 -1 -5

-4 5 2 - 6
3 6 -1 -5 -2
-2 -3 6 4 1
-1 -4 -5 2 -3
6 -2 -3 3 4
5 1 4 -6 -3 6 -4 -1 -5
-4 5 6 -1 2 -2 1 -6 -5 4
3 6 -2 -5 -1 1 5 2 -6 -3
-2 -3 1 4 6 -6 -4 -1 3 2
-1 -4 -3 2 -5 5 -2 3 4 1

1 6 -5 4
6 3
4 3 2

whud =t owh|s
¥
2

o LV R P S N = T . S P

-4 5 2 -1 6 -2
3 6 -1 -5 -2 1
-2 -3 6 4 1 -6
-1 -4 -5 2 -3 5 -2 3 4 1
6 -2 2 3 -5 -4 -3 5 4 -6
5 1 -1 -5 4 3 6 -4 -6 -3
-4 5 4 -1 6 -2 1
3 6 -3 -6 -2 1 5 2 -1 -5
-2 -3 6 2 1 -6 4 -1 3 4
-1 -4 -5 4 -3 5 -2 3 2 1

6 3

N R T R N PR S Ol S
ko= oo
.
KR
s
(]

Rounds 3 and 5 for all teams are swapped

Table 6: Swap teams

R 1 2 3 4 5 6 7 8 9 10
1 6 -2 4 3 -5 -4 -3 5 2 -6
2 5 1 -3 -6 4 3 6 -4 -1 -5
3 4 5 2 -1 6 -2 1 -6 -5 4
4 3 6 -1 -3 -2 1 5 2 -6 -3
5 -2 -3 6 4 1 -6 -4 -1 3 2
6 -1 -4 -5 2 -3 5 -2 3 4 1
1 6 -5 4 3 -2 -4 -3 2 5 -6
2 5 -3 6 4 1 -6 -4 -1 3 -5
3 -4 2 5 -1 6 -5 1 -6 2 4
4 3 6 -1 -2 -5 1 2 5 -6 -3
5 -2 1 -3 -6 4 3 6 -4 -1 2
6 -1 -4 -2 5 -3 2 -5 3 4 1

Schedules of teamns 2 and 5 are swapped

Note that, in addition to the changes in lines 2 and 5,
the corresponding lines of the opponents of T; and T,
must also be changed. As a consequence, there are four
values per round (column) that are changed (except when
T, and T, meet).

However, these three moves are not sufficient for
exploring the entire search space and as a consequence
they lead to suboptimal solutions for a large number of
teams. These issues can be addressed by considering two
moves that are more general. Although, these moves do
not follow the mterpretation of the first three they are
sinilar mn terms of their structure and they can dramatically
enlarge the neighborhood, providing a more connected
search space. More precisely, these moves reflect partial
swaps that 1s they swap a subset of the schedule in round

Partialty swap round 9 schedule of teams 2 and 9 and update the rest

i and round j for a subset of the schedule for team T, and
team T, These moves are beneficial in that they are
not as global as the “macro” moves swap teams and swap
rounds. As a consequence, they may facilitate a better
trade-off between feasibility and optimality by increasing
the feasibility of solution in one part of the schedule while
not reducing 1t in another. Further, they are more “global™
than the “micro” move swap homes.

Partial swap rounds (S, T, R,, R): This move considers
team T, and swaps its games in round k and round 1. Then
the rest of the schedule for these rounds 1s updated in a
deterministic manner to produce a double round-Robin
tournament. Table 7 illustrates partial swap rounds (S, T,,
R, Ry).

Partial swap teams (S, T, T;, R)): This move considers
round k and swaps the games of team T, and team T,
Then the rest of the schedule for these teams (and their
opponents) 1s updated to produce a double round-robin
tournament. Table & illustrates partial swap teams (S, T,,
T,. Ra).

Design of simulated annealing: The design of the
Simulated Annealing (SA) procedure is based on the
TTSA. When this procedure finds a feasible solution for
the list of best solutions, it yields a Tabu list with this

9208



J. Eng. Applied Sci., 13 (21): 9204-9212, 2018

solution. SA starts with a random solution satisfying the
double round-Robin constraint and it has a high initial
temperature which makes any solutions acceptable.

SA has shot-term, mid-term and long term memory
and stores the current solution in its short team memory
which prevents it from revisiting solutions for cycle free
searching. However, it has small short-term memory
(approximately 10). If the simulated annealing procedure
mvokes the Tabu search procedure, it records the
solution to its mid term memory. If a solution already
exists 1n 1ts mid term memory then the solution 1s deleted
from the mid term memory and transferred to its long term
memory. In this way, solutions in its long term memory are
never revisited. It has unlimited mid term and long term
memory. The characteristics of the simulated annealing
procedure are summarized as follows (Algorithm 1 shows
sample code):

Cost function: As in Anagnostopoulos et al. (2006), the
simulated annealing procedure makes use of an adaptive
modification of weights for any violation of consecutive
or no-repeat constraints. More specifically, the weight of
each component 15 allowed to vary according to the so
called “shifting penalty” mechanism in which the weight
1s divided (multiplied) by the factor ¢ if for k consecutive
iterations, all the constraints of that component are
satisfied This mechanism constantly changes the shape
of the cost function in an adaptive marmmer, thereby
allowing the simulated annealing procedure to pass
through infeasible states and visit states that have a
structure  different from those of previously visited
states.

Stop criteria: The simulated annealing procedure is
stopped when long term memory is not updated for a
specified number of iterations when the temperature is
half the temperature at which the last best feasible or
mnfeasible solution 1s found or when the phase exceeds
the number of iterations.

Tnitial temperature: This sets to a very high temperature
to accept any solutions.

Cooling schedule: This refers to a geometric cooling
schedule suchas T = B-T. For temperature to cool rapidly,
B issetto 0.9.

Algorithm 1; Sample code for Simulated annealing:
1. find random schedule S

2. bestFeasible—oo; nbf-eo

3. bestInfeasible—ecs; nbi-es

4. reheat 0, counter—0; phase~0; lastUpdate —0

7. while phase<max Phase or T<best Temperature do

8. counter-0

9. while counter<counterLimit and lastUpdate<updatelimit do
10.  select a random move m fiom neighb orhood (8)

11, let 8' be the schedule obtained from 8 with m

12 ifCE»=C®)or

13. nbv (8" == 0and C (S"< bestFeasible or

14. nbv(89>0 and C(S"<bestInfeasible

15 and 8' is not in Short-term memory

16. then

17. accept-true

18, else

19. accept—true with probability exp (-AC/T)
20. false otherwise

21. if'accept then

22, S8

23. Record S in Short-term memory

24. ifnbv (8" = 0then

25. nbf-min (C (8), bestFeasible)

26.  if C (8) is acceptable bestFesaibleList then

27. if § is not in Long-term memory then
28. if 8 is in Mid-term memory then
29, Delete S in Mid-term memory
30. Record S in Long-term mermnory
31. else

32 Record 8 in Mid-term mermory
33. Make tabu process with S

34. lastUpdate -0

35 else

36. lastUp date++

37. else

38. lastUpdatet+;

39, else

40. nbi~-min(C(3), bestInfeasible);

41.  if nbf < bestFeasible or nbi < bestInfeasible then
42, reheat--0; counter~—-0; phase~-0
43, bestTemperature-T

44, bestFeasible-nbf

45, bestInfeasible—-nbi

46. it nbv (8) = 0 then

47. AT ATl

48. else

49, wew'o

50. else

51. counter++

52, phaset++

53, T-Tp

Design of the Tabu search procedure: The design of the
Tabu search procedure is based on the heuristic method
proposed by Lee ef al. (2006) and focuses on an
intensive local search near feasible solutions. The terms
“alternation” and “mtimacy”, mtroduced by Lee ef al.
(2006), present good solution features and allow for a
strategic search solution space. The Tabu search can be
summarized as follows:

Alternation: Alternation refers to the number of home
away or away home conversions for one team. The elite
schedule has few conversions.

Intimacy: Intimacy refers to the number of home-home
patterns and away-away patterns for two adjacent rounds
and 18 used for evaluating each pair of columns
(rounds).
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Table &: Alternation of team i
TR 1 2 3 4 5 6 7 8 9 10

Alteration of values

Table 10: Intimacy of round t and round t+1

TR t t+1
1 -6 4
2 4 -5
3 -5 -6
4 2 -1
5 3 2
6 1 3

Alteration of values

schedule,
alternation 1s large then it must travel frequently. In

In a specific team’s if the team’s
addition, between two specific adjacent rounds, low
mtimacy needs to be mproved through neighborhood
searches. As shown in Table 9, team I’s alternation is
4 4(-1, 6), (4. -6),(-6,1), (2,-5)} and as shown i Table 10,
its intimacy between round t and round t+1 1s 4 {(-5, -6),
(-2, -1), (3, 2), (1, 3)}. In the TTP, generating all the
neighbors of the cumrent solution requires too much
time. Thus, alternation and intimacy are used to
search for good neighbors in an effective manner.
Each team’s alternation is evaluated and then three
teams with the highest alternation values are selected.
In addition, for each adjacent pair of rounds each
round’s intimacy is evaluated and then, until the final
three or four rounds, a mimmum number of round
pairs are deleted among the candidates. The design
of the Tabu search procedure 1s summarized as
follows:

Neighborhood sampling: After evaluating the
alternation and intimacy values for the cwrent
solution, three max-altemation teams and three or four
min-intimacy rounds are selected. Then the neighbors are
generated by applying swap homes and swap teams
using four max-alternation teams and swap rounds
using four min-intimacy rounds. Finally, partial swap
rounds and partial swap teams find the neighbors by
using both four max-alternation teams and four min-

mtimacy rounds.

Movement control: After the neighborhood sampling, the
best solution that 1s not already in short term, mid term or
long term memory is chosen. Tf the chosen solution is not
an improvement then the procedure generates 100
neighborhoods randomly and searches for a better
solution not in the Tabu list. If successful, the current
solution can be moved to improved solution. Tf not, it can
be the local optimum. Finally, the procedure stores this
solution in long term memory and moves to an
unimproved solution.

Tabu list: There are two types of Tabu lists: short term
and long term list. The short term list maintains a record of
solution movements and the long term list does a record
of the initial solutions used in the Tabu process and local
optima.

Stop criteria: The stop criterion is based on the
max  number of iterations, since, the last
Lmprovermerit.

Other features: If a generated neighborhood is not
feasible then 1t 15 not considered. The sample code for
Tabu search is shown in algorithm 2.

Algorithm 2: Sample code for the Tabu search

procedure:

01. find random schedule 8

02. bestFeasible—; lastUpdate~0

03. while lastUpdate<updateLimi do

04.  record S to short-term memory

035, generate neighbor samples set N from § and sorting N
06. foreach §*inN

07. if 87 is feasible and 8° is not in Tabu lists then
08. NS~8" break
09,  end for
10. if C (NS)=C (8) then
11. generate neighbor sarmples set N fiom 8 and sorting N°
12. for each 87 in W°
13. it' 87 is feasible and 8 is not in tabu lists then
14. NS’ ~8" break
15. end for
16,  if CNS")<C(S) then
17. 8-NS’
18. else
19. record § to Long-tenm mermory
20. S5-NS
21.  if C (8)<bestFeasible then
22 lastUpdate~0
23. bestFeasible~S
24, else
25 lastUpdate++
RESULTS AND DISCUSSION

The effectiveness of the proposed algorithm was
analyzed by using two different instances. The first set
was composed of small size problems based on the actual
distance between Major League Baseball (MLB) teams in
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Table 11: Results for 10 runs
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Proposed algorithim

Cormputational time (sec)

Instance Best known LB Min Max Mean SD Min Max Mean SD
NL& 23916 22969 23916 23916 23916 0 75 780 183.4 63.7
NLS8 39721 38760 39721 39721 39721 0 325 3403 13203 611.1
NL10 59436 56506 59436 61608 60186.2 582.3 3107 1102 58155 2443.4
NL12 110729 107483 110729 115192 113874.4 1667.8 7420 30240 23323 9085.2
NL14 188728 182797 188728 207343 196638.1 5070.9 17682 60520 39330.9 13256
NL16 261687 248852 276520 285767 279211.1 4444.9 47343 100340 65203.7 12542
NFL16 231483 223800 238581 241973 240172.2 3421.4 101428 113599 103412 9023.4
NFL18 282258 272834 299192 311546 300243.3 5321.6 212586 276362 23234.4 17231.7
NFL20 332041 316721 342947 361878 357214.3 4123.5 265732 478318 30124.4 201433
NFL22 402534 378813 418086 439626 419215.9 63421 293760 411264 34768.9 24171.2
NFL24 463657 431226 480528 500017 496123.4 7002.7 311040 435456 36861.5 29134.8
NFL26 536792 495982 573596 590497 588211.1 90124 336960 438048 38891.4 30123.7
NFL28 609788 560697 650923 682132 6721323 9103.2 339661 452332 39932.2 312322
NFL30 739697 688875 847011 860234 850179.3 10234.1 346464 485050 40135.2 40312.7
NFL32 914620 836031 1020966 1038706 102921.6 9045.4 363880 527626 41234.7 47737.9
*Best solution is presented in the cited website (http://mat.gsia.crmu. edw'TTPY)
Table 12: Comparison of the computational time (sec)

Sirmulated annealing

(Anagnostopoulos ef al., 2006) Tabu search Proposed algorithm
Tnstance Min Mean Min Mean Min Mean
NL6 NA NA 308 379.1 75 183.4
NLS8 596.6 1639.3 1411 2204.5 325 2020.3
NL10 8084.2 40268.6 3427 6135 3107 5815.5
NL12 28526 68505.3 7329 26751.2 7420 23323
NL14 418358.2 2335784 15674 41600.1 17682 39330.9
NL16 344633.4 192086.6 48294 71088.3 47343 65203.7
the National T.eague. The other set was composed of large generates  challenging  combinatorial — optimization

size problems based on the National Football League
(NFL). For each instance the proposed algorithm was run
10 times and the best solution and the total running time
were recorded. Table 11 shows the results for the 10
runs.

In terms of solution quality, our solutions were the
same as those for NL6-NL10. When comparing
with our solutions and values of instance more
than 10 m MLB, the differences
msignificant.

In terms of the computation time, our solution was
evaluated by results of Anagnostopoulos et al. (2006)
and Lee et al. (2006), respectively. Table 12 provides a
comparison of the computation time among the three
approaches. As shown in Table 11, the average
computation time for the proposed algorithm was less
than that indicated in Anagnostopoulos et al. (2006) and
Lee et al. (2006).

teams Were

CONCLUSION

The sports league scheduling problem has attracted

considerable attention from both researchers and

practitioners because it involves

substantial

in recent years

revenues for television networks and

problems. The present paper considers the Traveling
Tournament Problem (TTP) (Easton et al., 2001). The TTP
schedules a double round-robin tournament to minimize
the total distance traveled by teams and involves various
feasibility and optimality issues and thus, it is a very
difficult problem to solve.

SUGGESTIONS

In this regard, this study proposed an algorithm
based on meta heuristic approaches to obtain good
solutions in an efficient manner. The results indicate that
the proposed algorithm shows good performance in terms
of computational efficiency in certain cases. This
suggests that the proposed algorithm and its underlying
mechanism are effective and practical.
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NOTATION

. k,1,7=Teams (team =1, 2, ..., nn)

. t=Round (round=0,1, 2, ..., 2n-1)

. d = Matrix of the distance between team 1 and team
]
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